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1 Recap

1.1 Turnstile Streaming Model

Consider a high-dimensional vector x∈ Rn that

• initializes as x = 0n

• follows the update rule xi ← xi + ∆j where ∆j ∈ {−M, · · · , M} is the change in x and
M ≤ poly(n)

x would naively require poly(n) memory (or poly(log n) bits) to store, we want to figure out the
minimum space required to store and generate the output of x with high probability (9/10).

We can test if x = 0n by sketching x using a CountSketch matrix (S) with (1/ϵ2) rows.

|Sx|22 = (1± ϵ)|x|22

Since, S preserves the norm of x with high probability, we can update Sx← Sx + Si∆ and store its
hash and sign functions using O(log n) bits instead of updating x ← x + ∆ and storing it which
requires poly(n) bits.

Any deterministic algorithm would require Ω(n log n) bits to store x.

2 Recovering a k-sparse vector

Common practices involve sparse vectors, such as vectors monitoring differences in network traffic.

Let x ∈ Rn be a k-sparse vector with k non-zero entries and let k be small. We can identify the
indices and values of the k non-zero entries of x using kpolylog(n) bits of space deterministically.

Proof. Consider an s× n matrix A, such that it has 2k linearly independent columns and s ≥ 2k.
We want to show that A will be able to recover the k non-zero entries of x.

Consider two vectors x and y each with k non-zero entries. Suppose Ax = Ay, then A(x = −y) = 0.
Now, since A has 2k linearly independent columns and (x − y) has at most 2k non-zero entries,
x = y must hold. This also implies that x can be recovered deterministically given a fixed A.

We have only discussed two properties of A so far - the size (s × n) and it having 2k linearly
independent columns such that s ≥ 2k. But how does A look like? Turns out there are different
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kinds of matrices that qualify as A, even random matrices. But random matrices occupy large space.
The Vandermonde matrix is a common option for this.

The Vandermonde matrix is a fixed matrix A ∈ R2k×n where s = 2k and Ai,j = ji−1


1 1 1 · · ·
1 2 3 · · ·
1 4 9 · · ·
· · · · · · · · · · · ·


We can show A has 2k linearly independent columns by calculating the determinant of a 2k × 2k
sub-matrix of A and show that it is non-zero.

Since the entries of A grows exponentially with n, it would require O(n) bits to store each entry to
be maintained in the stream. That is a problem.

An efficient way would be to store (A · x mod p) for a large enough prime p ∈ poly (n). (A · x
mod p) would have 2k linearly independent columns because any of its 2k× 2k sub-matrix will have
a non-zero determinant. And, it can be stored with O(k log n) bits of space.

3 Estimating Norms in a Streaming Model

A p-Norm of a vector x ∈ Rn by definition is |x|pp =
∑n

i=1 |xi|p

We want an estimator of the p norm z of x in a streaming model, such that, with high probability
9/10,

(1− ϵ)|x|pp ≤ z ≤ (1 + ϵ)|x|pp
For the rest of the lecture, p = 1, p = 2 and 0 < p < 2 are discussed in detail, wrapping up with
p > 2.

3.1 2-Norm or Euclidean Norm Estimation: p = 2

Find z such that (1− ϵ)|x|22 ≤ z ≤ (1 + ϵ)|x|22 with high probability 9/10.

Instead of updating and storing xi ← xi + ∆j , we can sketch x and store its embedded norm, which
will have more efficient space complexity. For this,

• Sample using a CountSketch matrix S having 1/ϵ2 rows.

• Update the sketched vector Sx← +∆S∗i for every ith update in xi.

• Output |Sx|22. Since S is a subspace embedding, |Sx|22 = (1± ϵ)|x|22, and it can be stored with
space complexity 1/ϵ2 words, each word having O(log n) bits. Overall space complexity is
O( log n

ϵ2 ) bits.
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3.2 1-Norm Estimation: p = 1

Find z such that (1− ϵ)|x|11 ≤ z ≤ (1 + ϵ)|x|11 with high probability 9/10. This is a harder problem
than estimating p = 2 Norm.

We have seen in the previous lecture that Cauchy matrices can be used to estimate p = 1 Norms.
We can apply a similar approach here:

• Sample a Cauchy matrix S consisting of Cauchy random variables with 1/ϵ2 rows. Notice that
S can be stored pseudorandomly with space complexity 1/ϵ words, with each word having
O(log n) bits.

• For each update xi ← xi + ∆j , do Sxi ← Sxi + ∆jS∗i.

• Output median of |(Sx)1|, |(Sx)2|, · · · , |(Sx)1/ϵ2 | instead of just |(Sx)|1 because |(Sx)|1 ≤
O(d log d)|x|1. We saw this in the last lecture and this bound is not tight enough.

To prove that this median works, we need to look into the PDF and CDF of the Cauchy distribution,
C.

PDF of C: f(x) = 2
π(1 + x2)

CDF of C: F (z) =
∫ z

0 f(x)dx = 2
π

arctan(z)
For z = 1, F (1) = 1/2, because tan(π/4) = 1. This means median(|C|) = 1.

Next we want to show for independent samples X1, · · · , Xr from F where r = log(1/δ)
ϵ2 ,

if X = medianiXi, then F (X) ∈ [(1/2− ϵ), (1 + ϵ)] with probability 1− δ.

Proof. Consider a quantity Zi such that, Z = Σr
i Zi, and

Zi = 1, ifF (Xi) <
1
2 − ϵ

= 0, otherwise
(1)

Lets look at the situation when F (Xi) ≤ 1
2 − ϵ

The expectation of Z: E(Z) = (1
2 − ϵ)r

Applying Chernoff bound, Pr
[
Zi ≥ r

2

]
≤ Pr

[
|Zi − E[Z]| ≥ ϵr

]
≤ e−Θ(ϵ2r)

Plugging in r = Θ
(

1
ϵ2 log(1/δ)

)
, we have Pr

[
Zi ≥ r

2

]
≤ δ

2

Similarly, looking at F (Xi) ≥ 1
2 + ϵ, we have, Pr

[
Zj ≥ r

2

]
≤ δ

2

By union bound, Pr
[
Zi ≥ r

2 ∨ Zj ≥ r
2

]
≤ δ. Finally, it means the median F (X) ∈

[
( 1

2−ϵ) + (1
2 + ϵ)

]
has probability 1− δ.

We can also show that F −1(X) = tan
(

Xπ
2

)
∈

[
1− 4ϵ, 1 + 4ϵ

]
. This shows that the medium is highly

concentrated around 1.
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|Sx|1 = (1±O(ϵ))|x|1

3.3 p-norm Estimation: 0 < p < 2

We can estimate the p-norm of a vector by looking at a p-stable distribution.

Definition (p-stable). For a fixed vector V ∈ Rn, a distribution Π is p-stable if

n∑
i

Zivi = Z · |V |p

where Xi and X are p-stable random variables ∼ Π

Quite interestingly, p-stable distributions do not have a closed-form expression of their PDF unlike
1-stable and 2-stable distributions do. But p-stable distributions can be efficiently used for sampling
because the memory needed for this is the same as the p = 1 situation - O( 1

ϵ2 log n) bits or 1
ϵ2

words.

Recap of 2-stability:
n∑
i

Givi = G · |V |2

Where Gi and G are 2-stable Gaussian random variables with a well-defined closed-form PDF
expression.

Recap of 1-stability:
n∑
i

Civi = C · |V |1

Where Ci and C are 2-stable Cauchy random variables with a well-defined closed-form PDF
expression.

3.4 p-norm Estimation: p > 2

p-stable distributions for p > 2 do not exist. It is almost as if there is a phase transition at p = 2.
However, the p-norm can be estimated using exponential random variables that have min-stability.
This method requires O(n1−2/p) bits of space.

Exponential random variables E(λ) have the following properties:

• PDF: f(x) = λe−λx, for x ≥ 0; 0, otherwise

• CDF: F (x) = 1− e−λx, for x ≥ 0; 0, otherwise

• For any scalar t ≥ 0, consider t · E. The CDF is: F (x) = 1− e−( λ
t

x)
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• Consider independent exponential rvs Ei ∈ E1, · · · , En and scalars |y|1, · · · , |y|n. The min-
stable is defined as follows:

q = min
(

E1
|y|p1

, · · · ,
En

|y|p

)

In the next part of the lecture we will see how we can take advantage of min-stable and sketch using
a matrix S = P.D where P ∈ R1/ϵ2×n is a CountSketch matrix and D ∈ Rn×n is a diagonal matrix
with Di,i = 1

E
(1/p)
i

to estimate p > 2 norms efficiently.
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