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1 {iRegression

Overview of the Algorithm Idea: We need to compute poly(d)—approximation and compute
well-conditioned basis. Then we could sample rows from the well-conditioned basis and residual of
the poly(d)—approximation. Then, we could solve the [; regression on the sample, obtaining vector
x and output x.

1.1

First, we want to compute poly(d)- approximation.

To do so, we need to find 2’ such that

|Az" — b|y < poly(d) min |Az — b|;
zERA
Let ¥ = b — Az’ be the residual.

1.2

Note that

min |[Az — by = min |Uz — V|,
z€R4 rERd

We want to sample poly(d/e) rows of U o b’ proportional to their /; -norm.

1.3
Next, we want to compute well-conditioned basis by finding a basis A = UW so that for all z € R?,

|z[1/poly(d) < |Uz|y < [poly(d)z|y

1.4

Then, we sample rows from the well-conditioned basis and the residual of poly(d) approximation.
Now, generic linear programming is efficient.



1.5

Lastly, we solve l;— regression on the sample, obtaining vector x, and output x.

2 Sketching Theorem

2.1 Theorem

There is a probability space over (dlogd) * n matrices R such that for any n x d matrix A, with
probability at least 99/100 we have for all x:

|Az|y < |RAz|; < (dlogd) x |Ax|q
A dense R that works: The entries of R are i.i.d. Cauchy random variables, scaled by 1/(dlogd)

2.2 Embedding

e is linear
e is independent of A

o preserves lengths of an infinite number of vectors

2.3 Application of Sketching Theorem
2.3.1 Computing a d(logd)-approximation

e Compute RA and Rb
e Solve ' = argmin,|RAx — Rb|;
e Main theorem applied to A o b implies z’ is a dlog d-approximation

e RA, Rb have dlogd rows, so can solve [y -regression efficiently

2.3.2 Computing a well-conditioned basis

e Compute RA
o Compute W so that RAW is orthonormal (in the [ -sense)

e Output U = AW



Note: U = AW is well-conditioned because

|AWz|, < [RAWz|; < (dlogd)? * |RAWz|s = (dlogd)? * |z|s < (dlogd)? * |z

and
AWzl > [RAW |1 /(dlog d) > [RAW=]5/(dlog d) = [z]2/(dlog d) > [z]1/(d5 log d)

2.4 Cauchy Random Variables
2.4.1 Properties

o pdf(z) =1/(n(1 + 2?)) for z in (—o0, 00)
e Undefined expectation

o Infinite variance.

o 1l-stable

e Can generate as the ratio of two standard normal random variables

1-stable: If 21,29, --,2, are i.i.d. Cauchy, then for a € R",
ap %21 +agkzo+ -+ ap k2, =la|; xz

where z is Cauchy.

2.5 Proof of Sketching Theorem

By 1-stability, For all rows r of R,
(r,Az) = |Ax|; * Z/(dlog d)

where Z is a Cauchy

RAx = (|Ax|y * Zy,- -+, |Az|y * Zdlogd)/(dlogd)

where Z1, -, Zg10gq are i.i.d. Cauchy.

|RAz|y = [Az|1 Y |Z;]/(dlog d)
J
The |Z;|s are half-Cauchy.

THen, we have

Z 1Z;| = Q(dlog d) with probability 1 — e~ ?°8? by Chernoff

J



But the |Z;[s are heavy-tailed, so > Z; is heavy-tailed, so
|RAz|y = |Az|y Y |Z;|/(dlog d)
J
may be large. Each |Z;| has c.d.f. asymptotic to 1 — §(1/z) for z € [0, 00)

Note that there exists a well-conditioned basis of A, Suppose w.l.o.g. the basis vectors are
A*17 e 7A*d7 then

|RALi[1 = Al * ) | Zi4/(dlog d)
J
Let E;; be the event that |Z; ;| < d* Define Z; ; = |Z;;| if |Z; ;| < d*, and Z] ; = d* otherwise.

Then, we have

E[Zi;

Ei ;] = E[Z; ;|Ei ;] = O(log d)

Let E be the event that for all 4,7, E; ; occurs. Then,

P(E) > 1— 98¢
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