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1 Distributed Problems Beyond Low Rank Approximation

In the preivous part of the lecture, we have covered the distributed low rank approximation problem.
The problem is optimally solved by the BWZ protocol. However, in general, distributed problems
with a similar flavor are not as well understood. We will list some of the open problems below.

Rank computation. There are s servers, each with a real matrix Ai ∈ Rn×n, and the goal is to
compute the rank of the sum of the matrices

∑s
i=1 Ai, minimizing the communication cost.

Linear programming. There are s servers, each with a real matrix Ai ∈ Rn×d and a vector
bi ∈ Rn. Ai and bi stand for a set of linear constraints. The goal is to solve the linear program
min{cT x : Aix ≤ bi, i = 1, . . . , s}, minimizing the communication cost.

Maximum matching. There are s servers, each with a set of edges Ei in a graph G = (V, E). The
goal is to compute the maximum matching when E =

⋃s
i=1 Ei, minimizing the communication cost.

2 Robust Regression

In the following section, we will introduce the robust regression problem. That is, give a matrix A
and a vector b, we want to find a vector x that minimizes the objective function

∥Ax − b∥1 =
n∑

i=1
|⟨Ai, x⟩ − bi| , where Ai is the i-th row of A.

2.1 The Linear Programming Solution

We do not have a good closed-form solution for the robust regression problem. However, we can still
solve the problem exactly by formulating it as a linear program. The linear program is as follows:

Minimize (1, 1, 1, . . . , 1) · (α+ + α−)
Subject to Ax + α+ − α− = b

α+, α− ∈ Rd
≥0

x ∈ Rd

One key observation is for each i, at least one of α+
i and α−

i is zero. This is because if α+
i > 0

and α−
i > 0, we can decrease both α+

i and α−
i by the same amount and the objective function will

decrease. Therefore, the optimal solution will have the objective function equal to ∥Ax − b∥1.

Thus, we can see that the problem can be solved by in poly(nd) time using linear programming.
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2.2 Well-Conditioned Bases

The poly(nd) time complexity of the linear programming solution is not satisfactory in the context
of big data. To develop a faster algorithm, we first introduce the concept of well-conditioned bases.

Recall that in the ℓ2 regression problem, we can use the SVD of A to decompose A = UW , where
U has orthonormal columns, so that ∥Ux∥2 = ∥x∥2 for all x ∈ Rd. For the ℓ1 regression problem,
we would like to have a similar property. That is, we would like to have a matrix U such that

A = UW and ∥Ux∥1 ≈ ∥x∥1 for all x ∈ Rd.

To do this, we first write A = QW , where Q is a matrix with full column rank. Note that the
number of columns k of Q is at most d. Below, we define the (Q, 1)-norm of a vector x.

Definition 2.1. Let Q ∈ Rn×k be a matrix with full column rank. For any x ∈ Rk, we define

∥x∥Q,1 = ∥Qx∥1 .

Lemma 2.2. ∥·∥Q,1 is a norm on Rk.

Proof. To show that ∥·∥Q,1 is a norm, we need to show that it satisfies the three properties.

For any x, y ∈ Rk, we have

∥x + y∥Q,1 = ∥Q(x + y)∥1 = ∥Qx + Qy∥1 ≤ ∥Qx∥1 + ∥Qy∥1 = ∥x∥Q,1 + ∥y∥Q,1 .

For any x ∈ Rk and c ∈ R, we have

∥cx∥Q,1 = ∥Q(cx)∥1 = ∥cQx∥1 = |c| ∥Qx∥1 = |c| ∥x∥Q,1 .

Finally, for any x ∈ Rk, we have ∥x∥Q,1 = ∥Qx∥1 = 0 if and only if Qx = 0 if and only if x = 0.

Therefore, ∥·∥Q,1 is a norm on Rk. ■

For the ease of notation, we assume k = d in the following discussion.

Let C = {z ∈ Rd | ∥z∥Q,1 ≤ 1} be the unit ball of the (Q, 1)-norm. By the triangle inequality and
absolute homogeneity of the (Q, 1)-norm, we know that C is a convex set. Moreover, C is symmetric
about the origin. For this symmetric convex body, we can apply the Lowner-John ellipsoid theorem.

Theorem 2.3. Let C be a symmetric convex body in Rd. Then there exists an ellipsoid E such that

E ⊆ C ⊆
√

dE.

Algebraically, there exists some G ∈ Rd×d such that E = {z ∈ Rd | z⊤G⊤Gz ≤ 1}.

Corollary 2.4. There exists a matrix G ∈ Rd×d such that for all z ∈ Rd, we have
√

z⊤G⊤Gz ≤ ∥z∥Q,1 ≤
√

d ·
√

z⊤G⊤Gz.
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Define U = QG−1. We will show that U is a well-conditioned basis such that ∥Ux∥1 ≈ ∥x∥1 for all
x ∈ Rd. Let z = G−1x. Then, we can compute the followings:

∥Ux∥1 =
∥∥∥QG−1x

∥∥∥
1

= ∥Qz∥1 = ∥z∥Q,1 .

z⊤G⊤Gz = x⊤(G−1)⊤G⊤G(G−1)x = x⊤x = ∥x∥2
2 .

Combining the above two equations with Corollary 2.4, we have

∥x∥2 ≤ ∥Ux∥1 ≤
√

d · ∥x∥2 .

To conclude the discussion, we will use the following relationship between the ℓ1 and ℓ2 norms.

Fact 2.5. Let x ∈ Rd. Then, ∥x∥2 ≤ ∥x∥1 ≤
√

d · ∥x∥2.

Therefore, we can see that

∥x∥1√
d

≤ ∥x∥2 ≤ ∥Ux∥1 ≤
√

d ∥x∥2 ≤
√

d ∥x∥1 .

Here, we have shown that U perserves the ℓ1 norm up to a factor of
√

d.

2.3 Net Argument

Previously, in the ℓ2 regression problem, given a sketching matrix S, we used a net argument to
show that the sketching matrix S preserves the ℓ2 norm for a finite set of vectors, and in general,
each vector is close to, and thus can be approximated by some vector in the net. We would like to
obtain a similar result for the ℓ1 regression problem in this section.

Net for the Ball. Let B = {x ∈ Rd | ∥x∥1 = 1} be the unit ball of the ℓ1 norm. We would like
to find a γ-net N for B with respect to the ℓ1 norm. That is, for any x ∈ B, there exists y ∈ N
such that ∥x − y∥1 ≤ γ. To do this, we could construct the net N greedily:

While there is a point x ∈ B of distance larger than γ from all points in N , add x to N .

Consider each point x ∈ N , if we construct a ℓ1 ball of radius γ/2 around x, then the balls are
all disjoint by the triangle inequality. Moreover, the balls are all contained in the ℓ1 ball of radius
1 + γ/2 around the origin. Therefore, we can apply a volume argument to bound the size of the net
N . Note that the ratio of volume of d-dimensional ℓ1 ball of radius 1 + γ/2 to that of ℓ1 ball of
radius γ/2 is (1 + γ/2)d/(γ/2)d. Therefore, we can conclude that

|N | ≤
(1 + γ/2

γ/2

)d

.
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Net for the Subspace. After constructing the net for the ball, we would like to lift the net to a
net for the subspace. Let U be a well-conditioned basis such that

∥x∥1 ≤ ∥Ux∥1 ≤ d ∥x∥1 .

Unlike the ℓ2 norm, the ℓ1 norm is not preserved by the linear transformation U . Therefore, we
need a denser net for the ball to ensure the performance of the net for the subspace. Let N be a
(γ/d)-net for the ball B with respect to the ℓ1 norm, and let M = {Ux | x ∈ N}. From the previous
paragraph, we already know that |M | ≤ (1 + γ/(2d))d/(γ/(2d))d =

(
d
γ

)O(d)
.

We conclude with the following lemma.

Lemma 2.6. For every x ∈ B, there exists y ∈ M such that ∥Ux − y∥1 ≤ γ.

Proof. Let x′ ∈ N be the closest point to x, then ∥x − x′∥1 ≤ γ/d. Therefore,∥∥Ux − Ux′∥∥
1 ≤ d

∥∥x − x′∥∥
1 ≤ γ.

Setting y = Ux′, we have ∥Ux − y∥1 ≤ γ. ■
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