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1 Introduction

There are many large data sets that need to be processed (e.g., internet traffic logs, financial data).
Because these data sets are so large, we need algorithms that are linear or sublinear to analyze
them. Other algorithms will simply be too slow. Usually, this means that we will introduce some
randomness (randomness over the algorithm’s choices, not over the input).

2 Regression

2.1 Definition and Representation

Regression: Statistical method to study dependencies between variables in the presence of noise.

Linear Regression: Statistical method to study linear dependencies between variables in the
presence of noise.

For example, Ohm’s law says V = I · R. The graph below plots I vs. V . We want to find the linear
function that best fits the data, which would represent the resistance.

Figure 1: Example graphs of V vs. I, and the line of best fit.

Standard Setting:

Standard representation of a linear relationship between the measured and predictor variables:
b = x0 + a1x1 + ... + adxd + ϵ

• One measured variable b: In the example, voltage V .

• A set of predictor variables a1, ..., ad: In the example, a1 would be the current I.
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• Model parameters xi which are the unknowns: In the example, resistance R.

• The noise, ϵ

• Replacing d with d + 1 allows us to ignore the free variable, so we can assume x0 = 0

Consider n observations of b. These are like the data points in the graph. It can be useful to
represent our regression in matrix form.

Matrix Form for Linear Regression:

Figure 2: Visual representation of the matrix form for linear regression.

The input to the regression consists of:

• An n × d matrix A, with a row per observation, and a column per predictor variable.

• An n × 1 vector b.

The output is a d × 1 vector x∗ that minimizes the difference between Ax∗ and b. Note here that we
want to minimize the error because we cannot always find a vector x∗ such that Ax∗ = b. In an
extreme case, consider if A contains all 0’s, and b is non-zero. Then there is certainly no x∗ such
that Ax∗ = b. We are working in the over-constrained case. That is, n ≫ d. IN this case we likely
cannot find a solution that satisfies Ax∗ = b, so we aim to reduce error.

2.2 Least Squares Method

A common way to measure closeness is the least squares method. We want to find an x∗ that
minimizes the following error:

∥Ax − b∥2
2 =

n∑
i=1

(bi − ⟨Ai∗ , x⟩)2
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In the equation above, bi is an observation (the dependent variable), Ai∗ is the ith row of A, and
⟨Ai∗ , x⟩ is the prediction for the ith datapoint.

The least squares method also has certain desirable statistical properties.

2.3 Geometry of Regression

Wan to find an x such that Ax is close to b. That is, we want to minimize ∥Ax − b∥.

Now we can rewrite Ax as follows, where A∗i is the ith column of A:

Ax = A∗1x1 + A∗2x2 + ... + A∗dxd

We can see that this is a d-dimensional subspace of Rn. In particular, this is the column space of A,
or Col(A). Thus, this problem is equivalent to computing the point in the column space of A that
is closest to b.

Therefore, the best-fit solution Ax∗ is the projection of b onto Col(A). This is represented in the
image below.

Figure 3: To minimize ∥Ax − b∥, we want to find the projection of b onto the column space of A.

2.4 Solving Least Squares Regression via the Normal Equations

Our goal is to find the x that minimizes ∥Ax − b∥. This is equivalent to minimizing ∥Ax − b∥2, since
minimizing the distance and the square of the distance are the same.

We will decompose b into a part that is in Col(A), and a part that is orthogonal to Col(A).
Geometrically, this is represented in the image below.

Ax′ is the component of b that is in Col(A), and b′ is the component that is orthogonal to Col(A).
Thus, b = Ax′ + b′.

Claim 1. The x that minimizes ∥Ax − b∥ occurs when ∥A(x − x′)∥2 = 0.

Proof. By the Pythagorean theorem, we know ∥Ax − b∥2 = ∥A(x − x′)∥2 + ∥b′∥2. The value we want
to minimize is ∥Ax − b∥2, so this is equivalent to minimizing ∥A(x − x′)∥2 + ∥b′∥2. We will pay the
cost of ∥b′∥2 no matter what. Therefore, our optimal solution occurs when ∥A(x − x′)∥2 = 0. ■
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Figure 4: Geometric representation of decomposing b.

Claim 2. x is an optimal solution iff AT (Ax − b) = 0

Proof. By claim 1, we know our optimal solution occurs when ∥A(x − x′)∥2 = 0. Thus,

⟨A(x − x′), A(x − x′)⟩ = 0 because ∥v∥ =
√

⟨v, v⟩

(A(x − x′))T A(x − x′) = 0
(x − x′)T AT A(x − x′) = 0

AT A(x − x′) = 0
AT (Ax − Ax′) = 0

AT (Ax − b) = AT (Ax − Ax′ − b′) because b = Ax′ + b′

= AT (Ax − Ax′) because b′ ⊥ Col(A), so multiplying by AT cancels
= AT (A(x − x′))

Therefore, AT (Ax − b) = AT (Ax − Ax′) = 0. ■

Normal Equation: AT Ax = AT b for any optimal solution x.

This is derived from claim 2, because AT (Ax − b) = 0 =⇒ AT Ax − AT b = 0 =⇒ AT Ax = AT b.

If the columns of A are linearly independent, we can simply solve for x = (AT A)−1AT b.

If the columns of a are not linearly independent, there are multiple possible solutions. If x∗ is an
optimal solution, then x∗ + y will also be optimal, where y ∈ Kernel(A). In this case, we want to
pick some canonical solution from the family x∗ + y. We will choose the one with the smallest norm
(which will be unique). We can use the Moore-Penrose pseudoinverse to get the minimum norm
solution x.

2.5 Moore-Penrose Pseudoinverse

Singluar Value Decomposition (SVD): Any matrix A can be written in the form U · Σ · V T ,
where
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• U is n × d and has orthonormal columns (unit length and orthogonal to each other).

• Σ is a diagonal d × d matrix, where Σ1,1 ≥ Σ2,2 ≥ Σ3,3 ≥ ....

• V T is d × d and has orthonormal rows. Note that since V T is square, it also has orthonormal
columns.

In this class, we should always be thinking about writing matrices in SVD form!

Pseudoinverse: A− = V Σ−1UT , where

• Σ−1 is a diagonal d × d matrix with Σ−1
i,i = 1/Σi,i if Σi,i is positive, and 0 otherwise. Visually,

this would look something like: 

1
Σ11

. . .
1

Σrr

0
0


What does A−A look like? We can analyze it in SVD form:

A−A = (V Σ−1UT )(UΣV T )
= V Σ−1ΣV T because UT U = I for orthogonal matrices

Now let’s see what ΣΣ−1 looks like:

ΣΣ−1 =


Σ11

. . .

Σdd





1
Σ11

. . .
1

Σrr

0
0

 =


1

. . .
1

0
0



Putting it all together, we see that A−A is equal to:

A−A = V


1

. . .
1

0
0

 V T

Note that if A has full column rank, ΣΣ−1 will be the identity, so the pseudoinverse is the same as
the inverse in this case (because V is orthogonal so V V T = I).

Claim 3. x = A−b is an optimal solution to the least squares regression.
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Proof. The solution is optimal iff the normal equation holds. So we need to check if AT Ax = AT b.

First, let’s write out the SVD of some matrices that will be helpful:

A = UΣV T

AT = V ΣT UT = V ΣUT because Σ is diagonal so ΣT = Σ
A− = V Σ−1UT

Now we will show that the normal equation holds:

AT Ax = AT AA−b substitute x = A−b

= V ΣUT UΣV T V Σ−1UT b substitute SVD forms written above
= V ΣΣΣ−1UT b U and V have orthonormal columns
= V ΣUT b

= AT b

■

Claim 4. Any optimal solution has the form A−b + (I − V ′V ′T )z, where V ′T corresponds to the
rows of V T for which Σi,i > 0.

Proof. Recall from the section defining normal equations that if x∗ is an optimal solution, then
x∗ + y will also be optimal, where y ∈ Kernel(A).

We will now show that Kernel(A) = the set of vectors (I − V ′V ′T )z where z is arbitrary. Recall that
Kernel(A) is the set of vectors x such that Ax = 0. Therefore, we will show that A(I − V ′V ′T )z = 0
for all z.

A(I − V ′V ′T )z = UΣV T (I − V ′V ′T )z

ΣV T is in the rowspan of V ′T . This is because V ′T is made up of precisely the non-zero rows in V T ,
so all the rows in V T can be made of linear combinations of rows in V ′T .

(I − V ′V ′T ) is a projection matrix. This is because V T has orthonormal columns, so V ′T must also
have orthonormal columns. Therefore, V ′V ′T is a projection matrix. I − P is a projection matrix if
P is a projection matrix. Therefore, (I − V ′V ′T ) is a projection matrix. Furthermore, since V ′V ′T

is a projection matrix that projects onto the subspace spanned by the rows of V ′T , we know that
(I − V ′V ′T ) projects onto the orthogonal complement of that subspace. That means it projects onto
a subspace that is outside the rowspan of V ′T .

When multiplying a matrix in the rowspan of V by a projection matrix P that projects onto
a subspace outside the rowspan of V , the result will be the zero matrix. Thus, we know that
ΣV T (I − V ′V ′T ) is the zero matrix. Therefore, we have shown that (I − V ′V ′T )z is the kernel of A,
so an optimal solution has the form A−b + (I − V ′V ′T )z. ■

Claim 5. Of all the optimal solutions, A−b is the one with minimum norm.
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Proof. The equations below use Vi to represent the ith column of matrix V .

A−b = V Σ−1UT b =

V1 . . . Vr . . . Vn





1
Σ11

. . .
1

Σrr
0

0

 UT b

=

V1 . . . Vr 0 0

 UT b

= V ′UT b

Therefore, A−b is in the column span of V ′. Recall that (I − V ′V ′T ) projects onto a subspace
orthogonal to V ′, so A−b ⊥ (I − V ′V ′T )z. Then by the Pythagorean theorem,

∥A−b + (I − V ′V ′T )∥2 = ∥A−b∥2 + ∥(I − V ′V ′T )∥2 ≥ ∥A−b∥2

. Therefore, all solutions have norm ≥ ∥A−b∥2, so it must be the solution with minimum norm. ■
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