
15-851 Algorithms for Big Data — Spring 2025

Problem Set 2
Due: Thursday, February 27, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.

pdf

Problem 1: Ridge Leverage Scores Bound Low Rank Sensitivities (16 points)
For an n× d matrix A, the i-th ridge leverage score τ i(A) is defined to be:

τi = aTi (A
TA+ λI)−1ai,

where ai is the i-th row of A and where λ =
∥A−Ak∥2F

k
. Here Ak is the best rank-k approxi-

mation to A with regards to the Frobenius norm.

1. (2 points) Prove for all i ∈ [n] that τi is the i-th leverage score of the matrix [A;
√
λI],

where this notation means to stack A vertically on top of
√
λI for the d × d identity

matrix I.

HINT: Another definition for the ith leverage score of a matrix M is m⊺
i (M

⊺M)−1mi.

2. (2 points) Use the previous part and a general argument about leverage scores to show:

τi = sup
x

(Ax)2i
∥Ax∥22 + λ∥x∥22

HINT: Yet another definition for the ith leverage score of a matrix M is supx
(Mx)2i
∥Mx∥22

.

3. (3 points) Argue that ∥A− A2k∥22 ≤ λ.

HINT: You can use the following. Take the singular values of M to be σ1 ≥ σ2 ≥ . . . ≥
σd. By the Eckart–Young–Mirsky theorem, we have that ∥M −Mk∥2F = σ2

k+1 + σ2
k+2 +

. . .+σ2
d where Mk is the best rank-k approximation to A with regards to the Frobenius

norm.

4. (9 points) Let Fk denote the family of all rank-k d × d projection matrices. We will
show the following:

τi ≥ C sup
F∈Fk

∥aTi (I − PF )∥22
∥A(I − PF )∥2F

,

where PF is the projection onto a specific rank-k space F , and C > 0 is a constant.
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(a) (2 point) Show that

τi ≥ sup
x

(Ax)2i
∥A2kx∥22 + 2λ∥x∥22

.

HINT: Combine the previous two parts.

(b) (3 points) Show that there exists an x such that

Pr[(Ax)2i ≥ ∥a⊺i (I − PF )∥22/C] >
1

2

for some C.

HINT: Consider a specific rank-k subspace F and let x = PH(I−PF )g, where H is
the at most (3k+1)-dimensional space spanned by the rows of A2k, F, and ai, and
where g is a standard normal Gaussian vector. Here PH denotes the projection
onto H. Notice that (Ax)i is distributed as a Gaussian with a certain variance.
Use this to get the desired result.

(c) (3 points) Show for the same x that

Pr[∥A2kx∥22 + 2λ∥x∥22 ≤ C · ∥A(I − PF )∥2F ] >
1

2

for some constant C.

HINT: Bound the expectations of ∥A2kx∥22 and 2λ∥x∥22 separately. To bound the
expectation of 2λ∥x∥22, use the fact that H is a space of at most 3k+1 dimensions.
Then use Markov’s bound.

(d) (1 point) Conclude that we have

τi ≥ C sup
F∈Fk

∥aTi (I − PF )∥22
∥A(I − PF )∥2F

.

Problem 2: Sketching for Second Order Methods (17 points)
Let A ∈ Rn×d with n ≥ d and with rank d. We seek to solve the constrained regression
problem minx∈C ∥Ax− b∥22. Here C is a convex constraint set that the solution x must belong
to (you do not need to know the notion of convexity to solve this problem). Consider the
following iterative algorithm with N iterations:

1. Initialize x0 = 0

2. For iterations t = 0, 1, 2, . . . , N − 1, generate an independent sketching matrix St+1 ∈
Rk×n and perform the update:

xt+1 = argminx∈C

(
1

2
∥St+1A(x− xt)∥22 − ⟨AT (b− Axt), x⟩

)
. (1)

3. Return x̂ = xN
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Notice that part of (1) involves A rather than SA. Let x∗ = argminx∈C∥Ax− b∥22 be the
solution to the original problem. We will first focus on a specific value of t and let S = St+1.

1. (3 points) Argue that the minimizer to (1) is the same as that to

argminx∈C

(
1

2
∥SAx∥22 − ⟨AT z, x⟩

)
, (2)

where z = b− (I − STS)Axt is a fixed vector (here xt is fixed because it was found in
the previous iteration).

2. (7 points) When minimizing a convex function f over a convex set C, if p is the optimum
solution and q is any feasible solution, then

⟨∇f(p), q − p⟩ ≥ 0,

where ∇f(p) is the gradient of function f evaluated at p. We will not prove or formally
define these terms, but for our problem (2) they imply

⟨(SA)TSAxt+1 − AT z, x∗ − xt+1⟩ ≥ 0, (3)

where xt+1 is the optimal to (2) and x∗ is the minimizer to 1
2
minx∈C ∥Ax−b∥22. Applying

similar reasoning to the program 1
2
minx∈C ∥Ax− b∥22 also implies:

⟨ATAx∗ − AT b, xt+1 − x∗⟩ ≥ 0. (4)

You do not need to prove (3) or (4) and can take both as given. Show how to combine
(3) and (4) to prove:

∥SA∆∥22 ≤ |(x∗ − xt)AT (I − STS)A∆|. (5)

where ∆ = x∗ − xt+1.

3. (7 points) Suppose that St is a (1+ ϵ)-approximate subspace embedding of A, for each
t = 0, 1, 2, . . . , N − 1. Argue that

∥Ax̂− Ax∗∥22 ≤ εΘ(N) · ∥Ax∗∥22

HINT: Again for notational convenience take S = St+1. It suffices to show ∥Ax∗ −
Axt+1∥2 ≤ O(ϵ)∥Ax∗−Axt∥2 for each t and then apply induction. For a single iteration,
use (5) and lower bound the left hand side and upper bound the right hand side using
properties of a subspace embedding.
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Problem 3: Block Leverage Scores (17 points)

Suppose we are given an n× d matrix A with full column rank and would like to sample
and reweight a subset of its rows to obtain a subspace embedding. We learned how to do
this using leverage score sampling in class. Suppose that the rows of A are partitioned
into t groups, denoted A1, . . . , At, where Ai is an ni × d matrix, and now we would like to
either include or exclude entire groups in our sample. This is useful if, e.g., each group has
multiple rows that collectively mean something and one would like to preserve this meaning
by sampling the entire group.

We define the i-th block leverage score

Li(A) = Tr(Ai(ATA)−1(Ai)T ),

where Tr denotes the trace, which is the sum of diagonal elements of a square matrix. Notice
that if Ai has a single row, then this coincides with the usual definition of leverage scores.

1. (2 points) Prove that if T is the set of rows of A in Ai, then Li(A) =
∑

j∈T ℓj(A),
where ℓj(A) is the leverage score of the j-th row of A.

2. (2 points) For any fixed constant ϵ > 0, show how to compute estimates Li(A), for all
i ∈ {1, 2, . . . , t}, in total time O(nnz(A)+d2) log n such that with constant probability,
simultaneously for all i ∈ {1, 2, . . . , t} the estimate L̃i is a (1 ± ε) approximation to
Li(A).

3. (5 points) This part is meant to give you an understanding of the meaning of a block
leverage score and might or might not be needed in the next part. Prove that

Li(A) = sup
X

∥AiX∥2F
∥AX∥22

.

HINT: Start by taking the SVD of A and then perform a change of variables.

4. (3 points) Write Ai in its SVD as U iΣV ⊺. Prove that

Li(A) ≥ ∥U i∥22.

5. (5 points) Now suppose that for each i ∈ {1, 2, . . . , t} we have an estimate L̃i satisfying

βLi ≤ L̃i ≤ Li.

Let (q1, . . . , qt) be a probability distribution with qi ≥ L̃i

d
for all i ∈ {1, 2, . . . , t}.

Let k = O(d(log d)/(βϵ2)). Define a sampling and rescaling matrix S = D·ΩT . For each
j ∈ [k], independently and with replacement pick a block index i ∈ [t] with probability
qi. So, we have sampled indices i1, . . . , ik. Let K be the total number of rows that are
in block matrices Ai1 , . . . , Aik . We have that D is K ×K and Ω is n×K.
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Take ri to be the number of rows in Ai. For some j ∈ [k], we have sampled block index
ij, corresponding to block matrix Aij . Take index ℓ to be ri1 + ri2 + . . .+ rij−1

+1. For
each z ∈ [rij ], take xz to be the row index (of A) corresponding to the z-th row of Aij

and set Ωxz ,ℓ+z−1 = 1. Also, set Dℓ+z−1,ℓ+z−1 = 1/(qijk)
1/2.

Show that with probability at least 9/10, SA is a subspace embedding, meaning that
simultaneously for all x, we have ∥SAx∥22 = (1± ϵ)∥Ax∥22.
HINT: Follow the leverage score matrix Chernoff analysis from class, but you will need
to change sampled rows to sampled blocks in a few places, and make modifications in
the analysis to deal with blocks.
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