
15-851 Algorithms for Big Data — Spring 2025

Problem Set 1
Due: Thursday, February 6, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.

pdf

Problem 1: Subspace Embeddings via Random Sign Matrices (17 points)

In class we showed that if k = O(d/ϵ2) and we choose a random k×nGaussian matrix S so
that each entry is i.i.d. N(0, 1/k), then with probability at least 9/10, we have simultaneously
for all x that ∥SAx∥22 ∈ (1± ϵ)∥Ax∥22.

Now suppose we instead choose a k × n matrix S where each entry is independently
chosen to be + 1√

k
with probability 1/2, and chosen to be − 1√

k
with probability 1/2. In this

problem we will show for appropriate k = O(d/ϵ2) that we again have with probability at
least 9/10, simultaneously for all x that ∥SAx∥22 ∈ (1± ϵ)∥Ax∥22. We prove this in steps:

1. (2 points) Show that for any fixed x ∈ Rd, we have ES[∥SAx∥22] = ∥Ax∥22.
The above part shows that we are correct in expectation for a fixed x. We next need
to understand the deviation of ∥SAx∥22 from its expectation, for which we study the
tail behavior of random variables.

2. (3 points) A zero-mean random variable Y is sub-Gaussian with parameter σ2 if
E[etY ] ≤ eσ

2t2/2 for all t. Argue that if Y ∈ {−1, 1} is chosen uniformly at random,
then Y is sub-Gaussian with parameter σ2 = 1.

HINT: One can use properties of cosh(t) to prove this, or one can use the Taylor series
ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · a few times and compare terms.

3. (2 points) If Y1, . . . Yn are independent zero-mean σ2-sub-Gaussian random variables,
then for scalars α1, . . . , αn, show that Y =

∑
i αiYi is σ

2 ·
∑

i α
2
i -sub-Gaussian.

4. (3 points) In this part we will use the following fact, which you can use without proof
and follows by direct integration: for V ∼ N(0, σ2), E[etV ] = et

2σ2/2.

Now suppose Y is mean-zero σ2-sub-Gaussian, and also suppose Y is symmetric around
the origin. Prove that for V ∼ N(0, σ2), for any t > 0 that

E[etY
2

] ≤ E[etV
2

].

HINT: Start by arguing that EY [e
tY 2

] = EY,V [e
(
√
2t|Y |/σ)V ] using the fact above, then

use the fact that both Y and V are symmetric.
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5. (5 points) Using parts 2-4 above, argue that for appropriate k = O(d/ϵ2) that for any
fixed x ∈ Rd,

Pr[|∥SAx∥22 − ∥Ax∥22| ≥ ϵ∥Ax∥22] ≤ e−Θ(d).

HINT: Y = ∥SAx∥22 is an average of squares of k independent symmetric sub-Gaussian
random variables Yi, for i = 1, . . . , k. For the upper tail bound, start by writing

Pr[Y ≥ 1 + ϵ] = Pr[etkY ≥ etk(1+ϵ)] ≤ E[etkY ]

etk(1+ϵ)
=

k∏
i=1

E[etY
2
i ]

et(1+ϵ)
,

which holds for any t > 0, and where the inequality is by Markov’s bound. Then use
your result from part 4. You can also use the fact that for V ∼ N(0, 1) and t < 1/2,
that E[etV

2
] ≤ 1√

1−2t
, which follows by direct integration. You might also need to

expand a Taylor series to derive a tractable tail bound.

For the lower bound, you can start in a similar way. Then you can use the following
derivation. If Y is mean zero subgaussian with parameter σ2 = 1, then the following
is true for |t| < 1. Using the Taylor expansion, we have E[etY

2
] ≤ 1 + tE[Y 2] +

t2
∑

i≥2E[Y 2i/i!]. Now since we know E[Y 2] = 1 and |t| < 1, this is at most 1 +

t + t2E[eY
2
]. Now notice that E[eY

2
] is part of the upper tail, and so we get that

E[etY
2
] ≤ 1 + t+ t2/

√
1− 2t.

6. (2 points) Conclude that for appropriate k = O(d/ϵ2) that with probability at least
9/10, simultaneously for all x, we have ∥SAx∥22 ∈ (1 ± ϵ)∥Ax∥22. You are welcome to
cite anything from class without proof.

Problem 2: Multiplying Gaussian Matrices (10 points total)

Let g1 and g2 be standard N(0, 1) Gaussian random variables. Note that g1 · g2 is not a
Gaussian random variable. We can ask a similar question for matrices. Suppose we have a
d× t matrix G1 of i.i.d. N(0, 1) entries and a t× d matrix G2 of i.i.d. N(0, 1) entries where
t = ω(d2) (limd→∞

t
d2

= ∞) and we look at the d×d matrix G1 ·G2. In this problem you will
prove that G1 · G2 cannot be distinguished from a d × d matrix H of i.i.d. N(0, t) random
variables.

To make the above statement precise, we will use a result of Jiang which states the
following: let A be an arbitrary, possibly randomized algorithm. Consider an r×ℓ submatrix
X of a random z×z matrix with orthonormal rows and columns. We refer to the distribution
of X as p. Also, consider an r × ℓ matrix Y with i.i.d. N(0, 1/z) entries. We refer to the
distribution of Y as q. Suppose with probability 1/2 we give a random sample from p to
algorithm A, while with the remaining probability 1/2 we give a random sample from q
to algorithm A. If we have r · ℓ = o(z), then the probability that A correctly states if
its input was chosen from p or from q is at most 1/2 + o(1), where o(1) → 0 as z → ∞.
This says that small submatrices of random orthonormal matrices are indistinguishable from
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Gaussian matrices. Intuitively, one cannot “observe” the orthonormality constraints on a
small submatrix of a random orthonormal matrix.

Using the above result, we will prove the following. If A is an arbitrary, possibly ran-
domized algorithm where p′ is the distribution of G1 · G2 and q′ is the distribution of H,
then if we randomly give A a sample from p′ with probability 1/2 while with the remaining
probability 1/2 we give a random sample from q′, then the probability that A correctly states
if its input was drawn from p′ or q′ is at most 1/2 + o(1).

1. (2 points) Write G1 = UΣV T (in its SVD) and consider UΣV TG2. Show that V TG2

is a d× d matrix of i.i.d. N(0, 1) entries.

2. (2 points) Now take M = V TG2. Using Part 1, show that M is indistinguishable from√
t · M̃ where M̃ is a d× d submatrix of a random matrix with orthonormal rows and

columns.

HINT: Use Jiang’s result.

3. (6 points) Using Part 2, show that the probability A correctly states if its input was
drawn from p′ or q′ is at most 1/2 + o(1).

HINT: Think about writing M̃ as a product of two other matrices. It will be helpful
and you can freely use the fact that the SVD of a random d × t matrix G3 of i.i.d.
N(0, 1) random variables is equal to UΣV T , where U,Σ ∈ Rd×d and V T ∈ Rd×t are
independent matrices and V T is a random matrix with orthonormal rows.

Problem 3: Learning the Positions and Values of CountSketch (10 points)

In class we claimed that if S is an m = O(d2/(ϵ2δ)) × n CountSketch matrix, then for
any fixed n × d matrix A, we have that with probability at least 1 − δ, simultaneously for
all x,

∥SAx∥22 = (1± ϵ)∥Ax∥22.

The number m of rows in CountSketch may be too large for some applications. Recall
that CountSketch is constructed randomly, i.e., for each column we independently choose a
non-zero location uniformly at random and place +1 in that location with probability 1/2,
and −1 in that location with probability 1/2.

To try to improve the number of rows in S, one can try to learn the best location in each
column to place a non-zero entry, as well as the best value to put in the non-zero location in
each column of S. Note that S will still only have a single non-zero entry per column, but
the location of this entry need no longer be random and its non-zero value can be arbitrary.

Suppose one is given as input an n×d input matrix A for which each row of A has only a
single non-zero entry. Design a deterministic matrix S of the form described in the previous
paragraph, which may depend on A, so that S has exactly d rows and ∥SAx∥22 = ∥Ax∥22 for
all x.
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Problem 4: Approximate Matrix Product in Terms of Stable Rank (13 points)

In class we saw an approximate matrix product lemma, namely, given an n × d matrix
A and an n× e matrix B, for certain random families of matrices S with O((log n)/ϵ2) rows:

Pr
S
[∥ATSTSB − ATB∥2F ≥ ϵ2∥A∥2F∥B∥2F ] ≤

1

poly(n)
.

The error in terms of the Frobenius norm can be large, so an alternative desirable guarantee
could be to design a random family of matrices S with a small number of rows for which:

Pr
S
[∥ATSTSB − ATB∥22 ≥ ϵ2∥A∥22∥B∥22] ≤

1

poly(n)
, (1)

where for a matrix C, we have ∥C∥2 = supx ̸=0
∥Cx∥2
∥x∥2 is its operator norm. For ease of notation,

let us assume d = e in the remainder of this problem.

1. (4 points) Give an example for which A = B and for ϵ = 1/2 for which any such family
S of matrices which satisfies Equation 1 would require Ω(d) rows.

HINT: Consider the case when n = d and A = B = I. Then generalize this to
n ̸= d.

2. (2 points) While the previous part shows that for worst case matrices A and B the
number of rows of S needs to grow linearly with d in order to achieve (1), in many
practical cases we can do better. The stable rank srank(A) of an n × d matrix A is

defined as
∥A∥2F
∥A∥22

. Argue that srank(A) ≤ d for any n× d matrix A.

HINT: Take the singular values of A to be σ1 ≥ σ2 ≥ σ3 . . . . You can use the fact
that ∥A∥2 = σ1 and ∥A∥F =

√∑
σ2
i .

3. (7 points total) We now prove an approximate matrix product lemma, which shows
that if S has m = O((ϵ−2 log n)(srank(A) + srank(B))) rows and corresponds to a ran-
dom sampling and rescaling matrix from a distribution described below, then we can
achieve (1). Note that the number of rows of S can be significantly smaller than d,
as the stable ranks of A and B could be constant in typical applications. We will use
a generalization of the Matrix Chernoff lemma from class, which you can use without
proof:

(Generalized Matrix Chernoff) Let F be a fixed d × d matrix and suppose R
is a random matrix with E[R] = F and ∥R∥2 ≤ L with probability 1, for a parameter
L. Let β2(R) = max(∥E[RTR]∥2, ∥E[RRT ]∥2) and let R̄m = 1

m

∑m
i=1Ri where each Ri

is an independent copy of R. Then for every t > 0 we have:

Pr[∥R̄m − F∥2 > t] ≤ 2d · exp
(

−mt2/2

β2(R) + 2Lt/3

)
.
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Returning to our problem, let p ∈ [0, 1]n be any probability distribution such that for
all i ∈ {1, . . . , n}:

pi ≥
1

4
· ∥Ai∥22 + γ∥Bi∥22
∥A∥2F + γ∥B∥2F

,

where γ = ∥A∥22/∥B∥22 and Ai and Bi are the i-th row of A and B, respectively.
Suppose we create the sampling and rescaling matrix S ∈ Rm×n by first generating m
samples ℓ1, . . . , ℓm with replacement from p, and then letting the i-th row of S equal

1√
mpℓi

· eTℓi , where eTℓi is the ℓi-th standard (row) unit vector. We will show that for

m = O((ϵ−2 log n)(srank(A) + srank(B))), (1) holds.

(a) (1 point) Determine what Ri for i ∈ {1, . . . ,m} is and show that ATSTSB =
R̄m = 1

m

∑m
i=1Ri.

(b) (1 point) Show that E[R] = ATB.

(c) (2 points) Show that L = O(∥A∥2∥B∥2(srank(A) + srank(B))).

HINT: You can use the AM-GM inequality which says for two nonnegative num-
bers x and y, we have x+y

2
≥ √

xy.

(d) (2 points) Show that β2(R) = O(∥A∥22∥B∥22(srank(A) + srank(B))).

(e) (1 point) Conclude that S with m = O((ϵ−2 log n)(srank(A)+srank(B))) satisfies
(1).
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