
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 8 Part 2 — 03/13
Prof. David Woodruff Scribe: Esther Cao

1 p-Norm estimator for p > 2

For p > 2, p-stable distributions don’t exist. We’ll prove that Ω(n1−2/p) bits of space are needed to
approximate p-norms for p > 2 to a constant factor, with constant probability. This will be achieved
using exponential random variables. Define ϵ to be the constant approximation parameter.

Our sketch will be defined as P · D:


0 0 1 0 0 1 0 · · ·
1 0 0 0 0 0 0 · · ·
0 0 0 −1 1 0 −1 · · ·
0 −1 0 0 0 0 0 · · ·





1/E
1/p
1 0 0 0 · · ·

0 1/E
1/p
2 0 0 · · ·

0 0 1/E
1/p
3 0 · · ·

· · ·
0 0 0 · · · 1/E

1/p
n


Where P is a CountSketch matrix, and D is a diagonal matrix with entries 1/E

1/p
i , where Ei is an

exponential random variable. Note that P, D are linear maps which don’t depend on x.

When right-multiplied by a vector x, this sketching matrix first scales the entries of x by the entries
of D, then applies CountSketch to the output.

1.1 Stability of Exponential Random Variables

An exponential random variable E with parameter λ is defined as:

• PDF: f(x) =
{

λe−λx if x ≥ 0
0 otherwise

• CDF: F (x) = 1 − e−λx if x ≥ 0

• t · E for scalar t ≥ 0 has CDF F (x) = 1 − e−λ/t·x

Lemma 1. Exponential random variables are min-stable; the minimum of exponential random
variables is an exponential r.v.

Proof. Consider independent exponential random variables E1, · · · , En, and scalars |y1|, · · · , |yn|,
and let q = min(E1

|y1|p , · · · , En
|yn|p).

1

Fq(x) = Pr[q > x] = Pr

[
∀i,

Ei

|yi|p
≥ x

]
= ProdiPr

[
Ei

|yi|p
≥ x

]
(Ei’s are independent)

= Prodie
−x|yi|p = e−x|y|pp

So q is also an exponential random variable with parameter λ = |y|pp. Equivalently, q = (1/|y|pp)E
for a standard exponential random variable E.

Therefore, the p-norm information of y is preserved by taking the minimum of exponentials. ■

1.2 Analyzing |Dy|∞

Return to our sketch, P · D defined previously.

Theorem 1. With constant probability, |Dy|∞ is a constant-factor approximation of |y|p. Specifically
with probability > 4/5:

|Dy|∞ ∈ [|y|p/101/p, 101/p|y|p]

Proof. Consider the value of |Dy|∞ = maxi(|yi|/E
1/p
i), the maximum value in the vector Dy.

|Dy|p∞ = max
i

(|yi|p

Ei

)
= 1

mini

(
Ei

|yi|p
)

= 1
E/|y|pp

(Min-stability of exponentials; E ∼ Exp(1))

=
|y|pp
E

Taking the p-root of both sides, |Dy|∞ = |y|p
E1/p .

We can bound E, with constant probability:

Pr[E ∈ [1/10, 10]] = (1 − e−10 − (1 − e−1/10) (CDF of exponential)
= e−1/10 − e−10 > 4/5

Therefore, the maximum entry |Dy|∞ is a constant-factor approximation for the target value of |y|pp,
with constant probability; i.e. this embedded the p-norm into the infinity-norm. ■

We have shown that, with probability at least 4/5, |Dy|∞ is a constant-factor estimate of |y|p.

• It suffices to approximate the maximum entry of |Dy|.

• However, Dy is an n-dimensional vector, which is too expensive to store. Thus we need to do
dimensionality reduction, through the CountSketch matrix P .

• We hope to approximate |Dy|∞ with |PDy|∞.

2

1.3 Analyzing |PDy|∞

Recall that P is defined as a CountSketch matrix. Let s be the number of rows of P , which we
think of as hash buckets. Intuitively, P hashes the coordinates of Dy into s buckets and takes a
signed sum of the entries in each bucket. We expect that the large entries of Dy stand out, while
the small values cancel out, yielding |PDy|∞ ≈ |Dy|∞.

P is fully specified by the following functions:

• Hash function h : [n] → [s]

• Sign function σ : [n] → {−1, 1}

For simplicity, we assume h, σ are truly random (rather than 2-wise, 4-wise independent, respectively),
though they can be derandomized.

Theorem 2. |PDy|∞ ≈ |Dy|∞ with good probability.

This consists of two sub-parts. Let j be the coordinate of the max entry of Dy, namely |(Dy)j | =
|Dy|∞.

Claim 1. The buckets not containing the maximum entry each have small sum: in each bucket i
not containing the element j, we have |(PDy)i| ≤ |y|p/100.

Claim 2. The bucket containing the maximum entry is close to the maximum value of |Dy|:
||(PDy)i| − |Dy|∞| ≤ |y|p/100.

Let δ(E) be the indicator random variable for event E:
{

δ(E) = 1 if E holds
δ(E) = 0 otherwise

The ith bucket value (PDy)i sums over all coordinates in the vector which hash to bucket i,
multiplied by a random sign. This has the form

(PDy)i =
∑

j

δ(h(j) = i) · σj(Dy)j

To prove concentration bounds on (PDy)i, we compute its expectation and variance, which depend
on both the randomness in P and D.

Begin by considering the expectation and variance over the CountSketch matrix P :

• EP [(PDy)i] = 0, since σj is equally likely to be ±1.

• V arP [(PDy)2
i] = EP [(PDy)2

i] = ∑
j,j′ EP [δ(h(j) = i)δ(h(j′) = i)σjσj′](Dy)j(Dy)j′ = (1/s)|Dy|22.

The last step follows because when j ̸= j′, the term is 0 by independence. When j = j′,
σjσj′ = 1, so this simplifies to ∑j EP [δ(h(j) = i)(Dy)2

j] = (1/s)|Dy|22.

Note that D is also a random variable, so we next compute the expectation over D:

ED[|Dy|22] =
∑

i

y2
i · E[D2

i,i] (D is a diagonal matrix)

3

Recall that Di,i is defined to be E
1/p
i , where Ei ∼ Exp(1). To compute E[D2

i,i], we integrate over
the PDF of the exponential distribution.

E[D2
i,i] = E

−2/p
i =

∫
t≥0

t−2/pe−tdt

=
∫

t∈[0,1]
t−2/pe−tdt +

∫
t>1

t−2/pe−tdt

≤
∫

t∈[0,1]
t−2/pdt +

∫
t>1

e−tdt

= 1
(1 − 2/p)t1−2/p

∣∣∣∣1
0

− e−t

∣∣∣∣∞
1

∈ O(1)

So far, we have computed the variance of (PDy)2
i by first taking the expectation over P , then over

D, to obtain E[(PDy)2
i] = O(1/s)|y|22.

Next, we need to relate the 2-norm to the p-norm. We can apply Holder’s inequality, which is a
generalization of Cauchy-Schwarz.

Fact 1. Holder’s inequality. If 1/p + 1/q = 1, then ⟨x, y⟩ ≤ |x|p|y|q.

Note that norms generally get smaller as the dimension increases: |y|1 ≥ |y|2 ≥ |y|∞.

Lemma 2. |y|22 = O(n1−2/p|y|2p).

Proof. The second step below follows from applying Holder’s inequality with p/2-norm and q-norm,
subject to 2/p + 1/q = 1.

|y|22 =
n∑

i=1
y2

i · 1

≤
(

n∑
i=1

(y2
i)p/2

)2/p

·
(

n∑
i=1

1q

)1/q

=
(

n∑
i=1

yp
i

)2/p

·
(

n∑
i=1

1q

)1/q

≤ |y|2p · n1/q

≤ |y|2p · n1−2/p

■

Plugging back into the original expression:

E[(PDy)2
i] = O(1/s)|y|22 (Expectation over P)

= O(1/s)(n1−2/p|y|2p) (Expectation over D)

To recap, we’ve now shown E[(PDy)i] = 0 for each hash bucket i, and E[(PDy)2
i] = O(1/s)(n1−2/p|y|2p).

4

The n1−2/p term in the streaming algorithm bound arises from the norm used in Holder’s the-
orem. The number of buckets we choose should cancel out this term. We have s buckets,
(PDy)1, · · · , (PDy)s, and hope the bucket containing the maximum entry stands out compared to
the other buckets.

Now that we have obtained the expectation and variance, a strong tail bound can be applied.
Fact 2. Bernstein’s bound. Suppose R1, · · · , Rn are independent, and forall j, |Rj | ≤ K, and
V ar[∑j Rj] = σ2. There are constants C, c such that for all t > 0,

Pr

∣∣∣∣∣∣
∑

j

Rj − E

∑
j

Rj

∣∣∣∣∣∣ > t

 ≤ C(e−ct2/σ2 + e−ct/K)

Note that this error bound drops off exponentially with as t increases.

Recall that (PDy)i = ∑
j δ(h(j) = i) · σj · (Dy)j , the sum of entries which hash to the ith bucket.

As a first attempt, define the following towards applying Bernstein’s bound.

• Rj = δ(h(j) = i) · σj · (Dy)j . Since we assumed for simplicity that h, σ are truly random, it
follows that the summands R′

is are independent from each other.

• t = |y|p/100

• s = Θ(n1−2/p log n).

• Note that σ2 = V ar[(PDy)i] = E[(PDy)2
i] = O(1/sn1−2/p|y|2p). The above definition of

s = n1−2/p log n yields σ2 = O(|y|2p/ log n).

Attempt 1. Applying Bernstein’s bound:

Pr [|(PDy)i − 0| > |y|p/100] ≤ C(e
− c(|y|p/100)2

|y|2p/ log n + e−ct/K)

The second term still relies on K, an upper bound on the values of Ri. Since Ri ≤ |Dy|∞ ∈ Θ(|y|p),
the second term simplifies to a constant. However, a constant success probability doesn’t suffice, a
union bound would subsequently be necessary over the n buckets.

Note that the setup is not correct for all buckets. One of the buckets will contain the largest entry,
for which it’s not true that |(PDy)i| ≤ |y|p/100 with good probability. So we need to separately
consider the large buckets.

1.4 Understanding the large elements

We will separately handle Rj values which are large (for which large is defined by |Rj | > α|y|p/ log n,
and α is a sufficiently small constant parameter). This cutoff value is defined to restrict K in the
Bernstein bound to be small. Importantly, whether an element is large or not depends only on D,
not on the CountSketch matrix P .

Recall that Rj = δ(h(j) = i) · σj · (Dy)j . Thus if |Rj | > α|y|p/ log n, then necessarily |(Dy)j | >
α|y|p/ log n.

Next, we show that there are not too many large buckets.

5

Theorem 3. With constant probability the number of large elements is O(logp n).

Proof. Recall that (Dy)j = |yj |/E
1/p
j .

PrD[|(Dy)j | is large] = PrD[|yj |/E
1/p
j ≥ α|y|p/ log n]

= PrD[Ej ≤ |yj |p(logp n)/(αp|y|pp)]
= 1 − e|yj |p(logp n)/(αp|y|pp) (CDF of exponential distribution)
≤ |yj |p(logp n)/(αp|y|pp) (1 − x ≤ e−x)

By linearity of expectation, the expected number of large buckets j is ∑j |yj |p(logp n)/(αp|y|pp) =
|y|pp(logp n)/(αp|y|pp) = O(logp(n)). By a Markov bound, with constant probability the number of
large elements is O(logp n). ■

Condition on the following properties of D:

• |Dy|∞ is close to the true value. By Theorem 1, |Dy|∞ ∈ [|y|p/101/p, 101/p|y|p] with probability
> 4/5.

• There are O(logp n) large elements. Note that the Ri’s remain independent when conditioning
on this event (once again, because the definition of large element depends only on D and not
on P).

Condition on the following properties of D:

• All large items are perfectly hashed. This occurs with constant probability.
Perform a balls and bins analysis: we are throwing O(logp n) balls into s ≥ n1−2/p bins, so

Pr[∃ large j, j′, j ̸= j′ which hash to same bucket] ≤
(

lgp n

2

)
1
s

≪ 1/100

Theorem 4. With good probability, the sum of the small terms in each bucket is |y|p/100.

Finally, apply Bernstein’s inequality on the small indices j within each hash bucket, so we can
assume K = maxj |Rj | ≤ α|y|p/ log n. Plugging this into the bound obtained in Attempt 1:

Pr [|(PDy)i| > |y|p/100] ≤ C(e
− c(|y|p/100)2

|y|2p/ log n + e−c log n/(100α)) ≤ 1/n2

Therefore, by a union bound over all s buckets, the signed sum of small j in every bucket is at most
|y|p/100.

1.5 Wrapping up

For all i:

• |(PDy)i| ≤ |y|p/100 if there are no large indices in the ith bucket.

6

• |(PDy)i| ≤ σ(Dy)j | ± |y|p/100 if there is exactly one large index j in the ith bucket.

• No bucket contains more than 1 large index j.

We conditioned on |Dy|∞ ∈
[

|y|p
101/p , 101/p|y|p

]
.

Also, |PDy|∞ is close to |Dy|∞, since the noise (total contribution of small terms) in each bucket is
at most |y|p/100 with good probability.

So we can output |PDy|∞ as your estimate for |y|p.

The total space complexity is s = O(n1−2/p log n) words, which is O(n1−2/p log2 n) bits.

7

	p-Norm estimator for p > 2
	Stability of Exponential Random Variables
	Analyzing |Dy|
	Analyzing |PDy|
	Understanding the large elements
	Wrapping up

