CS 15-851: Algorithms for Big Data

Spring 2025

Lecture 5 Part 1 - 2/13/2025

Prof. David Woodruff

Scribe: Oswaldo Ramirez

1 Leverage Score Sampling

We're looking at another subspace embedding: Sampling based. If A is sparse then SA is sparse. $A = U\Sigma V^{\top}$ be an $n \times d$ matrix d rank. The i^{th} leverage score: $\ell(i)$ of A to be $|U_{i,*}|_2^2$.

Leverage score distribution depends on the matrix.

Let (q_1, \ldots, q_n) be a distribution with $q_i \ge \frac{\beta \ell(i)}{d}$, where β is a parameter (think of $\beta = 1/2$).

Define sampling matrix $S = D \cdot \Omega^{\top}$, where D is a $k \times k$ rescaling matrix and Ω is a sampling matrix. Note: the rescaling matrix is for the norm when sampling.

Leverage score doesn't depend on the choice of orthonormal basis U for A. Let U, U' be orthonormal bases.

Claim 1. $|e_i U|_2^2 = |e_i U'|_2^2 \quad \forall i \in [n]$

Proof. Since U, U' have the same column space as A, there exists a change of basis matrix Z such that U = U'Z. Because U, U' have orthonormal columns, Z must be rotation matrix (orthonormal rows and columns).

$$|Ux|_2^2 = |U'Zx|_2^2 \tag{Substitution}$$

The left-hand side is equal to $|x|_2^2$ while the right-hand size is $|Zx|_2^2$ because U, U' have orthonormal columns. Therefore, Z is a $d \times d$ orthonormal matrix. We can conclude that

$$|e_i U|_2^2 = |e_i U' Z|_2^2 = |e_i U'|_2^2$$

1.1 Leverage Score Sampling gives a Subspace Embedding

We want to show for $S = D \cdot \Omega^{\top}$, that

$$|SAx|_2^2 = (1 \pm \epsilon)|Ax|_2^2 \quad \forall x.$$

Well, let's write A in terms of SVD. Then, it's equivalent to showing

$$Sy|_{2}^{2} = (1 \pm \epsilon)|Uy|_{2}^{2} \qquad (y = \Sigma V^{\top}x)$$
$$= (1 \pm \epsilon)|y|_{2}^{2} \qquad (U \text{ has orthonormal columns})$$

for all y. It suffices to show $|U^{\top}S^{\top}SU - I|_2 \leq \epsilon$ with high probability. However, to analyze $U^{\top}S^{\top}SU$, we'll use Matrix Chernoff Bound (Lecture 4 slide 79).

First, we'll define a few items to be used for Matrix Chernoff.

ŀ

- Let i(j) denote the index of U sampled in the j^{th} trial.
- Let $X_j = I_d \frac{U_{i(j)}^{\top} U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the j^{th} sampled row of U.
- The X_j are independent copies of a symmetric random variable.

Next, we'll need to evaluate a few items and satisfy conditions.

$$\begin{split} \mathbf{E}[X_j] &= I_d - \sum_i q_i \frac{U_i^\top U}{q_i} \\ &= I_d - I_d \qquad (U \text{ has orthonormal columns}) \\ &= 0 \end{split}$$
$$|X_j|_2 &\leq |I_d| + \frac{|U_{i(j)}^\top U_{i(j)}|}{q_{i(j)}} \\ &\leq 1 + \max_i \frac{|U_i|_2^2}{q_i} \qquad (Definition of Leverage Score) \\ &\leq 1 + \frac{d}{\beta} \qquad (q_i \geq \frac{\beta \cdot \ell(i)}{d}) \end{split}$$

Finally,

$$\begin{split} \mathbf{E}[X^{\top}X] &= I_d - 2\mathbf{E}\left[\frac{U_{i(j)}^{\top}U_{i(j)}}{q_{i(j)}}\right] + \mathbf{E}\left[\frac{U_{i(j)}^{\top}U_{i(j)}U_{i(j)}^{\top}U_{i(j)}}{q_{i(j)}^{2}}\right] \\ &= I_d - 2I_d + \mathbf{E}\left[\frac{U_{i(j)}^{\top}U_{i(j)}U_{i(j)}^{\top}U_{i(j)}}{q_{i(j)}^{2}}\right] \\ &= \mathbf{E}\left[\frac{U_{i(j)}^{\top}U_{i(j)}U_{i(j)}^{\top}U_{i(j)}}{q_{i(j)}^{2}}\right] - I_d \\ &= \sum_i \frac{U_i^{\top}U_iU_i^{\top}U_i}{q_i} - I_d \\ &\leq \left(\frac{d}{\beta}\sum_i U_i^{\top}U_i - I_d\right) \\ &\leq \left(\frac{d}{\beta} - 1\right)I_d. \end{split}$$

Let's show why $\sum_{i} \frac{U_{i}^{\top} U_{i} U_{i}^{\top} U_{i}}{q_{i}} \leq \frac{d}{\beta} \sum_{i} U_{i}^{\top} U_{i} x$. First, we must recall $A \leq B$ for square matrices A, B. $A \leq B \iff \forall x, \quad x^{\top} A x \leq x^{\top} B x$.

We have

$$x^{\top} \sum_{i} \frac{U_i^{\top} U_i U_i^{\top} U_i}{q_i} x \le \frac{d}{\beta} x^{\top} \sum_{i} U_i^{\top} U_i x.$$

The right-hand size is equal to $\sum_{i} \frac{d}{\beta} \langle U_i, x \rangle^2$ while the left-hand size is equal to $\sum_{i} \frac{|U_i|_2^2}{q_i} \langle U_i, x \rangle^2$. Then, it boils down to showing $\frac{|U_i|_2^2}{q_i} \leq \frac{d}{\beta}$ but this comes from the fact that $\frac{|U_i|_2^2}{d} \leq q_i$. Therefore, we see $|\mathbf{E}[X^{\top}X]| \leq \frac{d}{\beta} - 1.$

After collecting everything we can get back to Matrix Chernoff. Let's find W.

$$|W|_{2} = \left| \frac{1}{k} \sum_{j=1}^{k} \left(I_{d} - \frac{U_{i(j)}^{\top} U_{i(j)}}{q_{i(j)}} \right) \right|_{2}$$
$$= \left| I_{d} - \sum_{j=1}^{k} \frac{U_{i(j)}^{\top} U_{i(j)}}{k \cdot q_{i(j)}} \right|_{2}$$
$$= |I_{d} - U^{\top} S^{\top} SU|_{2}$$

By Matrix Chernoff,

$$\mathbf{P}\left[|I_d - U^{\top} S^{\top} S U| > \epsilon\right] \le 2d \cdot e^{-k\epsilon^2 \Theta(\frac{\beta}{d})}.$$

We set $k = \Theta(\frac{d \cdot log(d)}{\beta \epsilon^2})$.

Note: we need $\Omega(dlg(d))$ samples. Consider the matrix

$$A = \begin{pmatrix} I_d \\ 0 \end{pmatrix},$$

where A is a $(n+d) \times d$ matrix. The Coupon collector says $\Omega(d \cdot lg(d))$ samples.

1.2 Fast Computation of Leverage Scores

We need to compute SVD but as we know that is slow. Suppose we compute SA for subspace embedding S. Let $SA = QR^{-1}$, where Q has orthonormal columns. Similar to the previous lecture, we'll define a sketch.

Set $\ell'_i = |e_i A R|_2^2$. Since AR has column span of A, $A R = U T^{-1}$. We end up wanting to show T^{-1} is a rotation matrix to preserve the norm.

Claim 2.
$$(1 \pm O(\epsilon))|x|_2 = |ARx|_2 = |UT^{-1}|_2 = |T^{-1}x|_2$$

Proof.

$$(1-\epsilon)|ARx|_2 \le |SARx|_2$$

= |x|_2 (Q = SAR)

$$(1+\epsilon)|ARx|_2 \ge |SARx|_2$$

= |x|_2 (Q = SAR)

Therefore, $(1 \pm O(\epsilon))|x|_2 = |ARx|_2$. Because $AR = UT^{-1}$ and U has orthonormal columns, we get $|ARx|_2 = |UT^{-1}|_2 = |T^{-1}x|_2$.

Let's get back to the normal leverage score:

$$\ell_i = |e_i ART|_2^2 = (1 \pm O(\epsilon))|e_i AR|_2^2 = (1 \pm O(\epsilon))\ell'_i.$$

However, we still need to compute AR and we don't know anything about R. As a solution, we'll sketch R on the right-hand side.

- $\ell_i = (1 \pm O(\epsilon))\ell'_i$. It suffices to set this ϵ to be constant. $\ell'_i = |e_i A R|_2^2$ takes too long.
- Let G be a $d \times O(log(n))$ matrix of i.i.d. normal random variables.
- For any vector z, $\mathbf{P}[|zG|_2^2 = (1 \pm 1/2)|z|_2^2] \ge 1 \frac{1}{n^2}$. Instead, set $\ell'_i = |e_i ARG|_2^2$.

Note:

- Can compute in $(nnz(A) + d^2)log(n)$ time.
- Can solve regression in $nnz(A)log(n) + poly(d(log(n))/\epsilon)$ time.