Topic 14: Least Squares
Regression
and LSH Recap

David Woodruff

Regression

Linear Regression

» Understand linear dependencies between variables in
the presence of noise.

Example Regression
250

Example
+ Ohm'slawV=R"| - %

+Example Regression
100

* Find linear function that

3

Talk Outline

* Least squares regression
» Sketching for least squares regression

* Locality Sensitive Hashing Recap

best fits the data o p~ R
Regression
Standard Setting
» One measured variable b
+ A set of predictor variables a, ,..., ay

« Assumption:
b=x+a, x,+...+a, X, +¢

¢ is assumed to be noise and the x; are model
parameters we want to learn

Can assume X, = 0 by increasing d to d+1 and settingay =1

Now consider n observations of b

7/14/2019

Regression

Matrix form

Input: nxd-matrix A and a vector b=(by,..., b))
n is the number of observations; d is the number
of predictor variables

Output: x* so that Ax* and b are close
« Consider the over-constrained case, whenn > d

* Note: there may not be a consistent solution x*

Least Squares Regression

* InHW 7, you looked at
x* = argmin,|Ax — b3,
and argued if A is n x n symmetric, then A%x* = Ab

+ Extends to non-symmetric matrices: for A € R™*4 and
b € R, if x* = argmin,|Ax — b|3, then ATAx* = ATb

If the columns of A are linearly independent,
« ATAis d x d and full rank

Closed form expression: x" = (ATA)' AT b

Least Squares Regression
« Find x* that minimizes |Ax-b|,?

For a vectory € R?, |y|3 = Yi=1.n y?

Least Squares Regression

* In practice, n is very large and d is moderate
+ Computing x" = (ATA)! AT b takes nd? time
* Want running time nnz(A) + poly(d)

* nnz(A) is the number of non-zero entries of A, and you
need this time just to read the input

+ poly(d) is hopefully a low-degree polynomial in d

7/14/2019

Talk Outline

» Least squares regression
» Sketching for least squares regression

 Locality Sensitive Hashing Recap

Sketching to Solve Least Squares Regression

* Draw S from a k x n random family of matrices,
foravalue k <<n
* S is known as the sketching matrix

* Compute S*Aand S*b

» Output the solution x‘ to min,. [(SA)x-(Sb)|, using
our closed-form expression

» Black box reduction to original, smaller problem

Sketching to Solve Least Squares Regression

How to find an approximate solution x to min, |Ax-b|, ?

Goal: output x* for which |[Ax'-b|, <= (1+¢€) min, |Ax-b|,
with say, 99% probability

Would like a running time of the form
nnz(A) + poly(d/e)

nnz(A) is at most nd, so improves our earlier nd? time

Fast Sketching Matrices

CountSketch matrix
Define k x n matrix S, for k = O(d%/€2)

S is really sparse: single randomly chosen non-zero
entry per column

00100100
10000000
000-110-10
0-100 00 01

Key Property: S*A computable in nnz(A) time

7/14/2019

S*A Computable in nnz(A) Time

00100100
10000000
000-110-10
0-100 00 01

For each columny of A, can compute S*y in nnz(y)
time. Why?

For each non-zero entry of y, it indexes into a column
of S and there is a single non-zero entry in that
column, so can update Sy in O(1) time per entry

Subspace Embeddings for
Regression

+ Want x so that |Ax-b|, < (1+¢€) min, |Ay-bl,
» Consider subspace L spanned by columns of A
together with b

* ThenforallyinL, |Sy|, = (1x¢€) |yl,
* Hence, |S(Ax-b)|, = (1% €) |Ax-b|, for all x
* Solve argmin, |[(SA)y — (Sb)|,

It remains to show SA is a 2subspace embedding
with k = O(i—z) rows

Subspace Embeddings

S is a subspace embedding if forannx d
matrix A,

W.h.p., for all x in RY, |SAXx|, = (1x¢€)|Ax|,

Entire column space of Ais preserved

Why is this useful for regression?

Approximate Matrix Product

* Let C and D be any two matrices for which C has n
columns and D has n rows

* Let S be a CountSketch matrix with n columns. Then,

Pr{|CSTSD — CD|? < [6/(5(# rows of S))]*|C|? ID|2] = 1 — 6,
where for a matrix E, |E|# is the sum of squares of its entries

* Proof: variance calculation like you did in last
recitation — will do it in this week’s recitation ©

7/14/2019

7/14/2019

From Matrix Product to

Orthonormality)
Subspace Embeddings
* For any n x d matrix A with linearly
independent columns, « Suffices to show for all unit x,
|xTATST SAx —xTx| S |ATSTSA- I <¢
—There’s a d x d invertible matrix R so the columns « Matrix product result implies
of AR have length 1 and are perpendicular

Pr{|CSTSD — CDJ.2 < [6/(8(# rows of S))] * |C|:2 [D|¢2] = 1 — &

« Whatis |ARx|3 for a unit vector x? . SetC=ATand D =A.
- |ARx|5 = | Zi(AR);x;|?
- = Xil(AR)ixi | + iy < (AR)ixy, (AR)jx; > = [x[3 + Then |A2- = d and (# rows of S) = 6 d?/(5¢2), which shows

» What is (AR)TAR? |ATSTSA- Il <€

From Matrix Product to From Matrix Product to
Subspace Embeddings Subspace Embeddings
« Want: w.h.p., for all x in R9, [SAX|, = (1z¢€)|AX], + Still need for all unit x, [xTATST SAx — xTx| < |ATST SA- ||

* Follows if we show |ABC|g < |A|g|B|gIC|g for any matrices
» Can assume columns of A are orthonormal A,B,and C

— Unit length and perpendicular to each other
» The above follows if we show |AB|g < |A|g|Blg for any two

« Suffices to show |SAx|, = 1 + ¢ for all unit x matrices Aand B

— For regression, apply S to [A, b]

2 _ 2
¢ |AB|F - Zrows Aj and columns Bj < Ai' Bj >

2
+ SAis a 6d2/(5¢2) x d matrix = z |AiI3[B;, = IAIFIBIE

rows Ajand columns B;

7/14/2019

Wrapup Approximate NNS
dt®
* Goal: output x* for which |Ax‘-b|, <= (1+¢) o.a&)"‘o
min, |Ax-b|, with say, 99% probability * r-near neighbor problem: o
given a new point q, reporta
« We used the sketch and solve paradigm to point peD s.t. d(p,a) < rl cr | & 0
solve this in nnz(A) + poly(d/e) time if there exists a Cr‘{:/p it
point at distance < r A q\o
Ok >
« Randomized: a point p Sl
returned with 90% probability

Talk Outline Locality Sensitive Hashing

Random hash function h on R4

* Least squares regression satisfying:

P, = for close pair (when “not-so-small”)

. . Pr[h(q) = h(p)] is *high”
Sketching for least squares regression p, = for far pair (when d(q,p) > cr)

Pr[h(q) = h(p)] is “small”

* Locality Sensitive Hashing Recap
Use several hash tables

log1/P;
log1/P,

nf, where p =

24

LSH for Hamming space

» Hash function g is usually a concatenation of “primitive”
functions:

- 8(p) = (hi(p), hz(P), ..., hic(p))

Fact 1: pg = py

Example: Hamming space {0,1}4

- h(p) =p;j,i.e., choose jth bit for a random j
g(p) chooses k bits at random

Prih(p) = h(q)] = 1-T22ED

_p=1-Lfxed
=1 i~e

_ P2=1_;—rze_c/d

_log1/Py _r/d _ 1

- log 1/P, = cr/d T

25

Choice of parameters k, L ?

» L hash tables with g(p) = (h;(p), ..., hx(p))

set k s.t.
+ Pricollision of far pairf] =P¥|=1/n

k

* Prcollision of close pair] = P* = (Pzp) =1/nf
— Success probability for a hash table: PX
- L= 0(1/PF) tables should suffice

* Runtime as a function of P, P, ?
-0 (Pi'f (timeToHash + nPde))

* Hence L =0(nf)
27

Full Algorithm

» Data structure is just L = nP hash tables:

— Each hash table uses a fresh random function
gi() = (hy,1(p), -, hix ()

— Hash all dataset points into the table

* Query:
— Check for collisions in each of the hash tables
— until we encounter a point within distance cr

* Guarantees:

— Space: 0(nLlog n) = 0(n'*? log n) bits, plus space to
store original points

— Expected Query time: O(L - (k+d)) = 0(n? - (k + d))
— 50% probability of success

26

Analysis: correctness

Let p* be an r-near neighbor

— If does not exist, algorithm can output anything

Algorithm fails when:

— near neighbor p* is not in the searched buckets
81(9), 82(a), .., gL(a@)

Probability of failure:

- Pll;obability g,p”* do not collide in a hash table: < 1 —
l:)1

— Probability they do not collide in L hash tables at most

nP
(1-PR)" = (1 —nl—p) <1/e

28

7/14/2019

Analysis: Runtime

* Runtime dominated by:
— Hash function evaluation: O(L - k) time
— Distance computations to points in buckets
* Distance computations:
— Care only about far points, at distance > cr
— In one hash table, we have
« Probability a far point collides is at most PX = 1/n

» Expected number of far points in a bucket: n % =

— Over L hash tables, expected number of far points is

L

» Total: O(Lk) + O(Ld) = O(nP(k + d))) in
expectation

7/14/2019

