Algorithms, Summer 2019 at CIS

1. Suppose you are in the comparison-based model and you are given a list of n distinct numbers, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Define the rank of an item a_{j} to be its position i, in a sorted order of these numbers. So if π is a permutation from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$, and $a_{\pi(1)}<a_{\pi(2)}<\cdots<a_{\pi(n)}$, then the rank of a_{j} is equal to the index i for which $\pi(i)=j$.
Give a deterministic algorithm for outputting the entire set of items of rank 3^{i}, for $i=0,1,2,3,4, \ldots,\left\lfloor\log _{3} n\right\rfloor$. Your algorithm should use $O(n)$ comparisons.
2. Suppose you are in the comparison-based model are you are given a list of n distinct numbers, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. You are also given an integer B, and suppose B divides n. Your job is to arbitrarily partition these n numbers into B groups G_{1}, \ldots, G_{B}, so that
(a) each group G_{i} has n / B items, and
(b) inside of each group G_{i}, the numbers are sorted.

First argue that if $B=\Theta(n)$, then this can be done deterministically using $O(n)$ comparisons. Second, show that if $B=\Theta\left(n^{1 / 3}\right)$, then this requires $\Omega(n \log n)$ comparisons for any deterministic algorithm in the comparison-based model.
3. Suppose there are m distinct integers a_{1}, \ldots, a_{m} which are each drawn from the universe $U=\{0,1,2,3, \ldots, n-1\}$. We would like to choose a random hash function h from a family H so that for all $i \neq j, h\left(a_{i}\right) \neq h\left(a_{j}\right)$, that is, the set $\left\{a_{1}, \ldots, a_{m}\right\}$ is perfectly hashed under h.
In lecture we will show that if H is universal and has range size $M=\Theta\left(m^{2}\right)$, then a random h in H has this property with constant probability. However, for each of the hash functions we saw, if a_{1}, \ldots, a_{m} are not fixed in advance, then specifying a random h in H requires at least $\log n$ bits. We would like to use fewer random bits when m is much less than n.
Suppose we choose a random prime p among the first $10 m^{2} \cdot \log _{2} n$ primes. Consider the map $h: U \rightarrow\left\{0,1,2, \ldots, 10 m^{2}-1\right\}$ given by $h(y)=g(y \bmod p)$, where g is a universal hash function with range size $10 \mathrm{~m}^{2}$. Argue that h has the above perfect hashing property with probability at least $9 / 10$. How many bits are needed to specify h ? You may use the fact that the i-th prime number $p_{i}=\Theta(i \log i)$.

