
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 3 — 01/30/2025
Prof. David Woodruff Scribe: Shalini Panthangi

1 Proof that Count-Sketch Satisfies the JL Property

From the previous scribe notes, we have seen the proof that if CountSketch satisfies the JL-moment
property, then we are able to show that we now have an approximate matrix product. Let’s quickly
recall the definitions of the relevant properties below:

JL Property

A distribution on matrices S ∈ Rk×n has the (ϵ, δ, ℓ)-JL moment property if for all x ∈ Rn

with ∥x∥2 = 1,
ES

∣∣∣∥Sx∥2
2 − 1

∣∣∣ℓ ≤ ϵℓ · δ.

Approximate Matrix Product Property

For ϵ, δ ∈
(
0, 1

2

)
, let D be a distribution on matrices S with k rows and n columns that

satisfies the (ϵ, δ, ℓ)-JL moment property for some ℓ ≥ 2. Then for matrices A, B with n rows,

P
S

[∥∥∥AT ST SB − AT B
∥∥∥

F
≥ 3ϵ∥A∥F ∥B∥F

]
≤ δ.

We want to show that the JL Property holds the distribution D with ℓ = 2.

1.1 Defining Count-Sketch Succinctly

t-Wise Independent Hash Families Definition

This concept is usually called k-wise independent hash families, but we will be using the
variable t in place of the variable k, since we have k defined as something else previously.
A t-wise independent hash family is a collection of hash functions with the property that,
for any t distinct inputs, the hashed values are uniformly and independently distributed.
A family of hash functions H = {h : U → [m]} is called t-wise independent if for any
distinct x1, x2, ..., xt ∈ U and any y1, y2, ..., yt ∈ [m]:

P[h(x1) = y1, h(x2) = y2, ..., h(xt) = yt] = 1
mt

This ensures that the values h(x1), h(x2), ..., h(xt) are uniformly and independently dis-
tributed.

1

1.1.1 Hash funtions involved in CountSketch

We define h : [n] → [k] to be a 2-wise independent hash function which takes in a column index
and returns the row in which that column should have a non-zero entry.

We define σ : [n] → {−1, 1} to be a 4-wise independent hash function which takes in the
column index and returns 1 or −1, representing the sign of the non-zero entry in that column.

1.2 Proving the JL Property with ℓ = 1

Proof. Let δ(E) = 1 if event E holds, and δ(E) = 0 otherwise.

We start with the expected squared norm:

E[|Sx|22] =
∑

j∈[k]
E


∑

i∈[n]
δ(h(i) = j)σixi

2


We get the next step by expanding the square and introducing i1 and i2 in order to represent two
indices,

=
∑

j∈[k]

∑
i1,i2∈[n]

E[δ(h(i1) = j)δ(h(i2) = j)]σi1σi2xi1xi2

Now, this can be written as

=
∑

j∈[k]

∑
i1,i2∈[n]

E[δ(h(i1) = j)δ(h(i2) = j)] · E[σi1σi2] · xi1xi2

Now, we notice that there are two cases to simplify the above equation. If i1 ̸= i2, then we can
rewrite E[σi1σi2] as E[σi1]E[σi2]. The expectation of each of these is 0, since we choose 1 out of the
set {−1, 1}, giving us a mean of 0. However, if i1 = i2, then the i1’th element hashes to the j’th
bucket and the i2’th element also hashes to the same j’th bucket, indicating that i1 = i2. In that
case, we only need to consider the case where we now have the same element index i to get

=
∑

j∈[k]

∑
i∈[n]

E[δ(h(i) = j)2]x2
i

We note the property that the square of an indicator variable is the same as the indicator variable
itself. So, to find E[δ(h(i) = j)], we know that since h is a 2-wise independent hash function, the
probability that any given element mapped to a particular row is 1

k . We replace E[δ(h(i) = j)] with
1
k and pull that factor out of the sum.

=
(1

k

) ∑
j∈[k]

∑
i∈[n]

x2
i = |x|22

Since we are adding k possible values of j, this then becomes the definition of the operator norm. ■

2

1.3 Proving the JL Property with ℓ = 2

Proof. We start with the expected norm. This is the same as what we did in the previous proof,
but this time, we are introducing two different variable for j.

E[|Sx|42] = E

∑
j∈[k]

∑
j′∈[k]

∑
i∈[n]

δ(h(i) = j)σixi

2∑
i∈[n]

δ(h(i′) = j′)σixi

2


We expand this with 2 i variables per j to get 4 different i indices. This comes from expanding
both of the squared norms with 2 i indices each.

=
∑
j1,j2

∑
i1,i2,i3,i4

E[σi1σi2σi3σi4δ(h(i1) = j1)δ(h(i2) = j1)δ(h(i3) = j2)δ(h(i4) = j2)]xi1xi2xi3xi4

We must be able to partition {i1, i2, i3, i4} into equal pairs. This is because if 3 of them are the
same and 1 is different, then the expectation is 0 because of the mismatch in the signs. Therefore,
we need to make sure to partition them into pairs.

• Suppose i1 = i2 = i3 = i4. This means that i1 hashes to j1 and i3 hashes to j2. But, since
we assume that i1 = i3, we know that i1 hashes to j1 and i1 hashes to j2, which can only
happen when j1 = j2. We can then only include one variable quantifier for i, and find that
the probability that δ(h(i) = j) (i hashes to the j’th bucket) is 1

k

∑
j

1
k

∑
i

x4
i = |x|44

• Suppose i1 = i2 and i3 = i4 but i1 ̸= i3. In this case, j1 ̸= j2. Here we know that i1 hashes to
j1 and i3 hashes to j2. We find that the probability these two events happen is 1

k2 , simplifying
the rest of the equation accordingly. Lastly, we subtract off the term from the previous case
where i1 = i2 = i3 = i4.

∑
j1,j2,i1,i3

1
k2 x2

i1x2
i3 = |x|42 − |x|44

• Suppose i1 = i3 and i2 = i4 but i1 ̸= i2. This must mean that j1 = j2 because i1 hashes to
j1 and i3 hashes to j1, which can only happen when j1 = j2. Therefore, simplifying out the
expression by only keeping one j, we get the upper bound,

∑
j

1
k2

∑
i1,i2

x2
i1x2

i2 ≤ 1
k

|x|44

We obtain the same bound if i1 = i4 and i2 = i3 by similar logic.

Adding all the cases together, we get that E[|Sx|42] is in the range [|x|42, |x|42(1 + 2
k)] = [1, 1 + 2

k]

So we set k = 2
ϵ2δ

to finish the proof and obtain the JL property for ℓ = 2,

3

ES |Sx|22 − 1|2 ≤
(

1 + 2
k

)
− 2 + 1 = 2

k

The matrix product result we wanted was:

P
[
∥CST SD − CD∥2

F ≤ 6
δk

∥C∥2
F ∥D∥2

F

]
≥ 1 − δ

The approximate matrix product gives us the result:

P
[
∥AT ST SB − AT B∥2

F ≥ 3ε2∥A∥2
F ∥B∥2

F

]
≤ δ

By setting C = AT and D = B, we finish the proof.

■

2 Affine Embeddings

We want to solve AX = B, where A is tall and thin with d columns, but B has a large number of
columns. Since we cannot directly apply subspace embeddings, we explore the properties needed for
S such that:

∥SAx − SB∥ = (1 ± ε)∥AX − B∥F (1)
for all X.

Assuming A has orthonormal columns, let X∗ be the optimal solution:

X∗ = arg min
X

∥AX − B∥ (2)

From subspace embedding properties:

∥AX∗ − B∥ ≈ ∥SAX∗ − SB∥ (3)

If B has m columns, we consider sketching A and B and solving the sketched version, reducing
computational complexity.

Let B∗ = AX ∗ −B, where X∗ is the optimum, and suppose that A has orthonormal columns.

2.1 Frobenius Norm Identity Proof

Proof. We begin with the given expression and rewrite it using the definition of Frobenius and
Squared Euclidean norm:

∥A + B∥2
F =

∑
i

|Ai + Bi|22

We expanding the squared norm by following a similar format to (a + b)2 = a2 + b2 + 2 ∗ a ∗ b:∑
i

|Ai|22 +
∑

i

|Bi|22 + 2⟨Ai, Bi⟩

4

Using the definition trace being the sum of diagonal elements of a matrix, we get:

∥A∥2
F + ∥B∥2

F + 2 tr(AT B).

■

2.2 Cauchy-Schwarz inequality for matrix norms

Proof.
Tr(AB) =

∑
i

⟨Ai, Bi⟩ (where Ai are rows and Bi are columns)

≤
∑

i

|Ai|2|Bi|2 (Cauchy-Schwarz inequality)

≤
(∑

i

|Ai|22

)1/2(∑
i

|Bi|22

)1/2

(Cauchy-Schwarz inequality)

= ∥A∥F ∥B∥F (by definition of the Frobenius norm)

■

2.3 Proving that Affine Embeddings can be solved using Sketching Matrix

Now we go to show that this problem can be solved using a sketching matrix S.

Proof. We begin with the given expression:

|S(AX − B)|2F − |SB∗|2F .

Rewriting using the optimum term X∗, we subtract that term from one side and add it to the other
side, partitioning the use of the optimum:

|S(AX − B)|2F − |SB∗|2F = |SA(X − X∗) + S(AX∗ − B)|2F − |SB∗|2F .

Applying the identity |C + D|2F = |C|2F + |D|2F + 2Tr(CT D) from section 2.1, we get:

|SA(X − X∗)|2F + 2tr[(X − X∗)T AT ST SB∗].

Using the inequality tr(CD) ≤ |C|F |D|F from section 2.2, we get:

|SA(X − X∗)|2F ± 2|X − X∗|F |AT ST SB∗|F .

Under the assumption of an approximate matrix product:

|SA(X − X∗)|2F ± 2ϵ|X − X∗|F |B∗|F .

5

Finally, using the subspace embedding property for A:

|A(X − X∗)|2F ± ϵ(|A(X − X∗)|2F + 2|X − X∗|F |B∗|F).

■

We have the following:

∥S(AX − B)∥2
F − ∥SB∗∥2

F ∈ ∥A(X − X∗)∥2
F ± ϵ

(
∥A(X − X∗)∥2

F + 2∥X − X∗∥F ∥B∗∥F

)
The normal equations indicate:

∥AX − B∥2
F = ∥A(X − X∗)∥2

F + ∥B∗∥2
F

If we were to draw this out, for each column Xi in X, the vector AXi represents a point in the
column space of A. The columns Bi are any points that lie in the same geometric space. We know
that AX∗

i is the closest point to Bi within the column space since the shortest distance is the line
that forms a right angle on the column space and touches Bi. The distance between these two points
is B∗

i = AX∗
i − Bi, which contributes to the term ∥B∗∥F . Similarly, we get the term ∥A(X − X∗)∥F .

We start with the normal equations.

∥S(AX − B)∥2
F − ∥SB∗∥2

F −
(
∥AX − B∥2

F − ∥B∗∥2
F

)
which simplifies to the following using the Pythagorean theorem:

∈ ϵ
(
∥A(X − X∗)∥2

F + 2∥X − X∗∥F ∥B∗∥F

)
Then, we get,

∈ ±ϵ (∥A(X − X∗)∥F + ∥B∗∥F)2

∈ ±2ϵ
(
∥A(X − X∗)∥2

F + ∥B∗∥2
F

)
This leads to:

= ±2ϵ∥AX − B∥2
F

indicating that the error due to the subspace embedding is approximately 2ϵ∥AX − B∥2
F .

Next, we use the fact that:

∥SB∗∥2
F = (1 ± ϵ)∥B∗∥2

F

with constant probability. In other words, S preserves the norm of a fixed matrix with constant
probability.

6

∥S(AX − B)∥2
F = (1 ± 2ϵ)∥AX − B∥2

F ± ϵ∥B∗∥2
F

This simplifies further to:

= (1 ± 3ϵ)∥AX − B∥2
F

Thus, we conclude that S is a (1 + 3ϵ)-affine embedding for X.

7

	Proof that Count-Sketch Satisfies the JL Property
	Defining Count-Sketch Succinctly
	Hash funtions involved in CountSketch

	Proving the JL Property with = 1
	Proving the JL Property with = 2

	Affine Embeddings
	Frobenius Norm Identity Proof
	Cauchy-Schwarz inequality for matrix norms
	Proving that Affine Embeddings can be solved using Sketching Matrix

