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1 Distributed low rank approximation

Suppose A is a large matrix, for example a customer product matrix, that we want to store on s
servers. One way to split the matrix among the servers is to let

A = A1 + A2 + · · · + As,

called an arbitrary partition model. Alternatively, we have have a row partition model, where

A =


A1

A2

...
As

 .

Within the customer product model, this restricts customers to shopping at a single store.

We will assume a coordinator communication model:

Coordinator

Server 1 Server 2 Server 3

Servers can communicate to any other server through the coordinator. This means we can simulate
arbitrary point to point communication with at most twice the cost (along with the log s bits to
specify a destination).

1.1 Projection intuition

Suppose we have a k dimensional subspace of Rd that we want to project onto. Let W be a d × k
matrix with orthogonal columns wi that span this subspace. These columns define the k dimensional
“coordinate system” of W . Then:

1. Wy takes a Rk vector y in this coordinate system and transforms it back to Rd.
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2. W ⊤x takes a Rd vector x and returns a vector of
〈
w⊤

i x
〉

(length of projection onto ith basis
vector of W ). This turns x to the coordinates of W .

3. WW ⊤x takes a Rd vector, gets coordinates of projection onto W , then uses these coordinates
to convert back to Rd.

1.2 Problem statement

As input we have a n × d matrix A split across our s servers in either row partition or arbitrary
partition format. Assume the entries of A are O(log(nd))-bit integers.

For the arbitrary partition case, we have A = A1 + · · · + As, and we want a rank k approximation
of A, C, such that

∥A − C∥F ≤ (1 + ε)∥A − Ak∥F ,

where Ak is the optimal rank k approximation. In particular, we want to do this by determining a
k dimensional subspace W that each server projects onto:

C = A1PW + A2PW + · · · + AsPW .

Here, we represent W as a k × d matrix where the rows are Rd basis vectors so that PW = W ⊤W
projects rows of Ai onto W (see above section). We would like to minimize total communication and
computation, while keeping the amount of back-and-forth between each server and the coordinator
(called round complexity) in O(1).

An example application is k-means clustering, where A represents n d-dimensional data points
distributed across our servers in row partition format. With a good choice of subspace W of Rd, we
could run clustering on the n × k matrix AW ⊤ (working directly in the coordinates of our subspace),
which is far more computationally efficient.

1.3 Work on distributed low rank approximation

[1] provided the first protocol for the row-partition model, requiring O(sdk/ε) real numbers of
communication. It does not analyze the bit complexity of the communication, and can be slow since
we are running SVD on both servers and the coordinator.

[2] improves this to achieve O(sdk/ε) communcation with good bit complexity on the arbitrary
partition model, as well as better runtime.

[3] achieves O(skd) + poly(sk/ε) words of communication in the arbitrary partition model. This
turns out to be optimal up to the lower order term poly(sk/ε) (in general, we don’t have too many
servers, k should be small since we’re doing low rank approximation, and ε does not need to be too
small). The lower bound is due to the fact that all s servers need to learn the low rank space W .

Some variants include: [4] describes a protocol for distributed kernel low rank approximation, where
we want an approximation to not the original data matrix X but a kernel matrix where the rows
are a kernel mapping of the original rows (often of higher dimension). [5] describes a protocol
for distributed low rank approximation of implicit matrices, where some function f is applied
elementwise to the matrix. [3] explores the case where W is sparse and can be represented in better
than O(kd) parameters.
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1.4 FSS protocol for row-partition model

Definition (Coreset). Let A be a n × d matrix with SVD UΣV ⊤. Define the coreset of A with a
rank parameter m as

ΣmV ⊤
m ,

where Σm agrees with Σ on the first m diagonal entries and is 0 elsewhere. In other words, we are
taking the top m principal directions scaled by their corresponding principal values, reducing the
representation from nd to md parameters.

Think of the rows of A as points in Rd, and let X be a k-dimensional subspace.

X

A1

A2

A3

A1X
A2X

A3X

The intuition for coresets is that the sum of squared distances from rows of A to X are roughly
preserved when we substitute A for ΣmV ⊤. To formalize this, note that the sum of squared distances
from rows of A to a subspace X is the squared Frobenius norm of the projection onto I − X. We
prove the below theorem. (sketching intuition?)

Lemma 1. ∥AB∥2
F ≤ ∥A∥2

F ∥B∥2
2

Proof. The ith row of AB is the product between the ith row of A, Ai, and B. The squared length
of this row is thus upper bounded by product of the squared length of Ai with the largest singular
value of B squared, which is exactly the squared operator norm of B. So we can pull ∥B∥2

F out of
the Frobenius norm of the product.

Note that we can view AB by columns AB:,i to achieve the result ∥AB∥2
F ≤ ∥A∥2

2∥B∥2
F . ■

Theorem 1. Let Y = I − X be a projection matrix onto a d − k dimensional subspace. Let
m = k + k/ε. Then

∥AY ∥2
F ≤

∥∥∥ΣmV ⊤Y
∥∥∥2

F
+ c ≤ (1 + ε)∥AY ∥2

F ,

where c = ∥A − Am∥2
F (this doesn’t depend on Y !).
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Proof. First, write A = UΣV ⊤ = U(Σ − Σm)V ⊤ + UΣmV ⊤, and use the Pythagorean theorem to
obtain

∥AY ∥2
F =

∥∥∥UΣmV ⊤Y
∥∥∥2

F
+

∥∥∥U(Σ − Σm)V ⊤Y
∥∥∥2

F
.

Since U has orthonormal columns we may remove it from first norm. Since Y is a projection matrix,
its eigenvalues are at most 1, so using the above lemma:∥∥∥UΣmV ⊤Y

∥∥∥2

F
+

∥∥∥U(Σ − Σm)V ⊤Y
∥∥∥2

F
≤

∥∥∥ΣmV ⊤Y
∥∥∥2

F
+

∥∥∥U(Σ − Σm)V ⊤
∥∥∥2

F

=
∥∥∥ΣmV ⊤Y

∥∥∥2

F
+ ∥A − Am∥2

F .

This completes the first inequality. For the second inequality:∥∥∥ΣmV ⊤Y
∥∥∥2

F
+ ∥A − Am∥2

F − ∥AY ∥2
F

=
∥∥∥ΣmV ⊤

∥∥∥2

F
−

∥∥∥ΣmV ⊤X
∥∥∥2

F
+ ∥A − Am∥2

F − ∥A∥2
F + ∥AX∥2

F

= ∥AX∥2
F −

∥∥∥ΣmV ⊤X
∥∥∥2

F
(Pythagorean on (A − Am) + Am = A)

=
∥∥∥(Σ − Σm)V ⊤X

∥∥∥2

F

≤
∥∥∥(Σ − Σm)V ⊤

∥∥∥2

2
∥X∥2

F (lemma)

= σ2
m+1k (X is rank k projection)

≤ σ2
m+1(m − k)ε (m = k + k/ε)

≤ ε
m+1∑

i=k+2
σ2

i

≤ ε∥A − Ak∥2
F (∥A − Ak∥2

F = σ2
k+1 + · · · + σ2

d)
≤ ε∥AY ∥2

F . (optimality of Ak)

Adding ∥AY ∥2
F to both sides completes the proof. ■

Theorem 2. The best rank k approximation to a coreset is a good approximation of the best rank k
approximation to the original matrix.

Proof. Suppose
Y ′ = arg min

Y

∥∥∥ΣmV ⊤Y
∥∥∥

F
,

i.e. Y ′ is complement of the projection onto the best k-dimensional approximation to the coreset.
Letting this approximation be Vk (we can compute by SVD), take Y ′ = I − V ⊤

k Vk. Then,

∥∥AY ′∥∥2
F ≤

∥∥∥ΣmV ⊤Y ′
∥∥∥2

F
+ c

≤
∥∥∥ΣmV ⊤Y ∗

∥∥∥
F

+ c

≤ (1 + ε)∥AY ∗∥2
F

= (1 + ε)∥A − Ak∥2
F ,

4



where the first and third inequalities come from the proposition, and the second comes from
optimality of Y ′. So we can find a good rank k subspace of A operating only on the coreset
ΣmV ⊤. ■

We need one last piece to state the FSS protocol. Suppose again we are in the row partition format
with matrices A1, . . . , As and the servers compute coresets Σi

mV T,i with constants ci. Let A be
the matrix formed by concatenating the rows of the matrices. Summing over the theorem bound
applied to each server, we have for any d − k dimensional projection Y :

s∑
i=1

(
∥∥∥Σi

mV T,i
∥∥∥2

F
+ ci) ≤ (1 + ε)∥AY ∥2

F .

Let B be the matrix formed by concatenating the rows of the coresets, and suppose ΣmV ⊤ is a
coreset for B. By coreset bound, for c = ∥B − Bm∥2

F ,∥∥∥ΣmV ⊤Y
∥∥∥2

F
+ c ≤ ∥BY ∥2

F .

Add
∑s

i=1 ci to both sides and use the last inequality to get∥∥∥ΣmV ⊤Y
∥∥∥2

F
+ c +

s∑
i=1

ci ≤ (1 ± O(ε))∥AY ∥2
F .

So the coreset of the concatenated coresets is a coreset of A with constant c+
∑s

i=1 ci. In conjunction
with the last theorem, if we take the best rank k approximation to this coreset by SVD, it will be
close to the best rank k approximation of A. This suffices to justify the FSS protocol:
Definition (FSS row-partition model protocol). Let A be a n × d matrix distributed over s servers
each containing a ni × d subset of its rows. Let m = k/ε + k.

1. Server t sends m-coreset of At and constant ct to the coordinator.

2. The coordinator concatenates the coresets and further computes a m-coreset of it along with
constant c. It then returns this coreset ΣmV ⊤ to each server.

3. The servers can now compute the best rank k approximation of ΣmV ⊤ and project their points
onto it.

1.5 KVW arbitrary partition model protocol

Definition (KVW protocol). Let S be a k/ε × n random sketching matrix discussed earlier. We
know that we can generate S from a small seed.

1. The coordinator sends a seed for S to all servers.

2. Server t computes SAt and sends it to the coordinator.

3. The coordinator sends
∑s

t=1 SAt = SA to the servers.

Recall from the lecture on low rank approximation that there is a good rank k approximation
to A within the rowspan of SA, so it’s justified to project to SA first and then find a low rank
approximation. Naively, server t could now project At onto SA and send it to the coordinator, but
the communication cost would then depend on n. The next lecture will discuss how we address this.
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