15-851 ALGORITHMS FOR BiG DATA — Spring 2025

PROBLEM SET 1
Due: Thursday, February 6, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.
pdf

Problem 1: Subspace Embeddings via Random Sign Matrices (17 points)

In class we showed that if k = O(d/e?) and we choose a random k xn Gaussian matrix S so
that each entry isi.i.d. N(0,1/k), then with probability at least 9/10, we have simultaneously
for all z that ||[SAz|)3 € (1 +¢)| Ax||3.

Now suppose we instead choose a k x n matrix S where each entry is independently
chosen to be +\/LE with probability 1/2, and chosen to be _\/LE with probability 1/2. In this

problem we will show for appropriate & = O(d/€*) that we again have with probability at
least 9/10, simultaneously for all z that ||SAz||3 € (1 & €)||Ax||3. We prove this in steps:

1. (2 points) Show that for any fixed € R, we have Eg[||SAz|3] = || Az||3.

The above part shows that we are correct in expectation for a fixed z. We next need
to understand the deviation of ||[SAz||2 from its expectation, for which we study the
tail behavior of random variables.

2. (3 points) A zero-mean random variable Y is sub-Gaussian with parameter o? if
E[e"] < ¢”*”/2 for all t. Argue that if Y € {—1,1} is chosen uniformly at random,
then Y is sub-Gaussian with parameter o2 = 1.

HINT: One can use properties of cosh(t) to prove this, or one can use the Taylor series
2 .
e"=1+H+ 5+ ”g—? + --+ a few times and compare terms.

3. (2 points) If Y;,...Y, are independent zero-mean o?-sub-Gaussian random variables,
then for scalars as, ..., ay, show that Y = >, a;Y; is 02 - 3, a?-sub-Gaussian.

4. (3 points) In this part we will use the following fact, which you can use without proof
and follows by direct integration: for V ~ N(0,0?), E[e"V] = /"7*/2,

Now suppose Y is mean-zero o2-sub-Gaussian, and also suppose Y is symmetric around
the origin. Prove that for V' ~ N(0,0?), for any ¢ > 0 that

E["”] < E[e!].

HINT: Start by arguing that Ey[e"”] = By [eV2Y/9V] using the fact above, then
use the fact that both Y and V' are symmetric.
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5. (5 points) Using parts 2-4 above, argue that for appropriate k = O(d/e?) that for any
fixed z € R,
Pr[|SAz[|3 — [|Az|3] > e[| Az|3] < e~®@.

HINT: Y = ||[SAz||? is an average of squares of k independent symmetric sub-Gaussian
random variables Y;, for ¢ = 1, ..., k. For the upper tail bound, start by writing
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Pr[Y > 1+ ¢ = Pr[eY > *1+9] <
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which holds for any ¢ > 0, and where the inequality is by Markov’s bound. Then use
your result from part 4. You can also use the fact that for V'~ N(0,1) and ¢t < 1/2,
that E[etVQ] < \/1;_—%, which follows by direct integration. You might also need to
expand a Taylor series to derive a tractable tail bound.

For the lower bound, you can start in a similar way. Then you can use the following
derivation. If Y is mean zero subgaussian with parameter o = 1, then the following
is true for |t| < 1. Using the Taylor expansion, we have E[e?”] < 1+ tE[Y?] +
23 5o E[Y?/il]. Now since we know E[Y?] = 1 and [t| < 1, this is at most 1 +

t + 12 E[e¥”]. Now notice that E[e¥”] is part of the upper tail, and so we get that

Ele™ ] <1+t+4+12/y/1 -2t

6. (2 points) Conclude that for appropriate & = O(d/€*) that with probability at least
9/10, simultaneously for all z, we have ||[SAz|? € (1 & €)||Az|?. You are welcome to
cite anything from class without proof.

Problem 2: Multiplying Gaussian Matrices (10 points total)

Let g; and g2 be standard N(0,1) Gaussian random variables. Note that g; - g, is not a
Gaussian random variable. We can ask a similar question for matrices. Suppose we have a
d x t matrix Gy of i.i.d. N(0, 1) entries and a ¢t X d matrix Gy of i.i.d. N(0,1) entries where
t = w(d?) (limg,o 4 = 00) and we look at the d x d matrix Gy - G,. In this problem you will
prove that G - Gy cannot be distinguished from a d x d matrix H of i.i.d. N(0,¢) random
variables.

To make the above statement precise, we will use a result of Jiang which states the
following: let A be an arbitrary, possibly randomized algorithm. Consider an r x ¢ submatrix
X of arandom z x z matrix with orthonormal rows and columns. We refer to the distribution
of X as p. Also, consider an r x ¢ matrix Y with i.i.d. N(0,1/2) entries. We refer to the
distribution of Y as ¢. Suppose with probability 1/2 we give a random sample from p to
algorithm A, while with the remaining probability 1/2 we give a random sample from ¢
to algorithm A. If we have r - £ = o(z), then the probability that A correctly states if
its input was chosen from p or from ¢ is at most 1/2 + o(1), where o(1) — 0 as z — oo.
This says that small submatrices of random orthonormal matrices are indistinguishable from



Gaussian matrices. Intuitively, one cannot “observe” the orthonormality constraints on a
small submatrix of a random orthonormal matrix.

Using the above result, we will prove the following. If A is an arbitrary, possibly ran-
domized algorithm where p’ is the distribution of G - Gy and ¢ is the distribution of H,
then if we randomly give A a sample from p’ with probability 1/2 while with the remaining
probability 1/2 we give a random sample from ¢, then the probability that A correctly states
if its input was drawn from p’ or ¢’ is at most 1/2 + o(1).

1. (2 points) Write Gy = UXVT (in its SVD) and consider UXVTG,. Show that VTG,
is a d x d matrix of i.i.d. N(0,1) entries.

2. (2 points) Now take M = V'G5, Using Part 1, show that M is indistinguishable from
V/t - M where M is a d x d submatrix of a random matrix with orthonormal rows and
columns.

HINT: Use Jiang’s result.

3. (6 points) Using Part 2, show that the probability A correctly states if its input was
drawn from p’ or ¢’ is at most 1/2 + o(1).

HINT: Think about writing M as a product of two other matrices. It will be helpful
and you can freely use the fact that the SVD of a random d x ¢ matrix G3 of i.i.d.
N(0,1) random variables is equal to UXVT, where U, € R¥? and VI € R¥! are
independent matrices and V7 is a random matrix with orthonormal rows.

Problem 3: Learning the Positions and Values of CountSketch (10 points)

In class we claimed that if S is an m = O(d?/(¢?0)) x n CountSketch matrix, then for
any fixed n x d matrix A, we have that with probability at least 1 — 9, simultaneously for
all z,

ISAz|3 = (1 £ €)[| Az]3.

The number m of rows in CountSketch may be too large for some applications. Recall
that CountSketch is constructed randomly, i.e., for each column we independently choose a
non-zero location uniformly at random and place 41 in that location with probability 1/2,
and —1 in that location with probability 1/2.

To try to improve the number of rows in .S, one can try to learn the best location in each
column to place a non-zero entry, as well as the best value to put in the non-zero location in
each column of S. Note that S will still only have a single non-zero entry per column, but
the location of this entry need no longer be random and its non-zero value can be arbitrary.

Suppose one is given as input an n X d input matrix A for which each row of A has only a
single non-zero entry. Design a deterministic matrix S of the form described in the previous
paragraph, which may depend on A, so that S has exactly d rows and ||SAz||3 = ||Az||? for
all x.



Problem 4: Approximate Matrix Product in Terms of Stable Rank (13 points)

In class we saw an approximate matrix product lemma, namely, given an n X d matrix
A and an n x e matrix B, for certain random families of matrices S with O((logn)/e?) rows:

1
poly(n)’

Pr(|[ATSTSB — ATB|l; > €[ Al Bl <

The error in terms of the Frobenius norm can be large, so an alternative desirable guarantee
could be to design a random family of matrices S with a small number of rows for which:

1
Pr[||ATSTSB — AT B3 > &||Al3]| B3] < 1
| 18> AR < . B
where for a matrix C', we have ||C||y = sup,_, ”ﬁ’; Tl|2|2 is its operator norm. For ease of notation,

let us assume d = e in the remainder of this problem.

1. (4 points) Give an example for which A = B and for ¢ = 1/2 for which any such family
S of matrices which satisfies Equation 1 would require 2(d) rows.

HINT: Consider the case when n = d and A = B = [. Then generalize this to
n # d.

2. (2 points) While the previous part shows that for worst case matrices A and B the
number of rows of S needs to grow linearly with d in order to achieve (1), in many
practical cases we can do better. The stable rank srank(A) of an n X d matrix A is

defined as ||||12||||2§‘ Argue that srank(A) < d for any n x d matrix A.
2

HINT: Take the singular values of A to be 01 > 09 > 03.... You can use the fact
that |Alls = o1 and || A]|r = /D 2.

3. (7 points total) We now prove an approximate matrix product lemma, which shows
that if S has m = O((¢%logn)(srank(A) + srank(B))) rows and corresponds to a ran-
dom sampling and rescaling matrix from a distribution described below, then we can
achieve (1). Note that the number of rows of S can be significantly smaller than d,
as the stable ranks of A and B could be constant in typical applications. We will use
a generalization of the Matrix Chernoff lemma from class, which you can use without
proof:

(Generalized Matrix Chernoff) Let F' be a fixed d x d matrix and suppose R
is a random matrix with E[R] = F and ||R||s < L with probability 1, for a parameter
L. Let B5(R) = max(||E[RT R]||2, |E[RR"]||>) and let R,, = &+ > R, where each R;
is an independent copy of R. Then for every t > 0 we have:

_ —mt?/2
Pr[| Ry — Flla > ] < 2d- exp (&(R)mj Q/Lt/3> .

4



Returning to our problem, let p € [0,1]" be any probability distribution such that for
alli e {1,...,n}:
oo L AR+ B3
T4 A +ABIE

where v = [|A]|3/||B]|3 and A; and B; are the i-th row of A and B, respectively.
Suppose we create the sampling and rescaling matrix S € R™*" by first generating m
samples (1, ..., {,, with replacement from p, and then letting the i-th row of S equal

- - €, where ¢/ is the (i-th standard (row) unit vector. We will show that for

m :ZO((E_Q log n)(srank(A) + srank(B))), (1) holds.

(a) (1 point) Determine what R; for i € {1,...,m} is and show that ATSTSB =
Rm =1 Z:il Rz

T m

(b) (1 point) Show that E[R] = AT B.
(¢) (2 points) Show that L = O(||A||2||B]|2(srank(A) + srank(B))).

HINT: You can use the AM-GM inequality which says for two nonnegative num-
bers x and y, we have xTer > \J/Ty.

(d) (2 points) Show that 5(R) = O(||A||3]| B||3(srank(A) + srank(B))).

(e) (1 point) Conclude that S with m = O((¢"?log n)(srank(A) + srank(B))) satisfies
(1).



