## Topic 14: Least Squares Regression and LSH Recap

David Woodruff

## Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap


## Regression

## Linear Regression

- Understand linear dependencies between variables in the presence of noise.

Example

- Ohm's law $\mathrm{V}=\mathrm{R} \cdot \mathrm{I}$
- Find linear function that best fits the data



## Regression

Standard Setting

- One measured variable b
- A set of predictor variables $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{d}}$
- Assumption:

$$
b=x_{0}+a_{1} x_{1}+\ldots+a_{d} x_{d}+\varepsilon
$$

$\varepsilon$ is assumed to be noise and the $\mathrm{X}_{\mathrm{i}}$ are model parameters we want to learn

Can assume $\mathrm{x}_{0}=0$ by increasing d to $\mathrm{d}+1$ and setting $\mathrm{a}_{0}=1$ Now consider n observations of b

## Regression

## Matrix form

Input: $\mathrm{n} \times \mathrm{d}$-matrix A and a vector $\mathrm{b}=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$ n is the number of observations; d is the number of predictor variables

Output: $x^{*}$ so that $A x^{*}$ and $b$ are close

- Consider the over-constrained case, when $\mathrm{n} \gg \mathrm{d}$
- Note: there may not be a consistent solution $\mathrm{x}^{*}$


## Least Squares Regression

- Find $x^{*}$ that minimizes $|A x-b|_{2}{ }^{2}$

For a vector $\mathrm{y} \in \mathrm{R}^{\mathrm{n}},|\mathrm{y}|_{2}^{2}=\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{y}_{\mathrm{i}}^{2}$

## Least Squares Regression

- In HW 7, you looked at

$$
\mathrm{x}^{*}=\operatorname{argmin}_{\mathrm{x}}|\mathrm{Ax}-\mathrm{b}|_{2}^{2},
$$

and argued if A is $\mathrm{n} \times \mathrm{n}$ symmetric, then $\mathrm{A}^{2} \mathrm{x}^{*}=\mathrm{Ab}$

- Extends to non-symmetric matrices: for $\mathrm{A} \in \mathrm{R}^{\mathrm{n} \times \mathrm{d}}$ and $b \in R^{n}$, if $x^{*}=\operatorname{argmin}_{x}|A x-b|_{2}^{2}$, then $A^{T} A x^{*}=A^{T} b$
- If the columns of $A$ are linearly independent,
- $A^{T} A$ is $d x d$ and full rank
- Closed form expression: $x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b$


## Least Squares Regression

- In practice, n is very large and d is moderate
- Computing $x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b$ takes $n d^{2}$ time
- Want running time nnz(A) + poly(d)
- nnz(A) is the number of non-zero entries of $A$, and you need this time just to read the input
- poly(d) is hopefully a low-degree polynomial in d


## Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap


## Sketching to Solve Least Squares Regression

- How to find an approximate solution $x$ to $\min _{x}|A x-b|_{2}$ ?
- Goal: output x' for which $\left|A x^{\prime}-b\right|_{2}<=(1+\varepsilon) \min _{x}|A x-b|_{2}$ with say, 99\% probability
- Would like a running time of the form

$$
\mathrm{nnz}(\mathrm{~A})+\operatorname{poly}(\mathrm{d} / \epsilon)
$$

- nnz(A) is at most nd, so improves our earlier nd ${ }^{2}$ time


## Sketching to Solve Least Squares Regression

- Draw S from a $\mathrm{k} \times \mathrm{n}$ random family of matrices, for a value $k \ll n$
- $S$ is known as the sketching matrix
- Compute $\mathrm{S}^{*} \mathrm{~A}$ and $\mathrm{S}^{*} \mathrm{~b}$
- Output the solution $x^{\prime}$ to $\min _{x^{\prime}}|(S A) x-(S b)|_{2}$ using our closed-form expression
- Black box reduction to original, smaller problem
- CountSketch matrix
- Define $\mathrm{k} \times \mathrm{n}$ matrix S , for $\mathrm{k}=\mathrm{O}\left(\mathrm{d}^{2} / \varepsilon^{2}\right)$
- S is really sparse: single randomly chosen non-zero entry per column


## 00100100 10000000 <br> 000-110-10 <br> 0-1 000001

Key Property: S*A computable in nnz(A) time

## S*A Computable in nnz(A) Time



- For each column y of A, can compute $S^{*} y$ in nnz(y) time. Why?
" For each non-zero entry of $y$, it indexes into a column of $S$ and there is a single non-zero entry in that column, so can update Sy in O(1) time per entry


## Subspace Embeddings

$S$ is a subspace embedding if for an $n \times d$ matrix A,
W.h.p., for all $x$ in $R^{d},|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$

Entire column space of $A$ is preserved
Why is this useful for regression?

## Subspace Embeddings for Regression

- Want $x$ so that $|A x-b|_{2} \leq(1+\varepsilon) \min _{y}|A y-b|_{2}$
- Consider subspace $L$ spanned by columns of $A$ together with b
- Then for all y in $L,|S y|_{2}=(1 \pm \varepsilon)|y|_{2}$
- Hence, $|S(A x-b)|_{2}=(1 \pm \varepsilon)|A x-b|_{2}$ for all $x$
- Solve $\operatorname{argmin}_{y}|(S A) y-(S b)|_{2}$

It remains to show $S A$ is a subspace embedding

$$
\text { with } k=O\left(\frac{d^{2}}{\epsilon^{2}}\right) \text { rows }
$$

## Approximate Matrix Product

- Let $C$ and $D$ be any two matrices for which $C$ has $n$ columns and $D$ has $n$ rows
- Let S be a CountSketch matrix with n columns. Then,
$\operatorname{Pr}\left[\left|C S^{\top} S D-C D\right|_{F}{ }^{2} \leq[6 /(\delta(\# \text { rows of } S))]^{*}|C|_{F}{ }^{2}|D|_{F}{ }^{2}\right] \geq 1-\delta$,
where for a matrix $E,|E|_{F}^{2}$ is the sum of squares of its entries
- Proof: variance calculation like you did in last recitation - will do it in this week's recitation -


## Orthonormality

- For any $\mathrm{n} \times \mathrm{d}$ matrix A with linearly independent columns,
- There's a dxd invertible matrix $R$ so the columns of AR have length 1 and are perpendicular
- What is $|A R x|_{2}^{2}$ for a unit vector $x$ ?


## From Matrix Product to Subspace Embeddings

- Suffices to show for all unit $x$,

$$
\left|x^{T} A^{\top} S^{\top} S A x-x^{T} x\right| \leq \mid A^{\top} S^{\top} S A-\|_{F} \leq \varepsilon
$$

- Matrix product result implies
$\operatorname{Pr}\left[\left|C S^{\top} S D-C D\right|_{F}{ }^{2} \leq\left.[6 /(\delta(\#\right.$ rows of $\left.S))]{ }^{*}\left|C_{F}{ }^{2}\right| D\right|_{F}{ }^{2}\right] \geq 1-\delta$
- Set $C=A^{\top}$ and $D=A$.
$-|A R x|_{2}^{2}=\left|\sum_{i}(A R)_{i} x_{i}\right|^{2}$
$-=\sum_{i}\left|(A R)_{i} x_{i}\right|^{2}+\sum_{i \neq j}<(A R)_{i} x_{i},(A R)_{j} x_{j}>=|x|_{2}^{2}$
- What is (AR) ${ }^{\mathrm{T}} \mathrm{AR}$ ?


## From Matrix Product to Subspace Embeddings

- Want: w.h.p., for all $x$ in $R^{d},|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$
- Can assume columns of A are orthonormal - Unit length and perpendicular to each other
- Suffices to show $|S A x|_{2}=1 \pm \varepsilon$ for all unit $x$ - For regression, apply S to $[\mathrm{A}, \mathrm{b}]$
- $S A$ is a $6 d^{2} /\left(\delta \varepsilon^{2}\right) x d$ matrix


## From Matrix Product to Subspace Embeddings

- Still need for all unit $x,\left|x^{T} A^{\top} S^{\top} S A x-x^{T} x\right| \leq \mid A^{\top} S^{\top} S A-\|_{F}$
- Follows if we show $|\mathrm{ABC}|_{\mathrm{F}} \leq|\mathrm{A}|_{\mathrm{F}}|\mathrm{B}|_{\mathrm{F}}|\mathrm{C}|_{\mathrm{F}}$ for any matrices A, B, and C
- The above follows if we show $|\mathrm{AB}|_{\mathrm{F}} \leq|\mathrm{A}|_{\mathrm{F}}|\mathrm{B}|_{\mathrm{F}}$ for any two matrices $A$ and $B$
- $|A B|_{\mathrm{F}}^{2}=\sum_{\text {rows } \mathrm{A}_{\mathrm{i}}}$ and columns $\mathrm{B}_{\mathrm{j}}<\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}>^{2}$

$$
\leq \sum_{\text {rows } A_{i} \text { and columns } B_{j}}\left|A_{i}\right|_{2}^{2}\left|B_{j}\right|_{2}^{2}=|A|_{F}^{2}|B|_{F}^{2}
$$

## Wrapup

- Goal: output $\mathrm{x}^{\mathrm{x}}$ for which $\left|\mathrm{Ax} \mathrm{x}^{\mathrm{b}} \mathrm{b}\right|_{2}<=(1+\varepsilon)$ $\min _{x}|A x-b|_{2}$ with say, $99 \%$ probability
- We used the sketch and solve paradigm to solve this in $\mathrm{nnz}(\mathrm{A})+\operatorname{poly}(\mathrm{d} / \epsilon)$ time


## Approximate NNS

c-approximate

- r-near neighbor problem: given a new point $q$, report a point $\mathrm{p} \in$ D s.t. $\mathrm{d}(\mathrm{p}, \mathrm{q}) \leq \mathrm{r} c r$
if there exists a
point at distance $\leq r$
- Randomized: a point p returned with $90 \%$ probability


## Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap


[^0]
## LSH for Hamming space

- Hash function $g$ is usually a concatenation of "primitive" functions:
$-\mathrm{g}(\mathrm{p})=\left\langle\mathrm{h}_{1}(\mathrm{p}), \mathrm{h}_{2}(\mathrm{p}), \ldots, \mathrm{h}_{\mathrm{k}}(\mathrm{p})\right\rangle$
- Fact 1: $\rho_{\mathrm{g}}=\rho_{\mathrm{h}}$
- Example: Hamming space $\{0,1\}^{\text {d }}$
- $h(p)=p_{j}$, i.e., choose $j^{\text {th }}$ bit for a random $j$
- $g(p)$ chooses $k$ bits at random
- $\operatorname{Pr}[h(p)=h(q)]=1-\frac{\operatorname{Ham}(p, q)}{d}$
- $P_{1}=1-\frac{r}{d} \approx e^{-r / d}$
$-\mathrm{P}_{2}=1-\frac{\mathrm{cr}}{\mathrm{d}} \approx \mathrm{e}^{-\mathrm{c} / \mathrm{d}}$
- $\rho=\frac{\log 1 / \mathrm{P}_{1}}{\log 1 / \mathrm{P}_{2}} \approx \frac{\mathrm{r} / \mathrm{d}}{\mathrm{cr} / \mathrm{d}}=\frac{1}{\mathrm{c}}$


## Full Algorithm

- Data structure is just $L=n^{\rho}$ hash tables:
- Each hash table uses a fresh random function $\mathrm{g}_{\mathrm{i}}(\mathrm{p})=\left\langle\mathrm{h}_{\mathrm{i}, 1}(\mathrm{p}), \ldots, \mathrm{h}_{\mathrm{i}, \mathrm{k}}(\mathrm{p})\right\rangle$
- Hash all dataset points into the table
- Query:
- Check for collisions in each of the hash tables
- until we encounter a point within distance cr
- Guarantees:
- Space: $O(n L \log n)=O\left(n^{1+\rho} \log n\right)$ bits, plus space to store original points
- Expected Query time: $\mathrm{O}(\mathrm{L} \cdot(\mathrm{k}+\mathrm{d}))=\mathrm{O}\left(\mathrm{n}^{\rho} \cdot(\mathrm{k}+\mathrm{d})\right)$
- 50\% probability of success


## Choice of parameters k, L ?

- L hash tables with $\mathrm{g}(\mathrm{p})=\left\langle\mathrm{h}_{1}(\mathrm{p}), \ldots, \mathrm{h}_{\mathrm{k}}(\mathrm{p})\right\rangle$
- $\operatorname{Pr[collision~of~far~pair]~}=P_{2}^{\mathrm{k}}=1 / \mathrm{n}$
- $\operatorname{Pr[collision~of~close~pair]~}=\mathrm{P}_{1}^{\mathrm{k}}=\left(\mathrm{P}_{2}^{\rho}\right)^{\mathrm{k}}=1 / \mathrm{n}^{\rho}$
- Success probability for a hash table: $P_{1}^{k}$
- $\mathrm{L}=0\left(1 / \mathrm{P}_{1}^{\mathrm{k}}\right)$ tables should suffice
- Runtime as a function of $\mathrm{P}_{1}, \mathrm{P}_{2}$ ?
- $0\left(\frac{1}{P_{1}^{k}}\left(\right.\right.$ timeToHash $\left.\left.+n P_{2}^{k} d\right)\right)$
- Hence L $=0\left(n^{\rho}\right)$

27

## Analysis: correctness

- Let $\mathrm{p}^{*}$ be an r-near neighbor
- If does not exist, algorithm can output anything
- Algorithm fails when:
- near neighbor $\mathrm{p}^{*}$ is not in the searched buckets $\mathrm{g}_{1}(\mathrm{q}), \mathrm{g}_{2}(\mathrm{q}), \ldots, \mathrm{g}_{\mathrm{L}}(\mathrm{q})$
- Probability of failure:
- Probability q, p* do not collide in a hash table: $\leq 1$ $\mathrm{P}_{1}^{\mathrm{k}}$
- Probability they do not collide in L hash tables at most

$$
\left(1-P_{1}^{k}\right)^{L}=\left(1-\frac{1}{n^{\rho}}\right)^{n^{\rho}} \leq 1 / e
$$

28

## Analysis: Runtime

- Runtime dominated by:
- Hash function evaluation: $\mathrm{O}(\mathrm{L} \cdot \mathrm{k})$ time
- Distance computations to points in buckets
- Distance computations:
- Care only about far points, at distance > cr
- In one hash table, we have
- Probability a far point collides is at most $\mathrm{P}_{2}^{\mathrm{k}}=1 / \mathrm{n}$
- Expected number of far points in a bucket: $\mathrm{n} \cdot \frac{1}{\mathrm{n}}=1$
- Over $L$ hash tables, expected number of far points is L
- Total: $\left.\mathrm{O}(\mathrm{Lk})+\mathrm{O}(\mathrm{Ld})=\mathrm{O}\left(\mathrm{n}^{\rho}(\mathrm{k}+\mathrm{d})\right)\right)$ in expectation

29


[^0]:    ## Locality Sensitive Hashing

    Random hash function $h$ on $\mathrm{R}^{\mathrm{d}}$
    satisfying:
    $P_{1}=$ for close pair (when "not-so-small" )
    $\operatorname{Pr}[\mathrm{h}(\mathrm{q})=\mathrm{h}(\mathrm{p})]$ is "high"
    $\operatorname{Pr}[\mathrm{h}(\mathrm{q})=\mathrm{h}(\mathrm{p})]$ is "high"
    $\mathrm{P}_{2}=$ for far pair (when $\left.\mathrm{d}(\mathrm{q}, \mathrm{p})>\mathrm{cr}\right)$
    $\operatorname{Pr}[\mathrm{h}(\mathrm{q})=\mathrm{h}(\mathrm{p})]$ is "small"

    Use several hash tables
    $n^{\rho}$, where $\rho=\frac{\log 1 / P_{1}}{\log 1 / P_{2}}$
    24

