CS 15-851: Algorithms for Big Data Spring 2025

Lecture 3 — 01/30/2025
Prof. David Woodruff Scribe: Shalini Panthangi

1 Proof that Count-Sketch Satisfies the JL Property

From the previous scribe notes, we have seen the proof that if CountSketch satisfies the JL-moment
property, then we are able to show that we now have an approximate matrix product. Let’s quickly
recall the definitions of the relevant properties below:

JL Property

A distribution on matrices S € R**™ has the (¢, 6, £)-JL moment property if for all 2 € R”
with ||z||2 = 1,

Es|Isel3 -1 <5

| r
\

Approximate Matrix Product Property

For ¢,d € (0, %), let D be a distribution on matrices S with k rows and n columns that

satisfies the (e, 0, £)-JL moment property for some ¢ > 2. Then for matrices A, B with n rows,

P [HATSTSB - ATBHF > 3¢l|A|r || Bllr| <o.

We want to show that the JL Property holds the distribution D with ¢ = 2.

1.1 Defining Count-Sketch Succinctly

t-Wise Independent Hash Families Definition

This concept is usually called k-wise independent hash families, but we will be using the
variable t in place of the variable k, since we have k defined as something else previously.

A t-wise independent hash family is a collection of hash functions with the property that,
for any t distinct inputs, the hashed values are uniformly and independently distributed.

A family of hash functions H = {h : U — [m]} is called t-wise independent if for any
distinct z1,x9, ...,z € U and any y1,y2, ...,y € [m]:

1

mt

Plh(z1) = y1, h(x2) = ya, ..., h(xy) = y] =

This ensures that the values h(z1),h(z2),..., h(z;) are uniformly and independently dis-
tributed.

1.1.1 Hash funtions involved in CountSketch

We define h : [n] — [k] to be a 2-wise independent hash function which takes in a column index
and returns the row in which that column should have a non-zero entry.

We define ¢ : [n] — {—1,1} to be a 4-wise independent hash function which takes in the
column index and returns 1 or —1, representing the sign of the non-zero entry in that column.

1.2 Proving the JL Property with / = 1

Proof. Let 6(E) =1 if event E holds, and §(E) = 0 otherwise.

We start with the expected squared norm:

E[|Sz|3] Z E (Z d(h(i) =7 O'Z:L‘Z)

JE[k] 1€[n]

We get the next step by expanding the square and introducing ¢; and 42 in order to represent two
indices,

=3 3 El(h(ir) = 5)(h(iz) = §))oi, 04wz,

J€Elk] i1,i2€(n]

Now, this can be written as

= D E[(h(ir) = 5)d(h(iz) =)] - Eloi, 0] - iy T4

jE[k] i1,i2€[n]

Now, we notice that there are two cases to simplify the above equation. If 41 # i3, then we can
rewrite E[o;, 04,] as E[o;, |E[o;,]. The expectation of each of these is 0, since we choose 1 out of the
set {—1,1}, giving us a mean of 0. However, if i; = iy, then the i;’th element hashes to the j’th
bucket and the i2’th element also hashes to the same j’th bucket, indicating that ¢; = 72. In that
case, we only need to consider the case where we now have the same element index i to get

=Y. D Eb(hG) = j)’la7

jElk] i€ln]

We note the property that the square of an indicator variable is the same as the indicator variable
itself. So, to find E[d(h(i) = j)], we know that since h is a 2- Wise independent hash function, the
probablhty that any given element mapped to a particular row is +. We replace E[§(h(i) = j)] with
k and pull that factor out of the sum.

= (7) = T at =1t

JE[k] t€[n]

Since we are adding k possible values of j, this then becomes the definition of the operator norm. H

1.3 Proving the JL Property with / = 2

Proof. We start with the expected norm. This is the same as what we did in the previous proof,
but this time, we are introducing two different variable for j.

E[|Sz3] =E | Y > (Z §(h(i) = j alxl) (Zé alxl)Q

JjE[k] 5’ €lk] \i€[n] i€[n]

We expand this with 2 ¢ variables per j to get 4 different ¢ indices. This comes from expanding
both of the squared norms with 2 4 indices each.

=Y Y El040i,04,0i,0(h(i1) = j1)3(h(iz) = j1)d(h(is) = j2)8(h(ia) = jo)|wi v, Tig i,

J1,J2 91,12,13,%4

We must be able to partition {i1, 2,143,174} into equal pairs. This is because if 3 of them are the
same and 1 is different, then the expectation is 0 because of the mismatch in the signs. Therefore,
we need to make sure to partition them into pairs.

e Suppose i1 = iy = i3 = i4. This means that i; hashes to j; and i3 hashes to jo. But, since
we assume that ¢; = i3, we know that ¢; hashes to j; and i; hashes to jo, which can only
happen when j; = ja. We can then only include one variable quantifier for i, and find that
the probability that 6(h(i) = j) (i hashes to the j’th bucket) is +

1
>t =
7 7

e Suppose i1 = i9 and i3 = i4 but i1 # i3. In this case, j; # jo. Here we know that i; hashes to
J1 and 43 hashes to jo. We find that the probability these two events happen is k%, simplifying
the rest of the equation accordingly. Lastly, we subtract off the term from the previous case
where 11 = 1o = i3 = i4.

1 4 4
Z ﬁxixi’, |x‘2 - ‘IL’|4
J1,J2,01,13

e Suppose i1 = i3 and 12 = 4 but 71 # i9. This must mean that j; = jo because i; hashes to
j1 and i3 hashes to j;, which can only happen when j; = js. Therefore, simplifying out the
expression by only keeping one j, we get the upper bound,

Z Soafal <o |x\fi

1,12

We obtain the same bound if i; = i4 and i3 = i3 by similar logic.

Adding all the cases together, we get that E[|Sz[3] is in the range [|z3, |z|3(1 + 2)] = [1,1+]

So we set k = % to finish the proof and obtain the JL property for ¢ = 2,

2 2
E82—12<(1)—2 1==
slSzl =17 < (1+ A + A
The matrix product result we wanted was:

6
P||CS"SD - CDI} < S CIFIDIE] =14

The approximate matrix product gives us the result:

P ||ATSTSB — AT B|} > 3¢ A}1|1BI}] < 6

By setting C = AT and D = B, we finish the proof.

2 Affine Embeddings

We want to solve AX = B, where A is tall and thin with d columns, but B has a large number of
columns. Since we cannot directly apply subspace embeddings, we explore the properties needed for
S such that:

|SAx — SBJ|| = (1 +¢)||AX — B||r (1)

for all X.

Assuming A has orthonormal columns, let X™* be the optimal solution:

X* =arg m)}n |AX — B|| (2)

From subspace embedding properties:

|AX* — B|| =~ ||[SAX™ — SB]| (3)
If B has m columns, we consider sketching A and B and solving the sketched version, reducing
computational complexity.

Let Bx = AX % —B, where X is the optimum, and suppose that A has orthonormal columns.

2.1 Frobenius Norm Identity Proof

Proof. We begin with the given expression and rewrite it using the definition of Frobenius and
Squared Euclidean norm:
1A+ BlE =>4 + Bil3
i

We expanding the squared norm by following a similar format to (a + b)? = a? + b* + 2 * a * b:

ST 1A+ Z |B;|? + 2(A;, By)

2

4

Using the definition trace being the sum of diagonal elements of a matrix, we get:

1A + 1B][7 + 2 tr(A” B).

[]
2.2 Cauchy-Schwarz inequality for matrix norms
Proof.
Tr(AB) = Z<Ai’ B;) (where A; are rows and B; are columns)
< Z |Ai|2|B;il2 (Cauchy-Schwarz inequality)
1/2 1/2
< (Z |Az|g> (Z |Bl|%> (Cauchy-Schwarz inequality)
= ||Al|r||B||r (by definition of the Frobenius norm)
|

2.3 Proving that Affine Embeddings can be solved using Sketching Matrix

Now we go to show that this problem can be solved using a sketching matrix S.

Proof. We begin with the given expression:

|S(AX - B)|% — |SB"|%.

Rewriting using the optimum term X*, we subtract that term from one side and add it to the other
side, partitioning the use of the optimum:

|S(AX — B)|% — |SB*|% = |SA(X — X*) 4+ S(AX* — B)|% — |SB*|%.

Applying the identity |C + D|% = |C|% + |D|% + 2Tr(CT D) from section 2.1, we get:

ISA(X — X% + 2tr[(X — X T ATSTSB].

Using the inequality tr(C'D) < |C|r|D|F from section 2.2, we get:

ISA(X — X")|% £ 2|X — X*|p|ATSTSB*|p.

Under the assumption of an approximate matrix product:

ISA(X — X*)|% £ 2¢| X — X*|p|B*|p.

Finally, using the subspace embedding property for A:

[AX = X)[E + e(JAX = X)|E + 21X — X*|r|B|Fp).

We have the following:

IS(AX = B[} — SB[} € | ACX = X7)[[7 % € (JAX = X*)[3+ 21X = X" B*||F)

The normal equations indicate:

2 2 2

[AX — Bz = [[AX = XO)|& + |1B*[|%
If we were to draw this out, for each column X; in X, the vector AX; represents a point in the
column space of A. The columns B; are any points that lie in the same geometric space. We know
that AX is the closest point to B; within the column space since the shortest distance is the line
that forms a right angle on the column space and touches B;. The distance between these two points

is Bf = AX} — B;, which contributes to the term ||B*||p. Similarly, we get the term ||A(X — X™)||r.
We start with the normal equations.

1S(AX = B[} — SB*|} — (IAX - BI} - | B*]I})
which simplifies to the following using the Pythagorean theorem:

€ e (A = X[} + 21X = X[r|IB|Ir)

Then, we get,
€ e (JAX = X*)||r + |B*[|#)?

€ +2¢ (AKX = XM)|E + 1 B*|})
This leads to:

= +2¢||AX — B||%

indicating that the error due to the subspace embedding is approximately 2¢[|AX — B||%.

Next, we use the fact that:

ISB*|[7 = (1 £ o)1B"1%

with constant probability. In other words, S preserves the norm of a fixed matrix with constant
probability.

IS(AX = B)|[} = (1 £2¢)|| AX — Bl + | B*[|3
This simplifies further to:

— (130 AX - Bl

Thus, we conclude that S is a (1 + 3¢)-affine embedding for X.

	Proof that Count-Sketch Satisfies the JL Property
	Defining Count-Sketch Succinctly
	Hash funtions involved in CountSketch

	Proving the JL Property with = 1
	Proving the JL Property with = 2

	Affine Embeddings
	Frobenius Norm Identity Proof
	Cauchy-Schwarz inequality for matrix norms
	Proving that Affine Embeddings can be solved using Sketching Matrix

