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Matrix Chernoff Bound Let X1, .., Xn be independent copies of a symmetric random matrix
X ∈ Rd×d with E[X] = 0, |X|2 ≤ γ, and |E[XT X]|2 ≤ σ2. Let W = 1

s Σi∈[s]Xi. For any ϵ > 0,

Pr[|W2| > ϵ] ≤ 2d · e−sϵ/(σ2+ γϵ
3 )

We use Matrix Chernoff Bound to show that the Subsampled Randomized Hadamard Transform
sketching S = PHD is a subspace embedding. We use the bound to show matrices are concentrated
around the mean.

Notice that increase the samples will increase the concentration around the mean. Similarly,
increasing the variance will decrease the concentration.

In the sketching, P is a sampling matrix and samples s rows uniformly with replacement. Let
V = HDA, and recall that V has orthonormal columns. Notice, P samples rows of V .

Let Yi be the i-th sampled row of V = HDA. Note the following property.

E[Y T
i Yi] = ΣiPr[Yi = vj ]vT

j vj

= 1
n

Σiv
T
i vi

= 1
n

V T V

Let Xi = Id − n · Y T
i Yi.

We verify E[Xi] = 0, |Xi|2 ≤ γ, and |E[XT
i Xi]|2 ≤ σ2 to apply the Matrix Chernoff Bounds.

First, we verify E[Xi] = 0. By definition, Xi and V are orthonormal. Thus, use the above property
of E[Y T

i Yi] to show,

E[Xi] = E[Id − n · Y T
i Yi]

= E[Id − n
1
n

V T V ]

= Id − Id

= 0d×d

Next, we verify |Xi|2 ≤ γ.

We are interested in bounding the norm |Xi|2, which is given by:

|Xi|2 = sup
|z|2=1

|Xiz|2.
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Using the triangle inequality, we can split the norm as:

|Xi|2 ≤ |Id|2 + |n · Y ⊤
i Yi|2.

The norm of the identity matrix Id is the largest singular value, which is:

|Id|2 = 1.

For the second term, consider |n · Y ⊤
i Yi|2. Recall that Yi is the i-th sampled row of V = HDA. We

analyze the squared norm of Yi, which can be written as:

|Yi|22 = |ej · HDA|22,

where ej is the j-th standard basis vector corresponding to the sampled row.

Thus, we can bound the spectral norm contribution as:

|n · Y ⊤
i Yi|2 ≤ n · max |ej · HDA|22.

Combining these bounds, we have:

|Xi|2 ≤ |Id|2 + n · max |ej · HDA|22.

Substituting |Id|2 = 1, the result becomes:

|Xi|2 ≤ 1 + n · max |ej · HDA|22.

Concentration bounds show that for a random sampling of rows from HDA, the maximum contribu-
tion |ej · HDA|22 is bounded by:

|ej · HDA|22 ≤ C2 log
(

nd

δ

)
,

Thus, the final bound becomes:

|Xi|2 ≤ 1 + n · C2 log
(

nd

δ

)
,

which simplifies further to:
|Xi|2 = Θ

(
d log

(
nd

δ

))
,

for appropriately chosen values of n, d, and δ.

Lastly, we verify |E[XT
i Xi]|2 ≤ σ2

Start with E[X⊤X +Id]. We begin with the following decomposition, which is derived by substituting
Xi = Id − n · Y ⊤

i Yi into the definition of E[X⊤X].

E[X⊤X + Id] = Id + Id − 2nE[Y ⊤
i Yi] + n2E[Y ⊤

i YiY
⊤

i Yi].

= 2Id − 2Id + n2E[Y ⊤
i YiY

⊤
i Yi].
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= n2Σi(
1
n

)vT
i viv

T
i vi

= nΣiv
T
i vi|vi|22

To bound n2E[Y ⊤
i YiY

⊤
i Yi], we introduce a matrix Z and apply the flattening lemma.

Z = n
∑

i

viv
⊤
i C2 log

(
nd

δ

)
· d

n
,

where vi represents the i-th row vector of V , the matrix with orthonormal columns. Both E[X⊤X+Id]
and Z are symmetric matrices with non-negative eigenvalues.

Claim:
y⊤E[X⊤X + Id]y ≤ y⊤Zy, ∀y.

Proof :

Both sides of the inequality can be expressed as,

y⊤E[X⊤X + Id]y = n
∑

i

y⊤viv
⊤
i y|vi|22. = nΣi < vi, y >2 |vi|22

y⊤Zy = n
∑

i

y⊤viv
⊤
i y · C2 log

(
nd

δ

)
· d

n
= dΣi < vi, y >2 C2 log(nd

δ
)

By construction, Z provides an upper bound for E[X⊤X + Id], ensuring:

y⊤E[X⊤X + Id]y ≤ y⊤Zy.

Since both E[X⊤X + Id] and Z are symmetric, we can bound their norms:

|E[X⊤X]|2 ≤ |E[X⊤X + Id]|2 + |Id|2 = |E[X⊤X + Id]|2 + 1 ≤ |Z|2 + 1

From the definition of Z, its spectral norm is:

|Z|2 = C2d log
(

nd

δ

)
Thus, we obtain:

|E[X⊤X]|2 ≤ C2d log
(

nd

δ

)
+ 1

Finally,
|E[X⊤X]|2 = O

(
d log

(
nd

δ

))
.

Now, we are able to use the Matrix Chernoff Bound. Apply the bound as follows.

Pr

[∣∣∣Id − (PHDA)T (PHDA)
∣∣∣2 ≥ ϵ

]
≤ 2d · e

(
− sϵ2

Θ(d log(nd/δ))

)

Set s = d log(nd
δ ) log( d

δ
)

ϵ2 to make this probability less than ϵ
2
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SRHT Wrapup

We have now shown that
∣∣∣Id − (PHDA)T (PHDA)

∣∣∣2 ≤ ϵ using Matrix Chernoff Bounds. This allows
us to construct a subspace embedding. This implied tat for every unit vector x,

∣∣∣1 − |PHDAx|22
∣∣∣ =

∣∣∣xT
(
Id − (PHDA)T PHDA

)
x

∣∣∣
=

∣∣∣xT x − xT (PHDA)T PHDAx
∣∣∣

=
∣∣∣I − |(SAx)|22

∣∣∣ < ϵ

=⇒ |(SAx)|22 ∈ [1 − ϵ, 1 + ϵ]

Having established the subspace embedding, we apply the technique for Gaussian sketch matrices S
to derive a solution to the original regression problem. This approach results in an algorithm with a
running time of:

O(nd log n) + poly
(

d log n

ϵ

)
CountSketch Intro

CountSketch matrices are used to obtain even faster subspace embeddings.

Definition (CountSketch Matrix): The matrix S is a k × n matrix with k = O
(

d2

ϵ2

)
. Each

column of S contains exactly one non-zero entry, which is either +1 or −1 with equal probability.

SA can be computed in nnz(A) time. We maintain a list of indices for the non-zero entries, and
simply index into A to obtain the product. The rest of the entries are zero, which does not affect
the result.
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