CS 15-851: Algorithms for Big Data	Spring 2025
Lecture 7 — Feb	> 27
Prof. David Woodruff	Scribe: Yueqi Sonq

1 $\ell_1 Regression$

Overview of the Algorithm Idea: We need to compute poly(d)-approximation and compute well-conditioned basis. Then we could sample rows from the well-conditioned basis and residual of the poly(d)-approximation. Then, we could solve the l_1 regression on the sample, obtaining vector x and output x.

1.1

First, we want to compute poly(d)- approximation.

To do so, we need to find x' such that

$$|Ax' - b|_1 \le poly(d) \min_{x \in R^d} |Ax - b|_1$$

Let b' = b - Ax' be the residual.

1.2

Note that

$$\min_{x \in R^d} |Ax - b|_1 = \min_{x \in R^d} |Ux - b'|_1$$

We want to sample $poly(d/\epsilon)$ rows of $U \circ b'$ proportional to their l_1 -norm.

1.3

Next, we want to compute well-conditioned basis by finding a basis A = UW so that for all $x \in \mathbb{R}^d$,

$$|x|_1/poly(d) \le |Ux|_1 \le |poly(d)x|_1$$

1.4

Then, we sample rows from the well-conditioned basis and the residual of poly(d) approximation. Now, generic linear programming is efficient. Lastly, we solve l_1 – regression on the sample, obtaining vector x, and output x.

2 Sketching Theorem

2.1 Theorem

There is a probability space over $(d \log d) * n$ matrices R such that for any n * d matrix A, with probability at least 99/100 we have for all x:

$$|Ax|_1 \le |RAx|_1 \le (d\log d) * |Ax|_1$$

A dense R that works: The entries of R are i.i.d. Cauchy random variables, scaled by $1/(d \log d)$

2.2 Embedding

- is linear
- is independent of A
- preserves lengths of an infinite number of vectors

2.3 Application of Sketching Theorem

2.3.1 Computing a $d(\log d)$ -approximation

- Compute *RA* and *Rb*
- Solve $x' = argmin_x |RAx Rb|_1$
- Main theorem applied to $A \circ b$ implies x' is a $d \log d\text{-approximation}$
- RA, Rb have $d \log d$ rows, so can solve l_1 -regression efficiently

2.3.2 Computing a well-conditioned basis

- Compute RA
- Compute W so that RAW is orthonormal (in the l_2 -sense)
- Output U = AW

1.5

Note: U = AW is well-conditioned because

$$|AWx|_1 \le |RAWx|_1 \le (d\log d)^{\frac{1}{2}} * |RAWx|_2 = (d\log d)^{\frac{1}{2}} * |x|_2 \le (d\log d)^{\frac{1}{2}} * |x|_1$$

and

$$|AWx|_1 \ge |RAWx|_1 / (d\log d) \ge |RAWx|_2 / (d\log d) = |x|_2 / (d\log d) \ge |x|_1 / (d^{\frac{3}{2}}\log d)$$

2.4 Cauchy Random Variables

2.4.1 Properties

- $pdf(z) = 1/(\pi(1+z^2))$ for z in $(-\infty, \infty)$
- Undefined expectation
- Infinite variance.
- 1-stable
- Can generate as the ratio of two standard normal random variables

1-stable: If z_1, z_2, \cdots, z_n are i.i.d. Cauchy, then for $a \in \mathbb{R}^n$,

 $a_1 * z_1 + a_2 * z_2 + \dots + a_n * z_n = |a|_1 * z_n$

where z is Cauchy.

2.5 Proof of Sketching Theorem

By 1-stability, For all rows r of R,

$$\langle r, Ax \rangle = |Ax|_1 * Z/(d \log d)$$

where Z is a Cauchy

$$RAx = (|Ax|_1 * Z_1, \cdots, |Ax|_1 * Z_{d \log d})/(d \log d)$$

where $Z_1, \dots, Z_{d \log d}$ are i.i.d. Cauchy.

$$|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)$$

The $|Z_j|$ s are half-Cauchy.

THen, we have

$$\sum_{j} |Z_{j}| = \Omega(d \log d) \text{ with probability } 1 - e^{-d \log d} \text{ by Chernoff}$$

But the $|Z_j|\mathbf{s}$ are heavy-tailed, so $\sum_j Z_j$ is heavy-tailed, so

$$|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)$$

may be large. Each $|Z_j|$ has c.d.f. asymptotic to $1 - \theta(1/z)$ for $z \in [0, \infty)$

Note that there exists a well-conditioned basis of A, Suppose w.l.o.g. the basis vectors are A_{*1}, \dots, A_{*d} , then

$$|RA_{*i}|_1 = |A_{*i}|_1 * \sum_j |Z_{i,j}| / (d \log d)$$

Let $\mathbb{E}_{i,j}$ be the event that $|Z_{i,j}| \leq d^3$; Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \leq d^3$, and $Z'_{i,j} = d^3$ otherwise. Then, we have

$$\mathbb{E}[Z_{i,j}|\mathbb{E}_{i,j}] = \mathbb{E}[Z'_{i,j}|\mathbb{E}_{i,j}] = O(\log d)$$

Let E be the event that for all $i, j, E_{i,j}$ occurs. Then,

$$\mathbb{P}(E) \ge 1 - \frac{\log d}{d}$$