15-851 ALGORITHMS FOR BI1G DATA — Spring 2025

PROBLEM SET 2 SOLUTIONS

Problem 1: Ridge Leverage Scores Bound Low Rank Sensitivities

1. We will denote A’ = [A; v/AI]. Let us consider the it" leverage score of A’ for i € [n]. By the definition
in the hint, we have that this is

aT(ATAY ) = al (A'TA) a,.

So, we just need to prove that A’TA’ = ATA + \I.

We have that
ATA = [A;VAIT[A; VAL = ATA + (VA2 = ATA+ AL

2. Using the previous part, we know that 7; = £;(A’) where £; is the i*" leverage score. Using the hint,

we can see that (A')? (Az)? (Az)?
l;(A") = sup L = sup L= sup —— o
o [Azl3 o A3 o [[Az]3 + Al2|3

3. Recall that the operator norm of a matrix is also the largest singular value of that matrix. So we have

1 1A — Agl2
- k
1A = Asil3 = 031 (4) = 071 (A= A) < £ D" oF(A - Ay < o E <

=1

4. (a) We follow the steps in the hint. So, we know from part 2 that we have

(Ax)?
Ti =8Sup ——————5 .
2 Az[3 + M]3

So, let us expand this. We have

(A2 (Ar)?
P TAzIE + ATelg " TAzeal3 + 1A~ Azal3 + Mal3.

Using part 3, we now get that

. (Av)? + sup (A2
2 Tzl + (A = Az)alE + MalE = °=° TAzeal3 + 27Tl

(b) Now, we let F' € Fi, be any rank k subspace. We set H to be the span of the rows of Ay, F, and
a;. Clearly H is at most a (3k 4+ 1) dimensional subspace.
Let = Py (I— Pr)g where g is a standard normal Gaussian vector and Py denotes the projection
onto H.
So, we have that (Az); = a] Py(I — Pr)g = a] (I — Pr)g. So, (Axz); is distributed as a gaussian
with variance ||a] (I — Pp)||3. This is a chi-squared random variable with one degree of freedom
with expectation ||a] (I — Pr)||3. Using standard properties of the pdf of a chi-squared random

variable we have
Pr[(Az); > |la] (I — Pp)|[5/3] > 1/2.

(¢) We have that

Bl||Agal|3] = Elll A2 Prr (I — Pr)gl3] = Bll| A2 (I — Pr)gli3] < |A( — Pp)| %



We also have

ENz|3] = BN Pu(I - Pr)gl3]
= EN|HH™(I - Pr)gll3] = EIN|HT(I — Pr)gll3].
HT has orthonormal rows, and projections to not increase norms. Therefore, each row of HT(I —

Pr) has length at most 1, and each row of HT(I — Pp)g is a gaussian with variance at most 1.
So we have

BIN[HT(I — Pp)gll3 < A3k +1) < 4[|A - A% < 4|AU - Pr)| %
So using Markov’s bound we have
Pr{|| Azl + 2X||z]13 < 20 A(I — Pp)||F] > 1/2.

(d) We have with positive probability that there exists an = such that

. (Az)?
T; > sup
"7 [Aakl3 4 20|23

SENDIESAT

60 |A(Z — Pp)l%

We proved this for arbitrary F', and so we are done.

Problem 2: Sketching for Second Order Methods
1. We expand the initial expression. So we have that
argmin, o (5| SAG — 2*)[§ — {AT(b — Ax'), 2))
:argminmec(%xTATSTSAx - %xTATSTSAxt - %(xt)TATSTSAx —2TATh + 2T AT Azt)
:argminxec(%HSAa:H% — 2TATSTSAz' — 2TATh + 2T AT Ax?)
zargminxec(%HSAxH% — aTAT(STSAz" 4+ b — Ax?))
—argmin, cc (5| Az]3 — 2T AT(b — (1 - §75) Az"))

1
=argmin, ec (5| SAz|3 — (AT(b — (I = ST$)Az'), z))

2. Let A = z* — zt*1,
(SA)TSAz"' — ATz A) > 0

and
(ATAz* — ATb, (—A)) > 0.

Expanding the former,
(@HT(SA)T(SA)A — 0T AA + (a')TATAA — (') TATSTSAA > 0,

and expanding the latter,
—(xz*)TATAA + b7 AA > 0.

Adding them together, we have

(' = 2")T(ATSTSA)A > (2% — 2")T AT AA.



Now we add (2! — 2*)TATSTSAA to both sides, and we get
(T — 2T ATSTSAA > (2% — )T AT AA + (2f — 2*)T AT STSAA
which is the same as
—ATATSTSAA > (z* — 2T AT(I — ST S)AA,
and rearranging gives
|(z* — 2T AT (I — STS)AA| > ||SAA|2.
3. Let S = S+, Applying Cauchy-Schwarz to the upper bound in the previous part, we have
|(@* —a")TAT(I = STS)AA| < =V (@ — a2 - [ZVTAll2 -,

where A = UXVT in it SVD, and we have used ||[I — UTSTSU||5 < € since S is a subspace embedding
for A.

Also, we have
ISAA[Z > (1 - e)[|AA|3,

also because S is a subspace embedding.
Combining these two bounds and the previous part, we obtain

[AA]z = O(e) [ A(z" — )] |2.

The claim now follows inductively across the N iterations, applying the same analysis as above with t.

Problem 3: Block Leverage Scores

1. We have that
Li(A) =Tr(A(ATA)~ ZA’ (ATA)THADT = 4;(A).

J
2. We saw in class how to estimate £; to within a (14 ¢) approximation by taking l; = |e; ARG|3. So the

algorithm £;(A) is to compute ¢; for each i € T where T is the set of rows of A in A” and then add
them up.

So using the previous part, we have that

A)=>"0=> Li(1+e)=(1£e)Li(A).

i€T €T

In terms of runtime, note that we only have to compute product ARG once, which takes (nnz(A4) +
d?)logn time. Computing |e; ARG|3 for each i € [n] takes O(nnz(A)logn) time.

3. Let UXVT be the SVD decomposition of A. So, we can also rewrite A’ as U’ VT where U consists of
the first 4 rows of U. Since our quantity is scale invariant, finding

iy||2

oy IAX

x [AX]|3

is the same as maximizing |[U*SVTX||% subject to the constraint that [|[UXVTX|]3 = 1. Note that U
has orthonormal columns and therefore the constraint becomes [|[XVTX||3 = 1. Now, let us say that
Y =XVTX. So, we want to maximize ||U’Y||% subject to |Y]|3 = 1. This is maximized when we have
Y = 1. So we have that

|
s ”AX”'§ ZHU 13,

giving us the result.



4. We have that 4 4
Li(A) = 4;(A) =105 = U7 > U] 3-

J J

5. We want to show that |SAz|3 = (1 4 ¢)|Az|3 for all z. Doing the standard change of variable, this is
equivalent to showing that
[SUYI3 = (1£2)[yl3

for all y and U with orthonormal columns. Like in class we will show with high probability that

|UTSTSU — I, < e.

We will use Matrix Chernoff. Let us set up our random variables and bound the required terms.

For j € [t], let i; be the index that was picked in the j-th trial. Let

Uru;,
Xj = ]d -2 -
qi;

where Uy, is the block matrix corresponding to the sampled rows in the j-th trial.

We can see that all the X; are independent copies of a symmetric matrix. Now, let us verify the
expectation. So we have

U'TU;
BX;]=1a=) ¢-——=14—Y UlU; =1, —UTU = I, — I, = 0°.
7 di P
We also have
U U, |2 1Uil13 Uil3 - d d
X‘QS Id2+]7JS1+maX712:1+maX L2 Sl-‘r*
[ X5]l2 < [[all Py A i BL; B

where the last inequality follows from the previous part.

Ulu;,
J + E
4di;

Ulu,ulu; U0 |UU; d d
:Zlq,z_[deHZ”Ql_Idj EZUiTUi_IdS(B_l)Id‘

Finally we have

Ul UL U,

2

E[XTX)=1,-2E

2
4q;;

qi

So we therefore have that

|EXTX]||; < % L

The rest follows from the lecture.
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