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1 Leverage Score Sampling

We’re looking at another subspace embedding: Sampling based. If A is sparse then SA is sparse.
A = UΣV ⊤ be an n × d matrix d rank. The ith leverage score: ℓ(i) of A to be |Ui,∗|22.

Leverage score distribution depends on the matrix.

Let (q1, . . . , qn) be a distribution with qi ≥ βℓ(i)
d , where β is a parameter (think of β = 1/2).

Define sampling matrix S = D · Ω⊤, where D is a k × k rescaling matrix and Ω is a sampling matrix.
Note: the rescaling matrix is for the norm when sampling.

Leverage score doesn’t depend on the choice of orthonormal basis U for A. Let U, U ′ be orthonormal
bases.

Claim 1. |eiU |22 = |eiU
′|22 ∀i ∈ [n]

Proof. Since U, U ′ have the same column space as A, there exists a change of basis matrix Z such
that U = U ′Z. Because U, U ′ have orthonormal columns, Z must be rotation matrix (orthonormal
rows and columns).

|Ux|22 = |U ′Zx|22 (Substitution)
The left-hand side is equal to |x|22 while the right-hand size is |Zx|22 because U, U ′ have orthonormal
columns. Therefore, Z is a d × d orthonormal matrix. We can conclude that

|eiU |22 = |eiU
′Z|22 = |eiU

′|22

■

1.1 Leverage Score Sampling gives a Subspace Embedding

We want to show for S = D · Ω⊤, that

|SAx|22 = (1 ± ϵ)|Ax|22 ∀x.

Well, let’s write A in terms of SVD. Then, it’s equivalent to showing

|Sy|22 = (1 ± ϵ)|Uy|22 (y = ΣV ⊤x)
= (1 ± ϵ)|y|22 (U has orthonormal columns)

for all y. It suffices to show |U⊤S⊤SU − I|2 ≤ ϵ with high probability. However, to analyze
U⊤S⊤SU , we’ll use Matrix Chernoff Bound (Lecture 4 slide 79).

First, we’ll define a few items to be used for Matrix Chernoff.
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• Let i(j) denote the index of U sampled in the jth trial.

• Let Xj = Id −
U⊤

i(j)Ui(j)
qi(j)

, where Ui(j) is the jth sampled row of U .

• The Xj are independent copies of a symmetric random variable.

Next, we’ll need to evaluate a few items and satisfy conditions.

E[Xj ] = Id −
∑

i

qi
U⊤

i U

qi

= Id − Id (U has orthonormal columns)
= 0

|Xj |2 ≤ |Id| +
|U⊤

i(j)Ui(j)|
qi(j)

≤ 1 + max
i

|Ui|22
qi

(Definition of Leverage Score)

≤ 1 + d

β
(qi ≥ β·ℓ(i)

d )

Finally,

E[X⊤X] = Id − 2E
[

U⊤
i(j)Ui(j)

qi(j)

]
+ E

[
U⊤

i(j)Ui(j)U
⊤
i(j)Ui(j)

q2
i(j)

]

= Id − 2Id + E
[

U⊤
i(j)Ui(j)U

⊤
i(j)Ui(j)

q2
i(j)

]

= E
[

U⊤
i(j)Ui(j)U

⊤
i(j)Ui(j)

q2
i(j)

]
− Id

=
∑

i

U⊤
i UiU

⊤
i Ui

qi
− Id

≤ ( d

β

∑
i

U⊤
i Ui − Id)

≤ ( d

β
− 1)Id.

Let’s show why ∑i
U⊤

i UiU
⊤
i Ui

qi
≤ d

β

∑
i U⊤

i Uix. First, we must recall A ≤ B for square matrices A, B.

A ≤ B ⇐⇒ ∀x, x⊤Ax ≤ x⊤Bx.

We have
x⊤∑

i

U⊤
i UiU

⊤
i Ui

qi
x ≤ d

β
x⊤∑

i

U⊤
i Uix.

The right-hand size is equal to ∑i
d
β ⟨Ui, x⟩2 while the left-hand size is equal to ∑i

|Ui|22
qi

⟨Ui, x⟩2.
Then, it boils down to showing |Ui|22

qi
≤ d

β but this comes from the fact that |Ui|22
d ≤ qi.
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Therefore, we see |E[X⊤X]| ≤ d
β − 1.

After collecting everything we can get back to Matrix Chernoff. Let’s find W .

|W |2 =

∣∣∣∣∣∣1k
k∑

j=1

(
Id −

U⊤
i(j)Ui(j)

qi(j)

)∣∣∣∣∣∣
2

=

∣∣∣∣∣∣Id −
k∑

j=1

U⊤
i(j)Ui(j)

k · qi(j)

∣∣∣∣∣∣
2

= |Id − U⊤S⊤SU |2

By Matrix Chernoff,
P
[
|Id − U⊤S⊤SU | > ϵ

]
≤ 2d · e−kϵ2Θ( β

d
).

We set k = Θ(d·log(d)
βϵ2 ).

Note: we need Ω(dlg(d)) samples. Consider the matrix

A =
(

Id

0

)
,

where A is a (n + d) × d matrix. The Coupon collector says Ω(d · lg(d)) samples.

1.2 Fast Computation of Leverage Scores

We need to compute SVD but as we know that is slow. Suppose we compute SA for subspace
embedding S. Let SA = QR−1, where Q has orthonormal columns. Similar to the previous lecture,
we’ll define a sketch.

Set ℓ′
i = |eiAR|22. Since AR has column span of A, AR = UT −1. We end up wanting to show T −1

is a rotation matrix to preserve the norm.

Claim 2. (1 ± O(ϵ))|x|2 = |ARx|2 = |UT −1|2 = |T −1x|2

Proof.

(1 − ϵ)|ARx|2 ≤ |SARx|2
= |x|2 (Q = SAR)

(1 + ϵ)|ARx|2 ≥ |SARx|2
= |x|2 (Q = SAR)

■

Therefore, (1 ± O(ϵ))|x|2 = |ARx|2. Because AR = UT −1 and U has orthonormal columns, we get
|ARx|2 = |UT −1|2 = |T −1x|2.
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Let’s get back to the normal leverage score:

ℓi = |eiART |22 = (1 ± O(ϵ))|eiAR|22 = (1 ± O(ϵ))ℓ′
i.

However, we still need to compute AR and we don’t know anything about R. As a solution, we’ll
sketch R on the right-hand side.

• ℓi = (1 ± O(ϵ))ℓ′
i. It suffices to set this ϵ to be constant. ℓ′

i = |eiAR|22 takes too long.

• Let G be a d × O(log(n)) matrix of i.i.d. normal random variables.

• For any vector z, P[|zG|22 = (1 ± 1/2)|z|22] ≥ 1 − 1
n2 . Instead, set ℓ′

i = |eiARG|22.

Note:

• Can compute in (nnz(A) +d2)log(n) time.

• Can solve regression in nnz(A)log(n)+poly(d(log(n))/ϵ) time.
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