
CS 15-851: Algorithms for Big Data Spring 2025

Lecture Lecture 2 Part 1 — Jan 23
Prof. David Woodruff Scribe: Chris Crawford

1 Sketching for fast linear regression – continued

We continue from where we left off in the previous lecture, discussing algorithms for least-squares
linear regression, which is formalized as finding x∗ = argminx∥Ax − b∥2

2. While it is possible to
find an optimal solution by using the normal equations, actually computing such a solution takes
O(nd2) time, which is unnaceptably long for the size of data we’re considering in this class.

Our approach instead is to approximate the optimal solution within a factor of (1 ± ϵ) with high
probability. Specifically, we choosing a sketching matrix S ∈ Rk×n of i.i.d. N

(
0, 1

k

)
random

variables, and approximating the regression solution with the normal equations on the “sketched”
matrices, i.e. x′ := (SA)−(Sb).

1.1 Completing the net argument

Last time, we showed that for any fixed unit vector x, Pr[∥SAx∥2
2 ∈ (1 ± ϵ)] ≥ 1 − 2−Θ(d). We have

also shown that for a 1
2 -net M = {Ax|x ∈ N}, the dot product between two scaled vectors in M is

preserved within a factor of 1 ± ϵ after sketching. In other words,

∀y, y′ ∈ M, α, β ∈ R, ⟨αy, βy′⟩ = αβ⟨Sy, Sy′⟩ + O(αβϵ)

We want to generalize these guarantees to all vectors y = Ax.

Let y = Ax for an arbitrary unit vector x ∈ Sd−1, and pick y1 ∈ M such that ∥y − y1∥2 ≤ γ. Now
let α = 1

∥y−y1∥2
and observe that α ≥ 1

γ . If we choose y′
2 ∈ M such that |α(y − y1) − y′

2| ≤ γ, then∥∥∥y − y1 − y′
2

α

∥∥∥
2

≤ γ
α ≤ γ2. Now we can let y2 = y′

2
α and repeat the process again for y3, y4, ... etc.

Observe that ∥y −
∑n

i=1 yi∥2 ≤ γn for all integers n, and that this sum ∑
i yi is a linear combination

of net vectors.

We can show by the triangle inequality that each ∥yi∥2 ≤ γi + γi−1 ≤ 2γi−1. Now we can rewrite y
as the sum ∑

i yi. Observe that since |M | is finite, the sum must have finitely many terms. Now
consider the value of ∥Sy∥2

2:

∥Sy∥2
2 =

∥∥∥∥∥S
∑

i

yi

∥∥∥∥∥
2

2

=
∑

i

∥Syi∥2
2 + 2

∑
i,j

⟨Syi, Syj⟩

1

Since the the norms of sketched net vectors are preserved within 1 ± ϵ, and dot products of two
sketched net vectors have the property ⟨Syi, Syj⟩ = ⟨yi, yj⟩ ± O(ϵ)∥yi∥2∥yj∥2, we get that

=
∑

i

∥yi∥2
2 + 2

∑
i,j

⟨yi, yj⟩ ± O(ϵ)
∑
i,j

∥yi∥2∥yj∥2

=
∥∥∥∥∥∑

i

yi

∥∥∥∥∥
2

2
± O(ϵ)

= ∥y∥2
2 ± O(ϵ)

= 1 ± O(ϵ) (since x is unit and A is orthonormal)

Since this holds for an arbitrary y = Ax for a unit vector x, by linearity it follows that ∥SAx∥2 =
(1 ± ϵ) ∥Ax∥2. ■

1.2 Back to regression

We have now shown that S is a subspace embedding, meaning that for all x, ∥SAx∥2 = (1±ϵ) ∥Ax∥2.
Recall the linear regression problem: x∗ = argminx∥Ax − b∥2.

Now we can take x′ = argminx∥SAx − Sb∥2 = argminx∥S(Ax − b)∥2. Observe that Ax − b lives in
a (d+1)-dimensional subspace of Rn, which we will call L. More precisely, L = colspan(A)∪span(b).
By the result proven above, for all y ∈ L we have that ∥Sy∥2 = (1 ± ϵ) ∥y∥2. It follows then that
(1 − ϵ) ∥Ax′ − b∥2 ≤ ∥S(Ax′ − b)∥2, and we also have that (1 − ϵ) ∥Ax∗ − b∥2 ≤ (1 − ϵ) ∥Ax′ − b∥2
from the definition of x∗. From our definition of x′, we can also get that ∥S(Ax′ − b)∥2 ≤
∥S(Ax∗ − b)∥2, and then apply the subspace embedding property again to get that ∥S(Ax∗ − b)∥2 ≤
(1 + ϵ) ∥Ax∗ − b∥2. Now we need only use transitivty to get the desired bounds:

(1 − ϵ) ∥Ax∗ − b∥2 ≤
∥∥S(Ax′ − b)

∥∥
2 ≤ (1 − ϵ) ∥Ax∗ − b∥2

■

For our choice of k = O(d/ϵ2), we can compute the value of x′ in poly
(

d
ϵ

)
time given the values

of SA and Sb. However, computing SA for an arbitrary random matrix of i.i.d. N
(
0, 1

k

)
entries

S still takes O(nd2) time, so computing the approximate solution from scratch in this way is no
better than computing the exact solution!

2 Alternative choices for S

If we want significant improvement in time complexity, then we need to construct the sketching
matrix S in a way that the product SA can be computed efficiently. We can reduce this problem to
efficiently multiplying S with an arbitrary vector, since matrix multiplication can be thought of as
repeated matrix-vector multiplication for each column in the matrix.

2.1 Subsampled Randomized Hadamard Transform

Consider S = PHD, the product of three matrices, where...

2

• D ∈ Rn×n is a diagonal matrix with diagonals dii ∈ {1, −1} chosen with uniform probability,

• H ∈ Rn×n is the Hadamard matrix, given by hij = (−1)⟨i,j⟩
√

n
where ⟨i, j⟩ represents the dot

product of i and j expressed as binary vectors

• P ∈ Rk×n is a sampling matrix that chooses a random subset of rows and rescales them by a
factor of

√
n
k .

Claim 1. The product SA = PHDA can be computed in O(nd log n) time.

Let z ∈ Rn be arbitrary. It is clearly efficient to compute the product Dz because D is diagonal, so
(Dz)i = diizi. The can be computed in O(n) time.

Computing the product P z is also efficient: since each row of P contains exactly one nonzero entry,
it suffices to add the scaled value of the selected row of z to the output. For instance, let’s say the
ith sample selects row j, so pij =

√
n
k , and piℓ = 0 for all ℓ ̸= j. Then (Pz)i =

√
n
k (zj), so this can

be computed in O(k) time, which is also within O(n) since k ≪ n.

Consider the product Hz. If we assume n to be a power of 2, observe that the Hadamard matrix
can be broken down as follows:

H =
[

H ′ H ′

H ′ −H ′

]

where H ′ ∈ R
n
2 × n

2 is the Hadamard matrix of size n
2 , scaled to have entries of magnitude 1√

n
. This

makes sense since for all i, j < n
2 , the binary representations of n

2 + i and n
2 + j will differ by

one bit from i and j respectively, and the dot product will be unchanged for all but the bottom
right submatrix, which will yield (−1)⟨i+n/2,j+n/2⟩

√
n

= (−1) (−1)⟨i,j⟩
√

n
. This gives us two subproblems:

multiplying H ′ by the top half of z, and multiplying H ′ by the bottom half of z, after which we can
combine and add the results to get Hz. This gives us a recurrence of T (n) = 2T

(
n
2

)
+ O(n), which

can be simplified to T (n) = O(n log n).

This shows that multiplying PHDz can be done in O(n log n) + O(n) + O(k) = O(n log n) time.
Since A has d columns, it can be computed by multiplying out each of the d column vectors, giving
us a final time complexity of O(nd log n). ■

It is worth noting that sampling from P alone is not generally effective: you could have z with only
one nonzero entry, and have samples in P that only pick the zeros. However, HD acts as a rotation
matrix1, applying a rotation to the vector so that sampling from HDz is effective.

Theorem 1. For all matrices A ∈ Rn×d with orthonormal columns and all unit vectors x, we have
that ∥PHDAx∥2

2 ∈ (1 ± ϵ)

Since HD is a rotation matrix, we have that ∥HDAx∥2
2 = ∥Ax∥2

2 = 1. We will let y = Ax for the
remainder of the proof.

1It may be worth noting that the rows and columns of H are orthonormal. We can prove this by observing that
WLOG for any j ̸= j′, there exists some k where the kth bit differs between j and j′. The full proof was not covered
in class, but the result is that the bit flips cause the signs in the dot product to cancel, which gives us ⟨H∗j , H∗j′ ⟩ = 0.

3

Lemma 1 (Flattening Lemma). For any fixed y,

Pr

∥HDy∥∞ ≥ C

√
log

(
nd
δ

)
√

n

 ≤ δ

2d

Recall that the infinity norm is defined as ∥z∥∞ = maxi |zi|.

2.1.1 Proof of the Flattening Lemma

Let C > 0 be constant. We will show that for fixed i ∈ [n], Pr
[
|(HDy)i| ≥ C

√
log(nd

δ)√
n

]
≤ δ

2nd
.

If we can prove this, we can get the desired result by applying a union bound over all i.

By the Asuma-Hoeffding bound, for independent zero-mean random variables Zj , we have that
Pr

[∣∣∣∑j Zj

∣∣∣ > t
]

≤ 2 exp
[
−

(
t2

2
∑

j
β2

j

)]
where |Zj | ≤ βj with probability 1 for all j.

Write (HDy)i = ∑
j hijdjjyj and consider Zj = hijdjjyj . Note that Zj has a mean of zero, and that

|Zj | ≤ |yj |√
n

with probability 1. We can set βj = |yj |√
n

, and observe that since y is unit, ∑
j β2

j = 1
n .

Setting t = C

√
log(nd

δ)√
n

, we get

Pr

∣∣∣∣∣∣
∑

j

Zj

∣∣∣∣∣∣ > C

√
log

(
nd
δ

)
√

n

 ≤ 2e− C2 log(nd/δ)
2 ≤ δ

2nd

By union bound over i, we get that Pr
[
∥HDy∥∞ > C

√
log(nd

δ)√
n

]
≤ 2e− C2 log(nd/δ)

2 ≤ δ
2d , as desired.

■

The consequences of this lemma on proving the subspace embedding property for an SRHT sketch
matrix are discussed in the next part of the lecture.

4

	Sketching for fast linear regression – continued
	Completing the net argument
	Back to regression

	Alternative choices for S
	Subsampled Randomized Hadamard Transform
	Proof of the Flattening Lemma

