
CS 15-851: Algorithms for Big Data Spring 2025

Lecture 4 Part 2 — 02/06
Prof. David Woodruff Scribe: Esther Cao

1 High Precision Regression

We aim to find x′ with |Ax′ − b|2 ≤ (1 + ϵ) minx |Ax − b|2, with high probability. So far, our
regression algorithms have had running time nnz(A) + poly(d/ϵ). In high precision settings when ϵ
is small, this runtime may be too expensive.

Goal: define an algorithm with a running time of poly(d) · log(1/ϵ).

We achieve this with an algorithm that blends sketching with gradient descent.

Definition. The condition of A, κ(A), is defined as the ratio between the largest and smallest
singular values of A:

κ(A) = sup
|x|2=1

|Ax|2/ inf
|x|2=1

|Ax|2

A is “perfectly conditioned" iff κ(A) = 1.

The condition number provides a heuristic for how spread out the singular values are. Many
algorithms depend on the condition number, and have faster performance when κ is low. The role
of sketching in this algorithm is to reduce κ(A) to O(1).

1.1 Small QR Decomposition

• Let S be a (1 + ϵ0) subspace embedding for A. Note that ϵ0 is not the final ϵ value of the
runtime bound; we can think of it as a constant, such as ϵ0 = 1/2.

• Compute SA. For a CountSketch matrix S, this takes nnz(A) time.

• Compute SA = QR−1, the QR-factorization of SA, where Q has orthonormal columns, and
R−1 is an arbitrary matrix. Note that the QR-factorization can be computed with the thin
SVD, letting Q = U , and R−1 = Σ′V where Σ′ is the matrix Σ with 0-rows omitted.

• Since Q is orthonormal, the above satisfies κ(SAR) = κ(Q) = σmax(Q)/σmin(Q) = 1.

Lemma 1. κ(AR) = 1+ϵ0
1−ϵ0

Proof. Note that κ(SAR) = κ(Q) = 1 since Q is orthonormal.

This can be proven by looking at both sides of the subspace embedding guarantee.

For all unit vectors x:
(1 − ϵ0)|ARx|2 ≤ |SARx|2 = 1

(1 + ϵ0)|ARx|2 ≥ |SARx|2 = 1

1

The first inequality follows from S is a subspace embedding, and the second equality follows from
SAR = Q is orthonormal and thus SARx has length 1.

Therefore we have that for all unit x, 1
1+ϵ0

≤ |ARx|2 ≤ 1
1−ϵ0

. Plugging into the definition of κ gives
κ(AR) ≤ (1

1−ϵ0
)/(1

1+ϵ0
) = 1+ϵ0

1−ϵ0
. ■

The matrix R is often known as a preconditioner, and can be found by sketching.

Also, note that we don’t need to compute the matrix AR (which would take much more than nnz(A)
time), since AR would only be used in the context of right-multiplying by a vector which could be
calculated efficiently with A(R(x)).

1.2 Finding a constant-factor solution

So far, we have found a matrix R such that AR has a small condition number: κ(AR) = 1+ϵ0
1−ϵ0

.
Finding R took time nnz(A) + poly(d).

Let S be a (1 + ϵ0)-subspace embedding for AR. (AR has the same column span as A).

Note that minx |Ax − b|2 and minx |ARx − b|2 are equivalent problems, by a change of variable
y = Rx.

First, we can find an initial solution x0 by solving the sketched regression problem x0 = argminx|SARx−
Sb|2. The time needed to compute x0 is poly(d):

1. Compute SA ∈ Rpoly(d)×d in nnz(A) time

2. compute (SA)R, in poly(d) time.

3. Compute Sb in nnz(b)≤ n time

4. This is now a small regression problem, which can be computed by the pseudoinverse in poly(d)
time.

Next, we can iteratively improve on the solution with gradient descent. Define

xm+1 := xm + RT AT (b − ARxm)

We prove the convergence of this value towards the optimal solution x∗.

Claim 1. |AR(xm+1 − x∗)|2 ≤ O(ϵ0)m+1|AR(x0 − x∗)|2

AR(xm+1 − x∗) = AR(xm + RT AT (b − ARxm) − x∗) (By definition of xm+1)
= (AR − ARRT AT AR)(xm − x∗) (RT AT b = RT AT ARx∗ by Normal equations)
= (UΣV T − (UΣV T)(V ΣUT)(UΣV T))(xm − x∗)

(Substituting SVD of AR = UΣV T)
= U(Σ − Σ3)V T (xm − x∗) (Simplifying)

2

We know that AR is well-conditioned (so the singular values of AR are all approximately the same),
thus all the diagonal entries of Σ are 1±ϵ0, and all the diagonal entries of Σ3 are (1±ϵ0)3 = 1±O(ϵ0),
therefore |Σ − Σ3|2 = O(ϵ0).

|AR(xm+1 − x∗)|2 = |U(Σ − Σ3)V T (xm − x∗)|2 (By previous result)
= |(Σ − Σ3)V T (xm − x∗)|2 (U is orthonormal)
= O(ϵ0)|V T (xm − x∗)|2 (|Σ − Σ3|2 = O(ϵ0))
≤ O(ϵ0)/(1 − ϵ0)|ΣV T (xm − x∗)|2 (Entries of Σ0 are in 1 ± ϵ0)
= O(ϵ0)/(1 − ϵ0)|UΣV T (xm − x∗)|2 (U is orthonormal)
= O(ϵ0)|AR(xm − x∗)|2 (SVD, AR = UΣV T)
= O(ϵ0)m+1|AR(x0 − x∗)|2 (Inductive hypothesis)

Therefore, the norm |AR(xm − x∗)|2 shrinks by O(ϵ0) in each iteration.

If we look at the iterate xm after m = O(lg(1/ϵ)) steps, then |AR(xm − x∗)|22 ≤ O(ϵ)|AR(x0 − x∗)|22.

Finally, we return to comparing ARx

Claim 2. |ARx0 − ARx∗|22 ≤ ϵ · O(1)|ARx∗ − b|22

Proof:

|ARx0 − ARx∗|22 ≤ |ARx0 − b|22 + |ARx∗ − b|22 (Pythagorean theorem)
≤ ϵ · O(1)|ARx∗ − b|22

The second inequality follows from:

|ARx0 − b|22 ≤ (1 + ϵ0)|ARx∗ − b|22 (S is subspace embedding)

Claim 3. |ARxm − b|22 ≤ (1 + ϵ)OPT

Finally, we can bound |ARxm − b|2 by the following:

|ARxm − b|22 = |AR(xm − x∗)|22 + |ARx∗ − b|22 (Pythagorean theorem)
≤ O(ϵ)|AR(x0 − x∗)|22 + |ARx∗ − b|22 (Claim 1, where m = lg(1/ϵ))
≤ O(ϵ)|ARx∗ − b|22 + |ARx∗ − b|22 (Claim 2)
≤ (1 + O(ϵ))OPT (OPT = |ARx∗ − b|22)

Claim 4. This algorithm has runtime with logarithmic dependence on 1/ϵ.

1. nnz(A) + poly(d): compute R ∈ Rd×d so that κ(AR) ≤ (1 + ϵ0)/(1 − ϵ0)

2. nnz(A) + poly(d): compute 1 + ϵ0-approximation of the initial value x0

3. lg(1/ϵ) · (d2 + nnz(A)): iterative gradient descent for log 1/ϵ iterations.

This sums to a total runtime of nnz(A)lg(1/ϵ) + poly(d) · lg(1/ϵ), which meets the original goal.

Note: classical gradient descent can be slow because of two problems: it depends on the condition
number, and also depends on the initial starting point. Sketching solves both problems, as it enforces
the condition number to be 1, and also sets a good starting point x0.

3

2 Leverage score sampling

Leverage score sampling provides another subspace embedding, based on sampling the rows of A.
This method has the property that if A has sparse rows, then SA has sparse rows where S is the
subspace embedding. It aims to sample the rows of A based on importance.

This method will be covered in the next lecture.

4

	High Precision Regression
	Small QR Decomposition
	Finding a constant-factor solution

	Leverage score sampling

