Topic 14: Least Squares Regression and LSH Recap

David Woodruff

Talk Outline

- · Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap

Regression

Linear Regression

• Understand linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R · I
- Find linear function that best fits the data

Regression

Standard Setting

- · One measured variable b
- A set of predictor variables $a_1, ..., a_d$
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

 ϵ is assumed to be noise and the x_i are model parameters we want to learn

Can assume $x_0 = 0$ by increasing d to d+1 and setting $a_0 = 1$

Now consider n observations of b

Regression

Matrix form

Input: $n \times d$ -matrix A and a vector $b = (b_1, ..., b_n)$ n is the number of observations; d is the number of predictor variables

Output: x* so that Ax* and b are close

- Consider the over-constrained case, when $n \gg d$
- Note: there may not be a consistent solution x*

Least Squares Regression

• Find x* that minimizes |Ax-b|₂²

For a vector $y \in R^n$, $|y|_2^2 = \sum_{i=1...n} y_i^2$

Least Squares Regression

• In HW 7, you looked at

$$x^* = \operatorname{argmin}_{x} |Ax - b|_2^2,$$

and argued if A is n x n symmetric, then $A^2x^* = Ab$

- Extends to non-symmetric matrices: for $A \in R^{n \times d}$ and $b \in R^n$, if $x^* = argmin_x |Ax b|_2^2$, then $A^TAx^* = A^Tb$
- If the columns of A are linearly independent,
 - A^TA is d x d and full rank
- Closed form expression: $x^* = (A^TA)^{-1} A^T b$

Least Squares Regression

- In practice, n is very large and d is moderate
- Computing $x^* = (A^TA)^{-1} A^T$ b takes nd^2 time
- Want running time nnz(A) + poly(d)
 - nnz(A) is the number of non-zero entries of A, and you need this time just to read the input
 - poly(d) is hopefully a low-degree polynomial in d

Talk Outline

- · Least squares regression
- · Sketching for least squares regression
- Locality Sensitive Hashing Recap

Sketching to Solve Least Squares Regression

- How to find an approximate solution x to min_x |Ax-b|₂ ?
- Goal: output x' for which $|Ax'-b|_2 \le (1+\varepsilon) \min_x |Ax-b|_2$ with say, 99% probability
- Would like a running time of the form

$$nnz(A) + poly(d/\epsilon)$$

• nnz(A) is at most nd, so improves our earlier nd² time

Sketching to Solve Least Squares Regression

- Draw S from a k x n random family of matrices, for a value k << n
 - S is known as the sketching matrix
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂ using our closed-form expression
- Black box reduction to original, smaller problem

Fast Sketching Matrices

- CountSketch matrix
- Define k x n matrix S, for k = O(d²/ε²)
- S is really sparse: single randomly chosen non-zero entry per column

00100100 10000000 000-110-10 0-1000001

Key Property: S*A computable in nnz(A) time

S*A Computable in nnz(A) Time

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 1 0 -1 0 0-1 0 0 0 0 0 1

- For each column y of A, can compute S*y in nnz(y) time. Why?
- For each non-zero entry of y, it indexes into a column of S and there is a single non-zero entry in that column, so can update Sy in O(1) time per entry

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\epsilon) \min_{v} |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve argmin_y |(SA)y (Sb)|₂

It remains to show SA is a subspace embedding with $k = O(\frac{d^2}{\epsilon^2})$ rows

Subspace Embeddings

S is a subspace embedding if for an n x d matrix A.

W.h.p., for all x in R^d , $|SAx|_2 = (1\pm\epsilon)|Ax|_2$

Entire column space of A is preserved

Why is this useful for regression?

Approximate Matrix Product

- Let C and D be any two matrices for which C has n columns and D has n rows
- Let S be a CountSketch matrix with n columns. Then,

$$\begin{split} &\text{Pr}[|\text{CS}^{\text{T}}\text{SD} - \text{CD}|_{\text{F}}^2 \leq [6/(\delta(\text{\# rows of S}))]^*|\text{C}|_{\text{F}}^2 \ |\text{D}|_{\text{F}}^2] \geq 1 - \delta, \\ &\text{where for a matrix E, } |\text{E}|_F^2 \text{ is the sum of squares of its entries} \end{split}$$

 Proof: variance calculation like you did in last recitation – will do it in this week's recitation ©

Orthonormality

- For any n x d matrix A with linearly independent columns,
 - There's a d x d invertible matrix R so the columns of AR have length 1 and are perpendicular
- What is $|ARx|_2^2$ for a unit vector x?
 - $|ARx|_2^2 = |\sum_i (AR)_i x_i|^2$
 - $= \sum_{i} |(AR)_{i}x_{i}|^{2} + \sum_{i \neq j} < (AR)_{i}x_{i}, (AR)_{j}x_{j} > = |x|_{2}^{2}$
- What is $(AR)^TAR$?

From Matrix Product to Subspace Embeddings

- Want: w.h.p., for all x in Rd, $|SAx|_2 = (1\pm\epsilon)|Ax|_2$
- Can assume columns of A are orthonormal
 Unit length and perpendicular to each other
- Suffices to show |SAx|₂ = 1 ± ε for all unit x
 For regression, apply S to [A, b]
- SA is a $6d^2/(\delta\epsilon^2) x d matrix$

From Matrix Product to Subspace Embeddings

- Suffices to show for all unit x, $|x^TA^TS^TSA x x^Tx| \le |A^TS^TSA I|_F \le \epsilon$
- Matrix product result implies

 $Pr[|CS^{T}SD - CD|_{F^{2}} \le [6/(\delta(\# \text{ rows of } S))] * |C|_{F^{2}} |D|_{F^{2}}] \ge 1 - \delta$

- Set $C = A^T$ and D = A.
- Then $|A|^2_F$ = d and (# rows of S) = 6 d²/($\delta\epsilon^2$), which shows $|A^TS^T SA I|_F \le \epsilon$

From Matrix Product to Subspace Embeddings

- Still need for all unit x, $|x^TA^TS^TSAx x^Tx| \le |A^TS^TSA I|_F$
- Follows if we show |ABC|_F ≤ |A|_F|B|_F|C|_F for any matrices A, B, and C
- The above follows if we show |AB|_F ≤ |A|_F|B|_F for any two
 matrices A and B
- $|AB|_F^2 = \sum_{\text{rows } A_i \text{ and columns } B_j} < A_i, B_j >^2$ $\leq \sum_{\text{rows } A_i \text{ and columns } B_i} |A_i|_2^2 |B_j|_2^2 = |A|_F^2 |B|_F^2$

Wrapup

- Goal: output x' for which $|Ax'-b|_2 \le (1+\varepsilon)$ min_x $|Ax-b|_2$ with say, 99% probability
- We used the sketch and solve paradigm to solve this in nnz(A) + poly(d/∈) time

Approximate NNS

c-approximate

 r-near neighbor problem: given a new point q, report a point p∈D s.t. d(p,q) ≤ r cr

if there exists a point at distance $\leq r$

 Randomized: a point p returned with 90% probability

Talk Outline

- Least squares regression
- Sketching for least squares regression
- Locality Sensitive Hashing Recap

Locality Sensitive Hashing

Random hash function h on R^d satisfying:

$$\begin{split} P_1 &= \text{for close pair (when "not-so-small")} \\ &\quad Pr[h(q) = h(p)] \text{ is "high"} \\ P_2 &= \text{for far pair (when d(q,p) > cr)} \\ &\quad Pr[h(q) = h(p)] \text{ is "small"} \end{split}$$

Use several hash tables

$$n^{\rho}\text{, where } \rho = \frac{\log 1/P_1}{\log 1/P_2}$$

24

LSH for Hamming space

- Hash function g is usually a concatenation of "primitive" functions:
 - $g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$
- Fact 1: $\rho_g = \rho_h$
- Example: Hamming space {0,1}^d
 - $h(p) = p_i$, i.e., choose j^{th} bit for a random j
 - g(p) chooses k bits at random
 - $Pr[h(p) = h(q)] = 1 \frac{Ham(p,q)}{d}$
 - $-P_1 = 1 \frac{r}{d} \approx e^{-r/d}$
 - $P_2 = 1 \frac{cr}{d} \approx e^{-c/d}$
 - $\rho = \frac{\log 1/P_1}{\log 1/P_2} \approx \frac{r/d}{cr/d} = \frac{1}{c}$

25

Full Algorithm

- Data structure is just $L = n^{\rho}$ hash tables:
 - Each hash table uses a fresh random function $g_i(p) = \langle h_{i,1}(p), ..., h_{i,k}(p) \rangle$
 - Hash all dataset points into the table
- Query:
 - Check for collisions in each of the hash tables
 - until we encounter a point within distance cr
- Guarantees:
 - Space: $O(nL\log n) = O(n^{1+\rho} \log n)$ bits, plus space to store original points
 - Expected Query time: $O(L \cdot (k+d)) = O(n^{\rho} \cdot (k+d))$
 - 50% probability of success

26

Choice of parameters k, L?

- L hash tables with $g(p) = \langle h_1(p), ..., h_k(p) \rangle$
- Pr[collision of far pair] = P_2^k set k s.t. = 1/n
- Pr[collision of close pair] = $P_1^k = (P_2^\rho)^k = 1/n^\rho$
 - Success probability for a hash table: P1k
 - $L = O(1/P_1^k)$ tables should suffice
- Runtime as a function of P₁, P₂ ?
 - $O\left(\frac{1}{P_2^k}\left(timeToHash + nP_2^kd\right)\right)$
- Hence $L = O(n^{\rho})$

27

Analysis: correctness

- Let p* be an r-near neighbor
 - If does not exist, algorithm can output anything
- Algorithm fails when:
 - near neighbor p^* is not in the searched buckets $g_1(q), g_2(q), ..., g_L(q)$
- Probability of failure:
 - Probability q, p^* do not collide in a hash table: $\leq 1 p^k$
 - Probability they do not collide in L hash tables at most

$$(1 - P_1^k)^L = \left(1 - \frac{1}{n^\rho}\right)^{n^\rho} \le 1/e$$

28

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $O(L \cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:
 - Care only about far points, at distance > cr
 - In one hash table, we have
 - Probability a far point collides is at most $P_2^k=1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$ Over L hash tables, expected number of far points is
- Total: $O(Lk) + O(Ld) = O(n^{\rho}(k+d)))$ in expectation