
CS 15-859: Algorithms for Big Data Fall 2020

Lecture 10 — 11/12/2020
Prof. David Woodruff Scribe: Zheng Xu

1 Estimating Number of Non-zero Entries

We have a problem where we want to find ‖x‖0 = |{ i such that xi 6= 0}| (usually called 0 norm).
As usual, we want to output Z such that (1− ε)‖x‖0 ≤ Z ≤ (1 + ε)‖x‖0 with prob. 9/10 and use
O((log n)/ε) bits of space. For a simpler case where we suppose ‖x‖0 = O(1

ε2), we can either use
CountSketch or use Vandermonde matrix to recover a k-sparse vector where k = O(1

ε2). But, we
also want an algorithm when |x|0 >> 1

ε2 . We will use some technique to sample coordinates of x
and solve the problem on sampled x.

1.1 Estimation with given rough estimate

Suppose we are given an estimate Z such that Z ≤ ‖x‖0 ≤ 2Z. Given this information we want to
sample coordinates of x so that the number of non-zero entries in sampled x is O

(
1
ε2

)
. We start

with an example where we independently sample each coordinate of x with probability p = 100
Zε2 . Let

Yi be an indicator random variable if coordinate i is sampled and let y be the vector restricted to
coordinates i for which Yi = 1.

E[‖y‖0] =
∑

i such that xi 6=0
E[Yi] = p‖x‖0 = 100

Zε2 ‖x‖0 ≥
100
ε2 (1)

Var[Yi] ≤ E[Y 2
i] = Pr[Yi = 1] = p (2)

Var[‖y‖0] =
∑

i such that xi 6=0
Var[Yi] ≤ p‖x‖0 ≤

200
ε2 (3)

(4)

Here we use Chebyshev’s inequality

Pr[|‖y‖0 − E[‖y‖0]|] >
100
ε

] ≤ Var[‖y‖0]ε2

1002 ≤ 1
50 (5)

Thus, ‖y‖0 ∈ 100
ε2 ± 100

ε with probability 49
50 . We calculate ‖y‖0 using sparse recovery or CountSketch

to compute ‖y‖0 exactly, then we multiply it by 1
p we get 1

p‖y‖0 ∈ (1± ε)‖x‖0.

1.2 Find the appropriate Z

Because 0 ≤ ‖x‖0 ≤ n, there are O(log(n)) powers of 2 in the range. So we can guess Z in power of
2 and run the algorithm in parallel O(log(n)) times. The i-th guess Z = 2i corresponds to sampling
each coordinate with probability p = min(1, 100

2iε2). Let Si be the set of coordinates sampled for

1

Z = 2i. We can ensure that S0 ⊇ S1 ⊇ . . . SO(log(n)). Note that the sets Si, Sj aren’t independent
for i 6= j but for each set Si the coordinates in Si are sampled independently. We compute an
estimate of ‖x‖0 using each set Si. Among the guesses, one of them is correct.
The problem comes down to which one of the answers is correct. Let yi denote the vector x restricted
to the coordinates Si. Because of the nesting property of the subsets Si, we have

‖y0‖0 ≥ ‖y1‖0 ≥ . . . ‖ylog(n)‖0.

The rule is we use the largest guess i for which 400
ε2 ≤ ‖yi‖0 ≤ 3200

ε2 . Let this be i∗.

For any i, we have by Chebyshev’s inequality

P[|‖yi‖0 − E[‖yi‖0]| ≥ t] ≤ Var[‖yi‖0]
t2 ≤ E[‖yi‖0]

t2 .

Here the last inequality follows from ‖yi‖0 is a sum of independent binary random variables. Let i′

be such that 800
ε2 ≤ E[‖yi′‖0] ≤ 1600

ε2 . Picking t = 400/ε2, we obtain from above that

400
ε2 ≤ ‖y

i′‖0 ≤
2000
ε2

with probability ≥ 1 − O(ε2). We also have that 100/ε2 ≤ E[‖yi′+3‖0] ≤ 200/ε2 from which we
obtain similar to above that ‖yi′+3‖0 ≤ 400/ε2 with probability ≥ 1−O(ε2). Therefore using union
bound, we have with probability ≥ 1−O(ε2), that 2000/ε2 ≥ ‖yi′‖0 ≥ 400/ε2 and ‖yi′+3‖0 ≤ 400/ε2

simultaneously. Thus i′ ≤ i∗ ≤ i′ + 3 using monotonicity of ‖yi‖0 and the fact that i∗ is the
largest index with 400/ε2 ≤ ‖yi∗‖ ≤ 3200/ε2. Now it is easy to check that for all four guesses
Z = 2i′ , 2i′+1, 2i′+2, 2i′+3, the algorithm using Countsketch gives 1 ± O(ε) approximation and
therefore the estimate computed using i∗ is a 1 + O(ε) approximation.

1.3 Overall Space Complexity

We are doing k-sparse recovery log(n) times, each k-sparse recovery uses O(k log(n)) bits. k = O(1
ε2)

here, so overall O(log2(n)
ε2) total bits of space will be used ignoring random bits.

Now we consider the amount of randomness we need for the algorithm to work. We only used
Chebyshev’s inequality in our algorithm, and Chebyshev’s inequality only requires pairwise indepen-
dence. We will now determine how we can achieve pairwise independence.
Suppose we have a function h : [n]→ [n] and we want to sample each coordinate with probability
1
2 . We can use h(i) mod 2 to determine if we sample this coordinate or not, 0 to sample, 1 not
to. Now consider the use case on Si. We sample the coordinate when the last i digits in binary
representation of h(i) are zero. This method of sampling also satisfies nested subset. We need
O(log(n)) bits of space for randomness.
The overall memory is O(log(n)(log 1

ε
+log(log(n)))
ε2). But we can still improve by reducing the size of

counters.

1.4 Reducing Counter Size

In sparse recovery we use a Vandermonde matrix, and we can reduce memory size of the matrix by
doing mod L for a sufficiently large prime L.

2

In sampling levels that we care about, we have O(1
ε2), each of O(log n) bits. To start with, we want

a prime that does not divide any of the O(1
ε2) counters. There are a total of O(log(n)

ε2) primes that
can divide any of the counters. We want to choose a prime from {2, . . . , L} that avoids these primes.
In {2, . . . , L}, there are a total of Θ(L

log(L)) primes. We choose L = O(log(n)(log(log(n))+log(1
ε

))
ε2), such

that L
log(L) > O(log(n)

ε2) and it is unlikely that L divides any counter. In this case, we just need to

maintain our sparse recovery structure mod L, which is O(log 1
ε

+log(log(n))
ε2) for each counter, and a

total of O(log(n)) counters.

3

	Estimating Number of Non-zero Entries
	Estimation with given rough estimate
	Find the appropriate Z
	Overall Space Complexity
	Reducing Counter Size

