CS 15-851: Algorithms for Big Data Spring 2025

Lecture 8 Part 2 — 03/13
Prof. David Woodruff Scribe: Esther Cao

1 p-Norm estimator for p > 2

For p > 2, p-stable distributions don’t exist. We’ll prove that Q(nl_Q/ P) bits of space are needed to
approximate p-norms for p > 2 to a constant factor, with constant probability. This will be achieved
using exponential random variables. Define € to be the constant approximation parameter.

Our sketch will be defined as P - D:

00 1 0 01 0 yE" o))
L/p
1 0 0 0 00 0 0 /B ol/po
00 0 -110 -1 0 0 1/E™ 0
0 -1 0 0 00 0 ,
0 0 0 - 1/E)/7]

Where P is a CountSketch matrix, and D is a diagonal matrix with entries 1/ El1 /p , where F; is an
exponential random variable. Note that P, D are linear maps which don’t depend on x.

When right-multiplied by a vector x, this sketching matrix first scales the entries of x by the entries
of D, then applies CountSketch to the output.

1.1 Stability of Exponential Random Variables

An exponential random variable E with parameter A is defined as:

Ae M if £ >0

0 otherwise

o PDF: f(x) = {

o CDF: F(z)=1—e-Xzxifz >0
o t-F for scalar t > 0 has CDF F(z) =1 — e t®

Lemma 1. Ezponential random variables are min-stable; the minimum of exponential random
variables is an exponential r.v.

Proof. Consider independent exponential random variables E, - , E,, and scalars |y1,- - , |yn],

: E En
and let q = mln(m, cee ,W)

E;
Fy(xz) = Prlg > z] = Pr [Vz’, T > m}
E;
= Prod; Pr [>
|y [P

} (E;’s are independent)

So g is also an exponential random variable with parameter A = |y[}. Equivalently, ¢ = (1/|y[})E
for a standard exponential random variable E.

Therefore, the p-norm information of y is preserved by taking the minimum of exponentials. |

1.2 Analyzing |Dy|

Return to our sketch, P - D defined previously.

Theorem 1. With constant probability, | Dy|s is a constant-factor approximation of |y|,. Specifically
with probability > 4/5:
|Dyloo € [lylp/10"7, 10|yl

Proof. Consider the value of |Dy|sc = max;(|y:|/ El1 /P), the maximum value in the vector Dy.

|Dy|?, = max 1d
1
min; 1)
1
E/lylp
_ vl
E

(Min-stability of exponentials; E ~ Exzp(1))

Taking the p-root of both sides, |Dy|s = E‘yJ}’p.

We can bound E, with constant probability:
PrlE €[1/10,10]] = (1 — e~ 10 — (1 — e71/10) (CDF of exponential)
— /10 =10 5 y 5

Therefore, the maximum entry |Dy|s is a constant-factor approximation for the target value of |y[b,

with constant probability; i.e. this embedded the p-norm into the infinity-norm. [

We have shown that, with probability at least 4/5, |Dy| is a constant-factor estimate of |y|,.

o It suffices to approximate the maximum entry of |Dy|.

e However, Dy is an n-dimensional vector, which is too expensive to store. Thus we need to do
dimensionality reduction, through the CountSketch matrix P.

o We hope to approximate |Dy|s with |PDy|s.

1.3 Analyzing |PDy|

Recall that P is defined as a CountSketch matrix. Let s be the number of rows of P, which we
think of as hash buckets. Intuitively, P hashes the coordinates of Dy into s buckets and takes a
signed sum of the entries in each bucket. We expect that the large entries of Dy stand out, while
the small values cancel out, yielding |PDy|s = |DY|co-

P is fully specified by the following functions:

o Hash function h : [n] — [s]

 Sign function o : [n] — {—1,1}
For simplicity, we assume h, o are truly random (rather than 2-wise, 4-wise independent, respectively),
though they can be derandomized.
Theorem 2. |PDy| = |Dy|s with good probability.
This consists of two sub-parts. Let j be the coordinate of the max entry of Dy, namely |(Dy);| =
| DYoo

Claim 1. The buckets not containing the maximum entry each have small sum: in each bucket ¢
not containing the element j, we have |(PDy);| < |yl|,/100.

Claim 2. The bucket containing the maximum entry is close to the maximum value of |Dyl:

[[(PDy)i| = |Dyloo| < |ylp/100.

0(F) = 11if E holds

Let §(F) be the indicator random variable for event E:]
0(E) = 0 otherwise

The ith bucket value (PDy); sums over all coordinates in the vector which hash to bucket 7,
multiplied by a random sign. This has the form

(PDy)s = Y 6(h(j) =) - 75(Dy);
J

To prove concentration bounds on (PDy);, we compute its expectation and variance, which depend
on both the randomness in P and D.

Begin by considering the expectation and variance over the CountSketch matrix P:

e Ep[(PDy);] =0, since o; is equally likely to be £1.

« Varp[(PDy);] = Ep((PDy);] = 32, Ep[6(h(j) = i)d(h(j') = i)ojo5/(Dy);(Dy); = (1/s)|Dyl3.
The last step follows because when j # 7/, the term is 0 by independence. When j = j/,
ojoj =1, so this simplifies to >; Ep[d(h(j) = i)(Dy)3] = (1/s)|Dyl3.

Note that D is also a random variable, so we next compute the expectation over D:

Ep[|Dyl3] =Y vi - E[D}] (D is a diagonal matrix)
i

Recall that D;; is defined to be El1 /P , where E; ~ Exp(1). To compute E[D?Z], we integrate over
the PDF of the exponential distribution.

E[DZ] = E; %" = / t=2Petat
’ >0

- / t=2/Pe—tat + t=2/Pet gy
[0,1] t>1

< / 72t + | e tdt
[0,1] t>1

1 00

1
T -2/,
€0(1)

—t

1

So far, we have computed the variance of (PDy)? by first taking the expectation over P, then over
D, to obtain E[(PDy)?] = O(1/s)|yl3.

Next, we need to relate the 2-norm to the p-norm. We can apply Holder’s inequality, which is a
generalization of Cauchy-Schwarz.

Fact 1. Holder’s inequality. If 1/p+1/g =1, then (z,y) < |z|,|ylq-

Note that norms generally get smaller as the dimension increases: |y|1 > |y|2 > |y]co-

Lemma 2. |y|3 = O(nl_Q/p’yb%)'

Proof. The second step below follows from applying Holder’s inequality with p/2-norm and g-norm,
subject to 2/p+1/q = 1.

n

Syl

i=1

yl3

|

Plugging back into the original expression:
E[(PDy)?] = O(1/s)|yl3 (Expectation over P)
= 0(1/s)(n'72/7|y[2) (Expectation over D)

To recap, we've now shown E[(PDy);] = 0 for each hash bucket i, and E[(PDy)?] = O(l/s)(nl_Q/p|y|%).

The n'~2/P term in the streaming algorithm bound arises from the norm used in Holder’s the-
orem. The number of buckets we choose should cancel out this term. We have s buckets,
(PDy)1,---,(PDy)s, and hope the bucket containing the maximum entry stands out compared to
the other buckets.

Now that we have obtained the expectation and variance, a strong tail bound can be applied.

Fact 2. Bernstein’s bound. Suppose Ri,--- , R, are independent, and forall j, |R;| < K, and
Var[y; Rj] = 0. There are constants C, ¢ such that for all ¢ > 0,

Pr|> R —E|Y Rj||>t] <C(e/7" 4 emet/K)
J J

Note that this error bound drops off exponentially with as t increases.
Recall that (PDy); = 3, 6(h(j) = i) - ;- (Dy);, the sum of entries which hash to the ith bucket.

As a first attempt, define the following towards applying Bernstein’s bound.

e Rj=0(h(j) =1)-0j-(Dy);. Since we assumed for simplicity that h,o are truly random, it
follows that the summands R}s are independent from each other.

. = lyly/100
o 5=0(n'""?Plogn).

o« Note that 02 = Var[(PDy);] = E[(PDy)?] = O(l/snl_z/p‘yg). The above definition of
s =n'"2/Plogn yields 0% = O(|y\§/ logn).

Attempt 1. Applying Bernstein’s bound:

_ c(lylp/100)2

Pr{|(PDy); — 0] > lyl,/100] < Ce ¥i/n 4 e=t/K)

The second term still relies on K, an upper bound on the values of R;. Since R; < |Dy|s € O(|ylp),
the second term simplifies to a constant. However, a constant success probability doesn’t suffice, a
union bound would subsequently be necessary over the n buckets.

Note that the setup is not correct for all buckets. One of the buckets will contain the largest entry,
for which it’s not true that [(PDy);| < |y|,/100 with good probability. So we need to separately
consider the large buckets.

1.4 Understanding the large elements

We will separately handle R; values which are large (for which large is defined by |R;| > a|yl,/ logn,
and « is a sufficiently small constant parameter). This cutoff value is defined to restrict K in the
Bernstein bound to be small. Importantly, whether an element is large or not depends only on D,
not on the CountSketch matrix P.

Recall that R; = 0(h(j) = 4) - 0 - (Dy);. Thus if |R;| > aly|,/logn, then necessarily |(Dy);| >
alylp/logn.

Next, we show that there are not too many large buckets.

Theorem 3. With constant probability the number of large elements is O(logP n).

Proof. Recall that (Dy); = |y;|/E}/".

Prp||(Dy);| is large] = Prp|ly;|/E;’" > alyl,/ logn]
= Prp[E; < |y;[(log? n)/(a|y[})]
— 1 — elvilP(og?n)/(@?lylp) (CDF of exponential distribution)
< |y;[P(log? n)/(aP|y[P) (I-z<e™)

By linearity of expectation, the expected number of large buckets j is 3=, [y;[F(log” n)/(c®|y[}) =
ly[b(logP n) /(aP|y|p) = O(logP(n)). By a Markov bound, with constant probability the number of
large elements is O(log? n). [

Condition on the following properties of D:

¢ |Dy|s is close to the true value. By Theorem 1, |Dy|oo € [Jyl,/101/7,10'/7|y|,] with probability
> 4/5.

o There are O(logP n) large elements. Note that the R;’s remain independent when conditioning
on this event (once again, because the definition of large element depends only on D and not
on P).

Condition on the following properties of D:

o All large items are perfectly hashed. This occurs with constant probability.

Perform a balls and bins analysis: we are throwing O(log? n) balls into s > n'~2/? bins, so
N lgPn\1
Pr[3 large j,5',j # 7 which hash to same bucket] < 5 |5 < 1/100
s
Theorem 4. With good probability, the sum of the small terms in each bucket is |yl,/100.

Finally, apply Bernstein’s inequality on the small indices j within each hash bucket, so we can
assume K = max; |R;| < aly|,/logn. Plugging this into the bound obtained in Attempt 1:

_ c(lylp/100)2

Pr(|[(PDy)i| > |ylp/100] < C(e Wi/lsm - emclosn/U000)) < 1 /2

Therefore, by a union bound over all s buckets, the signed sum of small j in every bucket is at most
|ylp/100.

1.5 Wrapping up
For all i:

e |(PDy);| < |y|p/100 if there are no large indices in the ith bucket.

e |(PDy);| < o(Dy);| £ |y|p/100 if there is exactly one large index j in the ith bucket.

o No bucket contains more than 1 large index j.

We conditioned on |Dy|s € Héﬂ'f’p, 101/p|y|p}-

Also, |PDy|~ is close to | Dy, since the noise (total contribution of small terms) in each bucket is
at most |y|,/100 with good probability.

So we can output |PDy| as your estimate for |y|p,.

The total space complexity is s = O(n'~2/Plogn) words, which is O(n'~%/?log?n) bits.

	p-Norm estimator for p > 2
	Stability of Exponential Random Variables
	Analyzing |Dy|
	Analyzing |PDy|
	Understanding the large elements
	Wrapping up

