
15-859 Algorithms for Big Data — Spring 2025

Problem Set 3
Due: Thursday, March 20, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.

pdf

Problem 1: Geometric Mean Estimator for ℓ1-Estimation (20 points)

In class we studied a sketch for ℓ1-estimation based on Cauchy random variables. Re-
call that if S is a matrix of i.i.d. Cauchy random variables with k = O(ϵ−2) rows and
n columns, then for any fixed vector x ∈ Rn, if E is the median of entries in the list
(|(Sx)1|, |(Sx)2|, . . . , |(Sx)k|), then E ∈ (1 ± ϵ)∥x∥1 with probability at least 9/10, for ap-
propriate choice of constant in the big-Oh notation defining k.

In this problem we will consider another estimator F called the geometric mean estimator,
which is based on the same sketch Sx (for a fixed x ∈ Rn) with k = O(ϵ−2) rows. For this
estimator, we partition the rows of Sx into k/3 groups G1, . . . , Gk/3, each of size 3, where we
assume k is a multiple of 3. In the i-th group, if (Sx)a, (Sx)b, (Sx)c are the three coordinates
in that group, then we set

Fi = |(Sx)a · (Sx)b · (Sx)c|1/3.

1. (10 points) Show that the expectation of Fi exists and is equal to C ·∥x∥1, where C > 0
is a scalar that does not depend on x.

HINT: You will need to use the density function of a Cauchy random variable from
lecture.

2. (5 points) Show that the variance of Fi is bounded by O(∥x∥21).

HINT: You can again use the density function of a Cauchy random variable from
lecture.

3. (5 points) We define our overall estimator F as follows:

F =
3

Ck

k/3∑
i=1

Fi.

Conclude that for appropriate k = O(ϵ−2), that with probability at least 9/10, we have
F ∈ (1± ϵ)∥x∥1. Recall that this is for any fixed vector x ∈ Rn.

http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.pdf
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring25/grading.pdf

Problem 2: Online Leverage Score Sampling plus Merge and Reduce (30 points)

We consider the data stream model, where we see each row of an n × d matrix A one
at a time. We assume the entries of A are each O(log n) bit integers and that n > d.

A coreset for subspace approximation, given an n×d matrix A with n > d, is a weighted
subset of rows of A, denoted S · A, so that ∥SAx∥2 = (1 ± ϵ)∥Ax∥2 simultaneously for all
x. In this problem, we will construct a coreset for A in the data stream model. We will
introduce the merge-and-reduce framework, and then improve it using online leverage score
sampling.

It turns out that deterministic coresets S exist with only k = C · d/ϵ2 rows of S, for a
certain constant C > 0, and they can be constructed in O(kd(log n)) bits of space. These
are due to Batson, Spielman, and Srivastava, and they are called BSS-sparsifiers. We will
assume the existence of such coresets in what follows.

Consider the following merge-and-reduce algorithm. We store the first 2k rows in the
stream, denoted A[1,2k]. We then compute a BSS-sparsifier S[1,2k]A[1,2k] to reduce the number
of rows to k. We superscript S[1,2k] to keep track of which rows the BSS-sparsifier has been
applied to. We then store the next 2k rows A[2k+1,4k] in the stream. We then compute a BSS-
sparsifier S[2k+1,4k]A[2k+1,4k] in the stream. We then merge S[1,2k]A[1,2k] and S[2k+1,4k]A[2k+1,4k]

by computing a BSS-sparsifier of their concatenation. We will call this S[1,4k]A[1,4k]. We
then store the next 2k rows A[4k+1,6k] and compute a BSS-sparsifier S[4k+1,6k]A[4k+1,6k]. We
then store the next 2k rows A[6k+1,8k] and compute a BSS-sparsifier S[6k+1,8k]A[6k+1,8k]. We
then merge S[4k+1,6k]A[4k+1,6k] and S[6k+1,8k]A[6k+1,8k], obtaining S[4k+1,8k]A[4k+1,8k]. Now we
additionally merge S[1,4k]A[1,4k] and S[4k+1,8k]A[4k+1,8k], obtaining S[1,8k]A[1,8k], and so on. In
this way we build a binary tree of height Θ(log(n/2k)) of coresets, and at any point during
the stream we only store one coreset at each depth. This algorithm is called the merge-and-
reduce algorithm.

1. (10 points) Although BSS-sparsifiers are deterministic, and thus will always be correct,
when one merges coresets the error in the multiplicative approximation grows. Suppose

2

that we use the same value for the approximation factor for all coresets, and therefore
the value of k for all coresets at all nodes in the binary tree is the same. What value
of k should we choose to guarantee that the final coreset at the root of the binary tree
is a (1± ϵ)-approximation, and what is the overall memory required of the streaming
algorithm for that value of k? Asymptotic notation is fine. You can assume that
k < n0.9 if it makes your calculations easier.

2. (20 points) In order to improve the memory required of the above scheme, we will
combine it with online leverage score sampling. The i-th online leverage score ℓi is
defined to be

ℓi = min(aTi (A
T
i−1Ai−1 + λI)−1ai, 1),

where Ai−1 for i > 1 denotes the submatrix of A consisting of its first i − 1 rows, A0

is the 0 matrix, and λ > 0 is a parameter. It can be shown that

n∑
i=1

ℓi = O(d log(1 + ∥A∥22/λ)),

which you can take as given1.

(a) (3 points) Argue that one can maintain AT
i−1Ai−1 in a stream exactly and de-

terministically using only O(d2 log n) bits of memory, and thus one can com-
pute ℓi deterministically and exactly given the i-th row in the stream, for each
i ∈ {1, 2, . . . , n}.
For the next part, we will need the following fact, which is based on a matrix
concentration inequality similar to the matrix Chernoff bound we did in class. It
is different than the result in class though since rows are sampled independently
and without replacement. You can use this fact as given:

(Sampling Without Replacement) Given an error parameter 0 < γ < 1, let
u be a vector of leverage score overestimates, i.e., τi(A) ≤ ui for all i, where τi(A)
is the i-th leverage score of A. For each row we define a sampling probability
pi = min(1, γ−2uic log d), where c > 0 is a positive constant. Let Sample(u)
return a random diagonal matrix T with independently chosen entries: we have
Ti,i = 1/

√
pi with probability pi and Ti,i = 0 otherwise. Then with probability at

least 9/10, we have

• T has at most cγ−2(log d)∥u∥1 non-zero entries, and

• Simultaneously for all x, ∥TAx∥2 = (1± γ)∥Ax∥2.
(b) (5 points) Argue that if one samples each row i of A independently with prob-

ability equal to pi = min(Θ(ϵ−2ℓi log d), 1), and rescales a sampled row by 1√
pi
,

obtaining a matrix TA of sampled and rescaled rows of A, then with probability
at least 9/10, one has ∥TAx∥22 = (1±ϵ/3)(∥Ax∥22±λ∥x∥22), simultaneously for all x.

1If you would like to see a proof, see Problem 1 in the 2022 15-859 Homework 2.

3

HINT: Apply the Sampling Without Replacement Bound. It will help to show
that the online leverage score upper bounds the actual leverage score of the ma-
trix [A;

√
λI]. You can also use the fact that for positive semidefinite matrices C

and D, if D ⪰ C then C−1 ⪰ D−1 in the positive semidefinite ordering discussed
in class.

(c) (4 points) Argue that by setting λ = ϵ · σ2
min(A), where σmin(A) is the smallest

singular value of A, with probability at least 9/10, we have that ∥TAx∥22 = (1±
O(ϵ))∥Ax∥22 simultaneously for all x.

(d) (8 points) Suppose one samples rows of A by their online leverage score, and feeds
only the sampled (and rescaled) rows TA into the merge-and-reduce algorithm
above. Note that the total stream length that merge-and-reduce is being applied
to now is equal to the number of non-zero entries of T . Show how to modify
the parameters of the merge-and-reduce algorithm above to obtain an algorithm
using d2 ·poly(log log(κd/ϵ))(log n)/ϵ2 bits of memory so that, with probability at
least 9/10, the final coreset output at the root of the tree, denoted STA, satisfies
∥STAx∥2 = (1± ϵ)∥Ax∥2 simultaneously for all x. Here κ = ∥A∥22/σ2

min(A) is the
condition number of A.

4

