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Topic 14: Least Squares 
Regression 

and LSH Recap

David Woodruff

Talk Outline

• Least squares regression

• Sketching for least squares regression

• Locality Sensitive Hashing Recap

Regression
Linear Regression

• Understand linear dependencies between variables in 
the presence of noise.

Example

• Ohm's law V = R ∙ I 

• Find linear function that 

best fits the data 0
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Example Regression

Example Regression

Regression

Standard Setting

• One measured variable b

• A set of predictor variables a  ,…, a

• Assumption:
b  = x  + a   x  + … + a    x   + e

e is assumed to be noise and the xi are model 
parameters we want to learn

1 d

1

1 d

d

0

Can assume x0 = 0 by increasing d to d+1 and setting a଴ = 1 

Now consider n observations of b
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Regression

Matrix form

Input:  nd-matrix A and a vector b=(b1,…, bn)
n is the number of observations; d is the number 
of  predictor variables

Output: x* so that Ax* and b are close

• Consider the over-constrained case, when n ≫ d

• Note: there may not be a consistent solution x∗

Least Squares Regression

• Find x* that minimizes |Ax-b|22

For a vector y ∈ R୬, y ଶ
ଶ = ∑ y୧

ଶ 
୧ୀଵ,..,୬

• In HW 7, you looked at 

x∗ = argmin୶ Ax − b ଶ
ଶ, 

and argued if A is n x n symmetric, then Aଶx∗ = Ab

• Extends to non-symmetric matrices: for A ∈ R୬×ୢ and 
b ∈ R୬, if x∗ = argmin୶ Ax − b ଶ

ଶ, then A୘Ax∗ = A୘b

• If the columns of A are linearly independent, 
• A୘A is d x d and full rank

• Closed form expression: x* = (ATA)-1 AT b 

Least Squares Regression

Least Squares Regression

• In practice, n is very large and d is moderate

• Computing x* = (ATA)-1 AT b takes ndଶ time

• Want running time nnz(A) + poly(d)

• nnz(A) is the number of non-zero entries of A, and you 
need this time just to read the input

• poly(d) is hopefully a low-degree polynomial in d
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Talk Outline

• Least squares regression

• Sketching for least squares regression

• Locality Sensitive Hashing Recap

Sketching to Solve Least Squares Regression 

 How to find an approximate solution x to minx |Ax-b|2 ?

 Goal: output x‘ for which |Ax‘-b|2 <= (1+ε) minx |Ax-b|2
with say, 99% probability

 Would like a running time of the form

nnz(A) + poly(d/ϵ)

 nnz(A) is at most nd, so improves our earlier ndଶ time

• Draw S from a k x n random family of matrices, 
for a value k << n
• S is known as the sketching matrix

• Compute S*A and S*b

• Output the solution x‘ to minx‘ |(SA)x-(Sb)|2 using 
our closed-form expression

• Black box reduction to original, smaller problem 

Sketching to Solve Least Squares Regression 

Fast Sketching Matrices 

[ [0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

 CountSketch matrix

 Define k x n matrix S, for k = O(d2/ε2)

 S is really sparse: single randomly chosen non-zero 
entry per column

Key Property: S*A computable in nnz(A) time



7/14/2019

4

S*A Computable in nnz(A) Time

[ [0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

 For each column y of A, can compute S*y in nnz(y) 
time. Why? 

 For each non-zero entry of y, it indexes into a column 
of S and there is a single non-zero entry in that 
column, so can update Sy in O(1) time per entry

S is a subspace embedding if for an n x d 
matrix A, 

W.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

Entire column space of A is preserved

Why is this useful for regression?

Subspace Embeddings

Subspace Embeddings for 
Regression

• Want x so that |Ax-b|2 ≤ (1+ε) miny |Ay-b|2
• Consider subspace L spanned by columns of A 

together with b
• Then for all y in L, |Sy|2 = (1± ε) |y|2
• Hence, |S(Ax-b)|2 = (1± ε) |Ax-b|2 for all x
• Solve argminy |(SA)y – (Sb)|2

It remains to show SA is a subspace embedding 

with k = 𝑂(
ௗమ

ఢమ) rows

Approximate Matrix Product

• Let C and D be any two matrices for which C has n 
columns and D has n rows

• Let S be a CountSketch matrix with n columns. Then,

Pr[|CSTSD – CD|F2 ≤ [6/(𝛿(# rows of S))]*|C|F2 |D|F2] ≥ 1 − δ,

where for a matrix E, E ୊
ଶ is the sum of squares of its entries 

• Proof: variance calculation like you did in last 
recitation – will do it in this week’s recitation 
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Orthonormality

• For any n x d matrix A with linearly 
independent columns, 

– There’s a d x d invertible matrix R so the columns 
of AR have length 1 and are perpendicular

• What is ARx ଶ
ଶ for a unit vector x?

– ARx ଶ
ଶ =  | ∑ AR ୧x୧|

ଶ 
୧

– = ∑ AR ୧x୧
ଶ + ∑ < AR ୧x୧, AR ୨x୨ > 

୧ஷ୨
 
୧ = x ଶ

ଶ

• What is AR ୘AR?

From Matrix Product to 
Subspace Embeddings

• Want: w.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

• Can assume columns of A are orthonormal
– Unit length and perpendicular to each other

• Suffices to show |SAx|2 = 1 ± ε for all unit x

– For regression, apply S to [A, b]

• SA is a 6d2/(δε2) x d matrix

From Matrix Product to 
Subspace Embeddings

• Suffices to show for all unit x,

|x୘ATST SA x – x୘x| ≤ |ATST SA – I|F ≤ ε

• Matrix product result implies

Pr[|CSTSD – CD|F2 ≤ [6/(𝛿(# rows of S))] * |C|F2 |D|F2] ≥ 1 − δ

• Set C = AT and D = A. 

• Then |A|2F = d and (# rows of S) = 6 d2/(δε2), which shows 
|ATST SA – I|F ≤ ε

From Matrix Product to 
Subspace Embeddings

• Still need for all unit x, |x୘ATST SA x – x୘x| ≤ |ATST SA – I|F

• Follows if we show ABC ୊ ≤ A ୊ B ୊ C ୊ for any matrices 
A, B, and C

• The above follows if we show AB ୊ ≤ A ୊ B ୊ for any two 
matrices A and B

• AB ୊
ଶ = ∑ < A୧, B୨ >ଶ  

୰୭୵ୱ ୅౟ ୟ୬ୢ ୡ୭୪୳୫୬ୱ ୆ౠ

≤ ෍ A୧ ଶ
ଶ B୨ ଶ

ଶ
= A ୊

ଶ B ୊
ଶ

 

୰୭୵ୱ ୅౟ୟ୬ୢ ୡ୭୪୳୫୬ୱ ୆ౠ
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Wrapup

• Goal: output x‘ for which |Ax‘-b|2 <= (1+ε) 
minx |Ax-b|2 with say, 99% probability

• We used the sketch and solve paradigm to 
solve this in nnz(A) + poly(d/ϵ) time

Talk Outline

• Least squares regression

• Sketching for least squares regression

• Locality Sensitive Hashing Recap

Approximate NNS

• r-near neighbor problem:
given a new point q, report a 
point pD s.t. d(p,q) ≤ r

• Randomized: a point p
returned with 90% probability

𝑐𝑟

if there exists a
point at distance ≤ 𝑟 q

r p

cr

Locality Sensitive Hashing

Random hash function h on Rୢ

satisfying:
for close pair (when d(q,p) ≤ r)

Pr [h(q) = h(p)] is “high” 

for far pair (when d(q,p) > cr)

Pr [h(q) = h(p)] is “small”

Use several hash tables

24

nρ, where

P1 =

P2 =

ρ =
log 1/Pଵ

log 1/Pଶ

“not-so-small” )
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LSH for Hamming space

• Hash function g is usually a concatenation of “primitive” 
functions:

– g p = hଵ(p), hଶ(p), … , h୩(p)

• Fact 1: ρ୥ = ρ୦

• Example: Hamming space 0,1 ୢ

– h p = p୨ , i.e., choose j୲୦ bit for a random j
– g(p) chooses k bits at random

– Pr h p = h q =  1 –
ୌୟ୫ ୮,୯

ୢ

– Pଵ = 1 −
୰

ୢ
≈ eି୰/ୢ

– Pଶ = 1 −
ୡ୰

ୢ
≈ eିୡ /ୢ

– ρ =
୪୭୥ ଵ/୔భ

୪୭୥ ଵ/୔మ
≈

୰/ୢ

ୡ୰/ୢ
=

ଵ

ୡ

25

Full Algorithm

• Data structure is just L = n஡ hash tables:
– Each hash table uses a fresh random function 

g୧ p = h୧,ଵ(p), … , h୧,୩(p)
– Hash all dataset points into the table

• Query:
– Check for collisions in each of the hash tables
– until we encounter a point within distance cr

• Guarantees:
– Space: O nLlog n = O(nଵା஡ log n) bits, plus space to 

store original points
– Expected Query time: O L ⋅ (k + d) = O(n஡ ⋅ (k + d))
– 50% probability of success

26

Choice of parameters k, L ?

• L hash tables with g p = hଵ(p), … , h୩(p)

• Pr[collision of far pair]    = Pଶ
୩

• Pr[collision of close pair] = Pଵ
୩

– Success probability for a hash table: Pଵ
୩

– L = O 1/Pଵ
୩ tables should suffice

• Runtime as a function of Pଵ, Pଶ ?

– O
ଵ

୔భ
ౡ timeToHash + nPଶ

୩d  

• Hence L = O(n஡)

27

set k s.t.
= 1/n

= Pଶ
஡ ୩

= 1/n஡

Analysis: correctness

• Let p∗ be an r-near neighbor
– If does not exist, algorithm can output anything

• Algorithm fails when:
– near neighbor p∗ is not in the searched buckets 

gଵ q , gଶ q , … , g୐ q

• Probability of failure:
– Probability q, p∗ do not collide in a hash table: ≤ 1 −

Pଵ
୩

– Probability they do not collide in L hash tables at most

1 − Pଵ
୩ ୐

= 1 −
1

n஡

୬ಙ

≤ 1/e

28
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Analysis: Runtime

29

• Runtime dominated by:
– Hash function evaluation: O(L ⋅ k) time
– Distance computations to points in buckets

• Distance computations:
– Care only about far points, at distance > cr

– In one hash table, we have
• Probability a far point collides is at most Pଶ

୩ = 1/n

• Expected number of far points in a bucket: n ⋅
ଵ

୬
= 1

– Over L hash tables, expected number of far points is 
L

• Total: O Lk + O Ld = O(n஡ k + d )) in 
expectation


