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1 ℓ1Regression

Overview of the Algorithm Idea: We need to compute poly(d)−approximation and compute
well-conditioned basis. Then we could sample rows from the well-conditioned basis and residual of
the poly(d)−approximation. Then, we could solve the l1 regression on the sample, obtaining vector
x and output x.

1.1

First, we want to compute poly(d)- approximation.

To do so, we need to find x′ such that

|Ax′ − b|1 ≤ poly(d) min
x∈Rd

|Ax − b|1

Let b′ = b − Ax′ be the residual.

1.2

Note that
min
x∈Rd

|Ax − b|1 = min
x∈Rd

|Ux − b′|1

We want to sample poly(d/ϵ) rows of U ◦ b′ proportional to their l1 -norm.

1.3

Next, we want to compute well-conditioned basis by finding a basis A = UW so that for all x ∈ Rd,

|x|1/poly(d) ≤ |Ux|1 ≤ |poly(d)x|1

1.4

Then, we sample rows from the well-conditioned basis and the residual of poly(d) approximation.
Now, generic linear programming is efficient.
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1.5

Lastly, we solve l1− regression on the sample, obtaining vector x, and output x.

2 Sketching Theorem

2.1 Theorem

There is a probability space over (d log d) ∗ n matrices R such that for any n ∗ d matrix A, with
probability at least 99/100 we have for all x:

|Ax|1 ≤ |RAx|1 ≤ (d log d) ∗ |Ax|1

A dense R that works: The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

2.2 Embedding

• is linear

• is independent of A

• preserves lengths of an infinite number of vectors

2.3 Application of Sketching Theorem

2.3.1 Computing a d(log d)-approximation

• Compute RA and Rb

• Solve x′ = argminx|RAx − Rb|1

• Main theorem applied to A ◦ b implies x′ is a d log d-approximation

• RA, Rb have d log d rows, so can solve l1 -regression efficiently

2.3.2 Computing a well-conditioned basis

• Compute RA

• Compute W so that RAW is orthonormal (in the l2 -sense)

• Output U = AW
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Note: U = AW is well-conditioned because

|AWx|1 ≤ |RAWx|1 ≤ (d log d)
1
2 ∗ |RAWx|2 = (d log d)

1
2 ∗ |x|2 ≤ (d log d)

1
2 ∗ |x|1

and

|AWx|1 ≥ |RAWx|1/(d log d) ≥ |RAWx|2/(d log d) = |x|2/(d log d) ≥ |x|1/(d
3
2 log d)

2.4 Cauchy Random Variables

2.4.1 Properties

• pdf(z) = 1/(π(1 + z2)) for z in (−∞, ∞)

• Undefined expectation

• Infinite variance.

• 1-stable

• Can generate as the ratio of two standard normal random variables

1-stable: If z1, z2, · · · , zn are i.i.d. Cauchy, then for a ∈ Rn,

a1 ∗ z1 + a2 ∗ z2 + · · · + an ∗ zn = |a|1 ∗ z

where z is Cauchy.

2.5 Proof of Sketching Theorem

By 1-stability, For all rows r of R,

⟨r, Ax⟩ = |Ax|1 ∗ Z/(d log d)

where Z is a Cauchy

RAx = (|Ax|1 ∗ Z1, · · · , |Ax|1 ∗ Zd log d)/(d log d)
where Z1, · · · , Zd log d are i.i.d. Cauchy.

|RAx|1 = |Ax|1
∑

j

|Zj |/(d log d)

The |Zj |s are half-Cauchy.

THen, we have ∑
j

|Zj | = Ω(d log d) with probability 1 − e−d log d by Chernoff
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But the |Zj |s are heavy-tailed, so ∑
j Zj is heavy-tailed, so

|RAx|1 = |Ax|1
∑

j

|Zj |/(d log d)

may be large. Each |Zj | has c.d.f. asymptotic to 1 − θ(1/z) for z ∈ [0, ∞)

Note that there exists a well-conditioned basis of A, Suppose w.l.o.g. the basis vectors are
A∗1, · · · , A∗d, then

|RA∗i|1 = |A∗i|1 ∗
∑

j

|Zi,j |/(d log d)

Let Ei,j be the event that |Zi,j | ≤ d3; Define Z ′
i,j = |Zi,j | if |Zi,j | ≤ d3, and Z ′

i,j = d3 otherwise.
Then, we have

E[Zi,j |Ei,j ] = E[Z ′
i,j |Ei,j ] = O(log d)

Let E be the event that for all i,j, Ei,j occurs. Then,

P(E) ≥ 1 − log d

d

4


	1 Regression
	
	
	
	
	

	Sketching Theorem
	Theorem
	Embedding
	Application of Sketching Theorem
	Computing a d(d)-approximation
	Computing a well-conditioned basis

	Cauchy Random Variables
	Properties

	Proof of Sketching Theorem


