
15-851 Algorithms for Big Data — Spring 2025

Problem Set 2 Solutions

Problem 1: Ridge Leverage Scores Bound Low Rank Sensitivities

1. We will denote A′ = [A;
√
λI]. Let us consider the ith leverage score of A′ for i ∈ [n]. By the definition

in the hint, we have that this is

a′
⊺
i (A

′⊺A′)−1a′i = a⊺i (A
′⊺A)−1ai.

So, we just need to prove that A′⊺A′ = A⊺A+ λI.

We have that
A′⊺A′ = [A;

√
λI]⊺[A;

√
λI] = A⊺A+ (

√
λI)2 = A⊺A+ λI.

2. Using the previous part, we know that τi = ℓi(A
′) where ℓi is the ith leverage score. Using the hint,

we can see that

ℓi(A
′) = sup

x

(A′x)2i
∥A′x∥22

= sup
x

(Ax)2i
∥A′x∥22

= sup
x

(Ax)2i
∥Ax∥22 + λ∥x∥22

.

3. Recall that the operator norm of a matrix is also the largest singular value of that matrix. So we have

∥A−A2k∥22 = σ2
2k+1(A) = σ2

k+1(A−Ak) ≤
1

k

k∑
j=1

σ2
j (A−Ak) ≤

∥A−Ak∥2F
k

≤ λ.

4. (a) We follow the steps in the hint. So, we know from part 2 that we have

τi = sup
x

(Ax)2i
∥Ax∥22 + λ∥x∥22

.

So, let us expand this. We have

sup
x

(Ax)2i
∥Ax∥22 + λ∥x∥22

= sup
x

(Ax)2i
∥A2kx∥22 + ∥(A−A2k)x∥22 + λ∥x∥22

.

Using part 3, we now get that

sup
x

(Ax)2i
∥A2kx∥22 + ∥(A−A2k)x∥22 + λ∥x∥22

≥ sup
x

(Ax)2i
∥A2kx∥22 + 2λ∥x∥22

.

(b) Now, we let F ∈ Fk be any rank k subspace. We set H to be the span of the rows of A2k, F, and
ai. Clearly H is at most a (3k + 1) dimensional subspace.

Let x = PH(I−PF )g where g is a standard normal Gaussian vector and PH denotes the projection
onto H.

So, we have that (Ax)i = a⊺i PH(I − PF )g = a⊺i (I − PF )g. So, (Ax)i is distributed as a gaussian
with variance ∥a⊺i (I − PF )∥22. This is a chi-squared random variable with one degree of freedom
with expectation ∥a⊺i (I − PF )∥22. Using standard properties of the pdf of a chi-squared random
variable we have

Pr[(Ax)2i ≥ ∥a⊺i (I − PF )∥22/3] > 1/2.

(c) We have that

E[∥A2kx∥22] = E[∥A2kPH(I − PF )g∥22] = E[∥A2k(I − PF )g∥22] ≤ ∥A(I − PF )∥2F .
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We also have

E[λ∥x∥22] = E[λ∥PH(I − PF )g∥22]
= E[λ∥HH⊺(I − PF )g∥22] = E[λ∥H⊺(I − PF )g∥22].

H⊺ has orthonormal rows, and projections to not increase norms. Therefore, each row of H⊺(I −
PF ) has length at most 1, and each row of H⊺(I − PF )g is a gaussian with variance at most 1.
So we have

E[λ∥H⊺(I − PF )g∥22 ≤ λ(3k + 1) ≤ 4∥A−Ak∥2F ≤ 4∥A(I − PF )∥2F .

So using Markov’s bound we have

Pr[∥A2kx∥22 + 2λ∥x∥22 < 20∥A(I − PF )∥2F ] > 1/2.

(d) We have with positive probability that there exists an x such that

τi ≥ sup
x

(Ax)2i
∥A2kx∥22 + 2λ∥x∥22

≥ 1

60

∥a⊺i (I − PF )∥22
∥A(I − PF )∥2F

.

We proved this for arbitrary F , and so we are done.

Problem 2: Sketching for Second Order Methods

1. We expand the initial expression. So we have that

argminx∈C(
1

2
∥SA(x− xt)∥22 − ⟨A⊺(b−Axt), x⟩)

=argminx∈C(
1

2
x⊺A⊺S⊺SAx− 1

2
x⊺A⊺S⊺SAxt − 1

2
(xt)⊺A⊺S⊺SAx− x⊺A⊺b+ x⊺A⊺Axt)

=argminx∈C(
1

2
∥SAx∥22 − x⊺A⊺S⊺SAxt − x⊺A⊺b+ x⊺A⊺Axt)

=argminx∈C(
1

2
∥SAx∥22 − x⊺A⊺(S⊺SAxt + b−Axt))

=argminx∈C(
1

2
∥SAx∥22 − x⊺A⊺(b− (I − S⊺S)Axt))

=argminx∈C(
1

2
∥SAx∥22 − ⟨A⊺(b− (I − S⊺S)Axt), x⟩)

2. Let ∆ = x∗ − xt+1.
⟨(SA)⊺SAxt+1 −A⊺z,∆⟩ ≥ 0

and
⟨A⊺Ax∗ −A⊺b, (−∆)⟩ ≥ 0.

Expanding the former,

(xt+1)T (SA)T (SA)∆− bTA∆+ (xt)TATA∆− (xt)TATSTSA∆ ≥ 0,

and expanding the latter,
−(x∗)TATA∆+ bTA∆ ≥ 0.

Adding them together, we have

(xt+1 − xt)T (ATSTSA)∆ ≥ (x∗ − xt)TATA∆.
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Now we add (xt − x∗)TATSTSA∆ to both sides, and we get

(xt+1 − x∗)TATSTSA∆ ≥ (x∗ − xt)TATA∆+ (xt − x∗)TATSTSA∆

which is the same as
−∆TATSTSA∆ ≥ (x∗ − xt)TAT (I − STS)A∆,

and rearranging gives
|(x∗ − xt)TAT (I − STS)A∆| ≥ ∥SA∆∥22.

3. Let S = St+1. Applying Cauchy-Schwarz to the upper bound in the previous part, we have

|(x∗ − xt)TAT (I − STS)A∆| ≤ ∥ΣV T (x∗ − xt)∥2 · ∥ΣV T∆∥2 · ϵ,

where A = UΣV T in it SVD, and we have used ∥I −UTSTSU∥2 ≤ ϵ since S is a subspace embedding
for A.

Also, we have
∥SA∆∥22 ≥ (1− ϵ)∥A∆∥22,

also because S is a subspace embedding.

Combining these two bounds and the previous part, we obtain

∥A∆∥2 = O(ϵ)∥A(x∗ − xt)∥2.

The claim now follows inductively across the N iterations, applying the same analysis as above with t.

Problem 3: Block Leverage Scores

1. We have that

Li(A) = Tr(Ai(A⊺A)−1(Ai)⊺) =
∑
j

Ai
j(A

⊺A)−1(Ai
j)

⊺ =
∑
j

ℓj(A).

2. We saw in class how to estimate ℓi to within a (1± ε) approximation by taking ℓ̃i = |eiARG|22. So the
algorithm Li(A) is to compute ℓ̃i for each i ∈ T where T is the set of rows of A in Ai and then add
them up.

So using the previous part, we have that

L̃i(A) =
∑
i∈T

ℓ̃i =
∑
i∈T

ℓi(1± ε) = (1± ε)Li(A).

In terms of runtime, note that we only have to compute product ARG once, which takes (nnz(A) +
d2) log n time. Computing |eiARG|22 for each i ∈ [n] takes O(nnz(A) log n) time.

3. Let UΣV ⊺ be the SVD decomposition of A. So, we can also rewrite Ai as U iΣV ⊺ where U i consists of
the first i rows of U . Since our quantity is scale invariant, finding

sup
X

∥AiX∥2F
∥AX∥22

is the same as maximizing ∥U iΣV ⊺X∥2F subject to the constraint that ∥UΣV ⊺X∥22 = 1. Note that U
has orthonormal columns and therefore the constraint becomes ∥ΣV ⊺X∥22 = 1. Now, let us say that
Y = ΣV ⊺X. So, we want to maximize ∥U iY ∥2F subject to ∥Y ∥22 = 1. This is maximized when we have
Y = I. So we have that

sup
X

∥AiX∥2F
∥AX∥22

=

i∑
r=1

∥Ur∥22,

giving us the result.
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4. We have that
Li(A) =

∑
j

ℓj(A) =
∑
j

|Uj |22 = ∥U i∥2F ≥ ∥U i∥22.

5. We want to show that |SAx|22 = (1± ε)|Ax|22 for all x. Doing the standard change of variable, this is
equivalent to showing that

|SUy|22 = (1± ε)|y|22
for all y and U with orthonormal columns. Like in class we will show with high probability that

∥U⊺S⊺SU − I∥2 ≤ ε.

We will use Matrix Chernoff. Let us set up our random variables and bound the required terms.

For j ∈ [t], let ij be the index that was picked in the j-th trial. Let

Xj = Id −
U⊺
ij
Uij

qij

where Uij is the block matrix corresponding to the sampled rows in the j-th trial.

We can see that all the Xj are independent copies of a symmetric matrix. Now, let us verify the
expectation. So we have

E[Xj ] = Id −
∑
i

qi ·
U⊺
i Ui

qi
= Id −

∑
i

U⊺
i Ui = Id − U⊺U = Id − Id = 0d.

We also have

∥Xj∥2 ≤ ∥Id∥2 +
∥U⊺

ij
Uij∥2
qij

≤ 1 + max
i

∥Ui∥22
qi

= 1 +max
i

|Ui|22 · d
βLi

≤ 1 +
d

β

where the last inequality follows from the previous part.

Finally we have

E[X⊺X] = Id − 2E

[
U⊺
ij
Uij

qij

]
+ E

[
U⊺
ij
UijU

⊺
ij
Uij

q2ij

]

=
∑
i

U⊺
i UiU

⊺
i Ui

qi
− Id ⪯

∑
i

∥U⊺
i Ui∥2U⊺

i Ui

qi
− Id ⪯ d

β

∑
i

U⊺
i Ui − Id ≤ (

d

β
− 1)Id.

So we therefore have that

∥E[X⊺X]∥2 ≤ d

β
− 1.

The rest follows from the lecture.
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