
15-851 Algorithms for Big Data — Spring 2025

Problem Set 1 Solutions

Problem 1: Subspace Embeddings via Random Sign Matrices

1. Like in lecture, we can assume that A has orthonormal columns and x is a unit vector. Therefore, we
have ∥Ax∥22 = 1. So, we want to show that ES [∥SAx∥22] = 1.

We have that ∥SAx∥22 =
∑

i∈[k] < ri, x >2 where ri is the i-th row of SA. By the linearity of

expectation, if we can show that E[< ri, x >2] = 1/k, then we will have the result.

We have that < ri, x >2=< (SA)i, x >2= (SiAx)2. So,

E[< ri, x >2] = E[(SiAx)2]

= E


 n∑

j=1

Sij(Ax)j

2


= E

 n∑
j=1

n∑
k=1

Sij(Ax)jSik(Ax)k


=

n∑
j=1

n∑
k=1

E[SijSik](Ax)j(Ax)k.

When j ̸= k, we have that E[SijSik] = 0 since Sij and Sik are independent both with mean 0. When
we have j = k, we have that E[SijSik] = 1/k. Therefore we have that

E[< ri, x >2] =

n∑
j=1

n∑
k=1

E[SijSik](Ax)j(Ax)k

=

n∑
j=1

E[S2
ij ](Ax)2j

=
1

k

n∑
j=1

(Ax)2j =
1

k
.

2. Since Y ∈ {−1, 1} is chosen uniformly at random, we have that E[etY ] = 1
2e

−t + 1
2e

t. Observe that
this is the cosh(t) function. To finish the problem, we want to show that E[etY ] is upperbounded for

all t by et
2/2. To do this, we will compare the Taylor series.

The Taylor series for et
2/2 is

1 +
t2

2
+

(t2/2)2

2!
+

(t2/2)3

3!
+ . . . .

In particular, the n-th term in the taylor series is (t2/2)n−1/(n − 1)!. The Taylor series for cosh(t)
(note that equivalently you can just use the Taylor expansion for ex twice) is

1 +
t2

2!
+

t4

4!
+

t6

6!
+ . . . .

In particular, the n-th term in this taylor expansion is t2(n−1)/(2(n− 1))!.

We need to prove that 2n−1 · (n− 1)! ≤ (2(n− 1))!. We can proceed via induction. This is clearly true
for n = 1. Now let’s assume that it is true for all n ≤ k, and we will prove it for n = k + 1. So we
want to prove that

2k · k! ≤ (2(k))!.
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Let us expand the left side. We have

2k · k! = 2 · 2k−1 · k · (k − 1)! ≤ (2(k − 1))! · 2k ≤ (2(k))!.

Therefore, we have the result.

3. Here we want to show that E[et
∑

i αiYi ] ≤ eσ
2 ∑

i α
2
i t

2/2 for all t. We have

E[et
∑

i αiYi ] = E[etα1Y1 · etα2Y2 · . . .].

Since we have that Y1, Y2, . . . , Yn are independent, we can re-write this as
∏n

i=1 E[etαiYi ]. From the
problem we know that Y1, . . . , Yn are sub-Gaussian with parameter σ2, so finally we have by the
previous part that

n∏
i=1

E[etαiYi ] ≤
n∏

i=1

eσ
2(tαi)

2/2

which gives us the result.

4. We have that E[etV ] = et
2σ2/2. So we can use this to say that

EV [e
√
2t|Y |V/σ] = e

2t|Y |2

σ2 ·σ2

2 = etY
2

.

Therefore, as per the hint, we have EY [e
tY 2

] = EY,V [e
(
√
2tY/σ)V ].

Now let us work with EY,V [e
(
√
2tY/σ)V ]. We want to show that

EY,V [e
(
√
2tY/σ)V ] ≤ EV [e

tV 2

].

We can rewrite EY,V [e
(
√
2tY/σ)V ] as EV [EY [e

(
√
2tY/σ)V ]]. Now we use the fact that Y is mean zero

σ2-sub-gaussian and get that

EV [EY [e
(
√
2tY/σ)V ]] ≤ EV [e

tV 2

].

5. We first show the upper tail, or that Pr[Y ≥ 1 + ε] ≤ e−Θ(d). Per the hint, using Markov’s inequality
we get that

Pr[Y ≥ 1 + ϵ] = Pr[etkY ≥ etk(1+ϵ)] ≤ E[etkY ]

etk(1+ϵ)
=

k∏
i=1

E[etY
2
i ]

et(1+ϵ)

for t > 0. Using part 4 and the hint again, we get that

Pr[Y ≥ 1 + ε] ≤
k∏

i=1

E[etV
2
i ]

et(1+ε)
≤

k∏
i=1

1√
1− 2t · et(1+ε)

=
1

√
1− 2t

k
· 1

etk(1+ε)

for t < 1/2.

Now, let us set t = ε/100. Let us prove a lower bound on
√
1− 2t · et(1+ε). We have that

ln(
√
1− 2t · et(1+ε)) = ln(

√
1− 2t) + ln(et(1+ε)) =

1

2
ln(1− 2t) + t(1 + ε).

Using the taylor expansion for ln(1−x), we get that ln(1−2t) ≥ −2t−4t2/2−O(ε3). So we have that

ln(
√
1− 2t · et(1+ε)) =

1

2
ln(1− 2t) + t(1 + ε) ≥ εt− t2 +O(ε3) = Θ(ε2).

So therefore we have
1

(
√
1− 2t · et(1+ε))k

≤ 1

(eΘ(ε2))k
.
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Plugging in k = O(d/ε2) gives the result.

We will now do the lower tail, or show that Pr[Y ≤ (1− ε)] ≤ e−Θ(d). Similarly to the above,

Pr[Y ≤ (1− ε)] = Pr[e−tkY ≥ e−tk(1−ε)] ≤ E[e−tkY ]

e−tk(1−ε)
=

k∏
i=1

E[e−tY 2
i ]

e−t(1−ε)
.

As per the hint, we have that

E[etY
2
i ] ≤ 1 + t+ (ct)2E[eY

2
i /c]

for any |t| < 1/c.

Again take t = ε/100. So we have |t| < 1/c for c = 100. So, we have that

Pr[Y ≤ (1− ε)] ≤
k∏

i=1

E[e−tY 2
i ]

e−t(1−ε)
≤

k∏
i=1

1− t+ (ct)2E[eY
2
i /c]

e−t(1−ε)
.

Applying the same logic as the upper bound we have

k∏
i=1

1− t+ (ct)2E[eY
2
i /c]

e−t(1−ε)
≤

k∏
i=1

1− t+ (ct)2E[eV
2
i /c]

e−t(1−ε)
≤

k∏
i=1

1− t+ (ct)2/
√
1− 2/c

e−t(1−ε)
.

So we have

Pr[Y ≤ 1− ε] ≤
k∏

i=1

1− t+ (ct)2/
√

1− 2/c

e−t(1−ε)
≤

k∏
i=1

1− t+ c3t2

e−t(1−ε)
=

ek ln(1−t+c3t2)

e−tk(1−ε)
.

Using the taylor expansion, we have that

Pr[Y ≤ (1− ε)] ≤ ek·Θ(−t+t2)

e−tk(1−ε)
= eΘ(−tk+t2k)+tk(1−ε) = eΘ(t2k−εtk) = e−Θ(ε2k).

Plugging in k = O(d/ε2) gives the result.

6. This directly follows from the net argument proof in class and parts 1 and 5.

Problem 2: Multiplying Gaussian Matrices

1. Let us consider the d× d matrix V TG2. First, we can see that each entry of V TG2 is < vr, gc > where
vr is a row of V T and gc is a column of G2. Recall that the rows of V T are orthonormal. So, each
row has length 1. From class we know that adding X + Y where X = N(0, a2) and Y = N(0, b2) gives
random variable Z = N(0, a2 + b2). So, we have that < vr, gc > is a Gaussian random variable with
variance |vr|22 = 1.

Now, we only need that the entries of V TG are independent. The rows of V T are orthonormal and
therefore for each pair of rows vr1 , vr2 we have < vr1 , vr2 >= 0. Therefore by rotational invariance
(from class), we have that the entries are independent.

2. Let us consider M = V TG2. From Part 1 we saw that M is a matrix of i.i.d. N(0, 1) entries. We can
re-write this as

√
tM ′ where M ′ is a matrix of i.i.d. N(0, 1/t) entries.

We can now use the result of Jiang. Let us set the parameter z = t. Therefore, we have that M ′ is
indistinguishable from M̃ where M̃ is a d × d submatrix of a random t × t matrix with orthonormal
rows and columns. Note that we have d2 = o(t).
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3. So we have G1G2 =
√
tUΣM̃ where M̃ is a d×d submatrix of a random t×t matrix R with orthonormal

rows and columns. We can rewrite M̃ as LP where L is a d× t submatrix of R and P = [Id, 0]. Note
that this means L has orthonormal rows.

So, we have G1G2 =
√
tUΣLP . The hint tells us that the SVD of a random d × t matrix G3 of i.i.d.

N(0, 1) random variables is equal to UΣV T , where U,Σ ∈ Rd×d and V T ∈ Rd×t are independent
matrices and V T is a random matrix with orthonormal rows. So, we can conclude that UΣL is a
random d × t matrix G3 of i.i.d. N(0, 1) random variables. UΣLP is simply the first d columns of
UΣL, and is therefore a d × d matrix of i.i.d. N(0, 1) random variables. Finally multiplying by

√
t

gives the desired result.

Problem 3: Learning the Positions and Values of CountSketch

Proof. Let us take matrix A. This would be easier if A had orthonormal columns. Since we cannot assume
that, we instead will do the following.

Lets take A′ = AR where R is a d × d diagonal matrix and Rjj for j ∈ [d] is
√

1∑n
i=1 A2

ij
. Notice

that all we are doing is normalizing the columns of A. So, we have that A′ has orthonormal columns and
still preserves the property of only having one entry per row. Note that the columns of A were already
independent since each row of A was guaranteed to have only one entry, which means that the dot product
between any two columns of A is 0.

So, if we can prove that for all x we have |SARx|22 = |ARx|22, then by a change of variable (similar to
in class), we have the desired statement.

We will set our sketching matrix S = (A′)⊺ = (AR)⊺. Since we know that A′ has only one entry per
row, then S only has one entry per column. This satisfies the desired property of S.

Our final step is showing that |SARx|22 = |ARx|22 for all x. Take any arbitrary x. Notice that SARx =
(AR)⊺ARx, and that AR has orthonormal columns. Therefore, we have that (AR)⊺ARx = x giving us
|SARx|22 = |x|22. We have |x|22 = |ARx|22 since AR has orthonormal columns.

Note that there are other possible solutions.

Problem 4: Approximate Matrix Product in Terms of Stable Rank

1. Let us suppose for the purposes of contradiction that S has r < d rows.

One example for A = B is [Id, 0]. This means that we have the identity matrix with dimensions d× d
with rows of 0 appended to the bottom to form our n × d matrix A = B. Therefore to meet the
guarantee we want, it would have to be that

Pr[∥A⊺S⊺SA− Id∥22 ≥ 1

4
∥A∥22∥B∥22] ≤ 1/ poly(n).

Notice that ∥A∥22 = ∥B∥22 = 1, so this simplifies to

Pr[∥A⊺S⊺SA− Id∥22 ≥ 1

4
] ≤ 1/poly(n).

Notice that A⊺S⊺SA has rank at most that of S, which is at most r < d. Therefore, simply consider
any vector in the kernel of S which means that the operator norm must be large by definition.

2. Using the hint, we have that ∥A∥2F =
∑min(n,d)

i=1 σ2
i ≤ d · σ2

1 . We also have that ∥A∥22 = σ2
1 . This gives

us the result.

3. (a) Each Ri is A
⊺ 1√

pi
· ei · 1√

pi
· e⊺i B. When we take 1

m

∑m
i=1

1
pi

·A⊺eie
⊺
i B, we get ATSTSB.

(b) E[R] =
∑

i pi ·
1
pi
AT eie

⊺
i B =

∑
i A

⊺eie
⊺
i B = A⊺B.
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(c) Recall that we said for some iteration i, we have R = 1
pi
A⊺eie

⊺
i B. So, we get

∥R∥2 ≤ max
i

|A⊺
i Bi|2
pi

≤ O(1) ·max
i

|Ai|2|Bi|2(|A|2F + γ|B|2F )
|Ai|22 + γ|Bi|22

.

Here Ai and Bi denote the i-th row of matrix A and B respectively. Per the hint, we can use the
AM-GM inequality to say that |Ai|22 + γ|Bi|22 ≥ 2

√
|Ai|22 · γ|Bi|22. So, we have that the above is

at most

O(1) · ( 1
√
γ
∥A∥2F +

√
γ∥B∥2F ).

Plugging in the value of γ gives us

O(1) · ∥B∥2
∥A∥2

∥A∥2F +O(1) · ∥A∥2
∥B∥2

∥B∥2F = O(1) · ∥A∥2∥B∥2 ·srank(A)+O(1) · ∥A∥2∥B∥2 ·srank(B).

(d) To do this, we will calculate ∥E[R⊺R]∥2 and then ∥E[RR⊺]∥2. Let us do the first. So, we have
that

E[R⊺R] =
∑
i

|Ai|22B
⊺
i Bi

pi
≤ O(1) · (∥A∥2F + γ∥B∥2F )

∑
i

|Ai|22B
⊺
i Bi

|Ai|22 + γ|Bi|22
.

We can see that
|Ai|22

|Ai|22+γ|Bi|22
≤ 1, so since we have that B⊺

i Bi is PSD, we have that this is at most

O(1) · (∥A∥2F + γ∥B∥2F )
∑
i

B⊺
i Bi = O(1) · (∥A∥2F + γ∥B∥2F )B⊺B.

So we have that

∥E[R⊺R]∥2 = O(1) · (∥A∥2F + γ∥B∥2F )∥B⊺B∥2 = O(1) · ∥B⊺B∥2(∥A∥2F +
∥A∥22
∥B∥22

∥B∥2F )

= O(1) · ∥B⊺B∥2(∥A∥2F + ∥A∥22srank(B)) ≤ O(1) · ∥B∥22∥A∥22(srank(A) + srank(B)).

We do a similar process to calculate ∥E[RR⊺]∥2. We have

E[RR⊺] =
∑
i

|Bi|22A
⊺
i Ai

pi
≤ O(1) · (∥A∥2F + γ∥B∥2F )

∑
i

|Bi|22A
⊺
i Ai

|Ai|22 + γ|Bi|22
.

Here we can see that
|Bi|22

|Ai|22+γ|Bi|22
≤ 1/γ. Since A⊺

i Ai is PSD, we have that this is at most

O(1) · (∥A∥2F /γ + ∥B∥2F )A⊺A.

So, we have that

∥E[RR⊺]∥2 = O(1) · ∥A⊺A∥2(
∥A∥2F
γ

+ ∥B∥2F ) ≤ O(1) · ∥A∥22(srank(A)∥B∥22 + ∥B∥22srank(B))

= O(1)∥B∥22∥A∥22(srank(A) + srank(B)).

(e) Plugging in the results from the previous 2 parts and plugging in t = ε∥A∥2∥B∥2 to the generalized
Matrix Chernoff gives us the result.
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