
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 4 (Part 1) — 02/06/2025
Prof. David Woodruff Scribe: Renfei Zhou

1 Missing Proofs from Last Lecture

There are several claims that we did not prove in the last lecture. We present them here.
Claim 1. For matrices A and B, ∥A + B∥2

F = ∥A∥2
F + ∥B∥2

F + 2 Tr(AT B).

Proof. Let Ai, Bi be the i-th column of A and B, respectively. We have

∥A + B∥2
F =

∑
i

∥Ai + Bi∥2
2 =

∑
i

(
∥Ai∥2

2 + ∥Bi∥2
2 + 2⟨Ai, Bi⟩

)
= ∥A∥2

F + ∥B∥2
F + 2 Tr(AT B). ■

Claim 2. For matrices A and B, Tr(AB) ≤ ∥A∥F ∥B∥F .

Proof. Let A(i) be the i-th row of A and let Bi be the i-th column of B. We have

Tr(AB) =
∑

i

⟨A(i), Bi⟩ ≤
∑

i

∥A(i)∥2∥Bi∥2 ≤
(∑

i

∥A(i)∥2
2

)1/2(∑
i

∥Bi∥2
2

)1/2

= ∥A∥F ∥B∥F ,

where the two inequalities follow from the Cauchy-Schwarz inequality. ■

Claim 3. Let S be the CountSketch matrix with k = Θ(1/ε2) rows and let B∗ be an arbitrarily
fixed matrix. Then ∥SB∗∥2

F = (1 ± ε)∥B∗∥2
F with constant probability.

Proof. Assume B∗ is an n×d matrix. First, we show E
[
∥SB∗∥2

F

]
= ∥B∗∥2

F by analyzing each column
on both sides independently: We have E

[
∥SB∗

i ∥2
2
]

= ∥B∗
i ∥2

2 due to the analysis of CountSketch, and
taking a summation over all d columns of B∗ gives E[∥SB∗∥2

F ] = ∥B∗∥2
F .

Next, we analyze the variance of ∥SB∗∥2
F . We use S(i) to denote the i-th row of S, and use B∗

j

to denote the j-th column of B∗. We use h : [n] → [k] to represent the hash function used for
CountSketch, so that h−1(i) is the set of columns with non-zero entries in the i-th row of S.

Var
(
∥SB∗∥2

F

)
= E

[
∥SB∗∥4

F

]
− ∥B∗∥4

F

=
∑

(i1,j1)

∑
(i2,j2)

E
[
(S(i1)B∗

j1)2(S(i2)B∗
j2)2

]
− ∥B∗∥4

F . (1)

We partition all terms in the summation into two groups according to whether i1 = i2 or not. The
first group sums to

k∑
i=1

∑
j1,j2∈[d]

E
[
(S(i)B∗

j1)2(S(i)B∗
j2)2

]
=

k∑
i=1

∑
j1,j2∈[d]

E


 ∑

t1∈h−1(i)
σ(t1)B∗

t1,j1

2 ∑
t2∈h−1(i)

σ(t2)B∗
t2,j2

2


=
k∑

i=1

∑
j1,j2∈[d]

E

 ∑
t1,t′

1,t2,t′
2∈h−1(i)

σ(t1)σ(t′
1)σ(t2)σ(t′

2) · B∗
t1,j1B∗

t′
1,j1

B∗
t2,j2B∗

t′
2,j2

. (2)

1



For every term in the large summation indexed by (t1, t′
1, t2, t′

2), a necessary condition for it to
have non-zero contribution to the expectation is that {t1, t′

1, t2, t′
2} form two identical pairs (i.e.,

no value occurs an odd number of times in {t1, t′
1, t2, t′

2}), in which case the leading coefficient
σ(t1)σ(t′

1)σ(t2)σ(t′
2) always equals 1. There are three cases in which this can happen.

• Case 1: t1 = t′
1 ̸= t2 = t′

2. These terms sum up to

k∑
i=1

∑
j1,j2∈[d]

E

 ∑
t1 ̸=t2∈h−1(i)

(B∗
t1,j1)2(B∗

t2,j2)2

 ≤ 1
k

∑
j1,j2∈[d]

∑
t1,t2∈[n]

(B∗
t1,j1)2(B∗

t2,j2)2 = 1
k

∥B∗∥4
F ,

where the inequality holds because we only added non-negative terms with t1 = t2 to the
summation.

• Case 2: t1 = t2 ̸= t′
1 = t′

2. These terms sum up to

k∑
i=1

∑
j1,j2∈[d]

E

 ∑
t̸=t′∈h−1(i)

B∗
t,j1B∗

t′,j1B∗
t,j2B∗

t′,j2

 ≤ 1
k

∑
j1,j2∈[d]

∑
t,t′∈[n]

B∗
t,j1B∗

t′,j1B∗
t,j2B∗

t′,j2

= 1
k

∑
j1,j2∈[d]

⟨B∗
j1 , B∗

j2⟩2 ≤ 1
k

∑
j1,j2∈[d]

∥B∗
j1∥2

2 · ∥B∗
j2∥2

2 = 1
k

∥B∗∥4
F .

Again, at the first inequality, we added several terms with t = t′ which are all non-negative.

• Case 3: t1 = t′
2 ̸= t′

1 = t2. It is the same as Case 2 by renaming the variables (swapping t2
and t′

2).

• Case 4: t1 = t2 = t′
1 = t′

2. These terms sum up to

k∑
i=1

∑
j1,j2∈[d]

E

 ∑
t∈h−1(i)

(B∗
t,j1)2(B∗

t,j2)2

 =
∑

j1,j2∈[d]

∑
t∈[n]

(B∗
t,j1)2(B∗

t,j2)2 =
∑
t∈[n]

∥(B∗)(t)∥4
2.

The terms in the original summation (1) with i1 ̸= i2 sum up to

∑
i1 ̸=i2∈[k]

∑
j1,j2∈[d]

 ∑
t1∈h−1(i1)

(B∗
t1,j1)2

 ∑
t2∈h−1(i2)

(B∗
t2,j2)2

 =
∑

i1 ̸=i2∈[k]

∑
j1,j2∈[d]

∑
t1 ̸=t2∈[n]

1
k2 (B∗

t1,j1)2(B∗
t2,j2)2

≤
∑

t1 ̸=t2∈[n]
∥(B∗)(t1)∥2

2 · ∥(B∗)(t2)∥2
2

= ∥B∗∥4
F −

∑
t∈[n]

∥(B∗)(t)∥4
2.

Adding all cases together and substituting back into (1), we know

Var(∥SB∗∥2
F ) ≤ 3

k
∥B∗∥4

F .

By Chebyshev’s inequality, we get

Pr[|∥SB∗∥2
F − ∥B∗∥2

F | ≥ ε∥B∗∥2
F ] ≤ (3/k)∥B∗∥4

F

ε2∥B∗∥4
F

≤ 0.1

by setting k = 30/ε2. ■

2



2 Low Rank Approximation

Let A be an n × d matrix, which can be viewed as a set of n points in Rd. In many real-life scenarios,
A can be well approximated by a low-rank matrix, but A itself has a high rank due to noise. The
goal of low-rank approximation is to find a rank-k matrix A′ that approximates A, so that A′ takes
less space to store, less time to process, and the data in A′ are more interpretable than the original
matrix A.

If we do not care about the time complexity for finding the low-rank approximation, then SVD
gives us the best possible solution. Formally, assume A = UΣV T is the SVD of A, by keeping only
the top-k singular values in Σ and zeroing out other entries (denote the obtained matrix by Σk), we
get a rank-k matrix Ak = UΣkV T . This matrix is called the truncated SVD of A and it is the best
rank-k approximation to A if the distance is measured using the Frobenius norm ∥A − Ak∥F .

However, computing the SVD of A will be time consuming, so we want faster algorithms to find
the low-rank approximation. Formally, our goal is to find a rank-k matrix A′ where ∥A − A′∥F ≤
(1 + ε)∥A − Ak∥F , i.e., its distance to A is within 1 + ε times the optimal distance. We will
introduce an algorithm based on affine embeddings (using CountSketch) that can find A′ in time
nnz(A) + (n + d) poly(k/ε).

2.1 Warm-Up

In this subsection, we first introduce an algorithm that is slightly slower than the ideal time
complexity, but illustrates the main idea of projection.

Overview. Let S be the CountSketch matrix with r := poly(k/ε) ≪ n rows. Then, each row in
SA is a random linear combination of the rows in A. rowspan(SA) is a r-dimensional subspace
of Rd. The main idea of the algorithm is to project all n points (rows) in A onto the subspace
rowspan(SA), and then use SVD to find a low-rank matrix A′ whose rows lie in rowspan(SA) that
well approximates the n projected points.

We begin by showing that there exists a good solution A′ that lies in rowspan(SA) by introducing a
thought experiment. We consider a hypothetical regression problem:

min
X

∥AkX − A∥F . (3)

Note that the optimal solution to this regression problem is simply X = I, because AkX has rank
≤ k, and Ak itself is already the best rank-k approximation of A.

Recall that S is an affine embedding, so ∥SAkX − SA∥F = (1 ± ε)∥AkX − A∥F for all matrices X,
so solving the sketched regression problem

min
X

∥SAkX − SA∥F (4)

will give a (1 + ε)-approximate solution to the original regression problem (3). By normal equations,
we know the optimal solution to (4) is X = (SAk)−SA, thus

∥Ak(SAk)−SA − A∥F ≤ (1 + ε)∥Ak − A∥F .

It shows that Ak(SAk)−SA is an approximation to A such that

3



• it has rank at most k;

• its rows lie in rowspan(SA); and

• it is (1 + ε)-optimal as a rank-k approximation of A.

It indicates that if we only search for low-rank matrices in rowspan(SA), we can still find an
(1 + ε)-optimal solution to the original low-rank approximation problem. Based on this fact, the
algorithm works as follows.

Algorithm. Recall that our goal is to solve

min
X:rank-k

∥XSA − A∥2
F . (5)

We rewrite the objective using normal equations:

∥XSA − A∥2
F = ∥XSA − A(SA)−SA∥2

F + ∥A(SA)−SA − A∥2
F , (6)

where the second term on the right-hand side does not depend on X, so we only need to optimize
for the first term.

We can compute SA’s thin SVD SA = UΣV T , where U and Σ are r × r matrices and V T is a r × d
matrix, in O(d poly r) time. Then we rewrite the objective (first term in (6)) as

min
X:rank-k

∥XSA − A(SA)−SA∥2
F = min

X:rank-k
∥XUΣ − A(SA)−UΣ∥2

F = min
Y :rank-k

∥Y − A(SA)−UΣ∥2
F .

So far, the problem has been reduced to computing the rank-k approximation of A(SA)−UΣ, which
is a n × r matrix, and thus computing its SVD only takes O(n poly r) time. After getting Y , we
can output XSA = Y V T as a rank-k approximation to the input matrix A in a factorized form.

We remark that computing the matrix A(SA)−UΣ is the time bottleneck of the algorithm, which takes
nnz(A) · r + d poly r time, which is unacceptable. This challenge is similar to directly projecting all n
points into the subspace rowspan(SA), which requires us to compute A(SA)−SA = A(SA)−UΣV T

(the only difference is the factor V T on the right). The merit of this algorithm is that all SVD steps
are already efficient, as they are applied only to r×d and n×r matrices, which takes O((n+d) poly r)
time.

2.2 Efficient Algorithm

The only bottleneck of the previous algorithm is to compute the projection of n points into
the subspace rowspan(SA). Although the precise projections are hard to compute, we can view
projections as regression problems, and use an affine embedding to get approximate projections.

We start with the the optimization problem (5), and apply an affine embedding R that satisfies

∥XSAR − AR∥2
F = (1 ± ε)∥XSA − A∥2

F

for all matrices X. Since SA is an r × d matrix, the number of columns in the affine embedding R
will be r′ := poly(r/ε) = poly(k/ε). After applying R, (5) reduces to solving

min
X:rank-k

∥XSAR − AR∥2
F .

4



Using normal equations, this equals

∥AR(SAR)−(SAR) − AR∥2
F + min

X:rank-k
∥XSAR − AR(SAR)−(SAR)∥2

F .

The second term can be rewritten as

min
Y :rank-k

∥Y − AR(SAR)−(SAR)∥2
F . (7)

We remark that the optimal solution Y for (7) can always be represented as Y = XSAR, i.e., it lies
in the row space of SAR, since otherwise projecting Y into rowspan(SAR) gives a better solution
to (7).

We can compute the optimal Y by computing the SVD of AR(SAR)−(SAR), which takes n poly r′ =
n poly(k/ε) time. Note that computing the matrix AR(SAR)−(SAR) itself is also efficient, taking
nnz(A) + n poly(k/ε) time. Finally, we output Y (SAR)−SA = XSA as the low-rank approximation
to the input matrix A.

5


	Missing Proofs from Last Lecture
	Low Rank Approximation
	Warm-Up
	Efficient Algorithm


