15-859 : Homework 3 Solutions

1 Question 1

See Section 3.1 of http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/wNow3.pdf

2 Question 2

2.1 Part 1

S be a Cauchy matrix used in estimating ℓ_1 -norm of a stream. As Alice and Bob both have shared randomness, they can both generate this matrix *S*. Alice computes *Sx*, *Sa* and sends both *Sx*, *Sa* to Bob. This requires a communication of $O(\log(n)/\varepsilon^2)$ bits. Bob then computes Sx + Sy and Sa + Sb and computes Z = median(|Sx + Sy|) + median(|Sa + Sb|). We have from class that with probability 9/10, the following hold simultaneously,

$$(1-\varepsilon)\|x+y\|_1 \le \operatorname{median}(|S(x+y)|) \le (1+\varepsilon)\|x+y\|_1$$

$$(1-\varepsilon)\|a+b\|_1 \le \operatorname{median}(|S(a+b)|) \le (1+\varepsilon)\|a+b\|_1.$$

Therefore *Z* computed by Bob satisfies, with probability $\geq 9/10$, that

$$(1-\varepsilon)(\|x+y\|_1 + \|a+b\|_1) \le Z \le (1+\varepsilon)(\|x+y\|_1 + \|a+b\|_1).$$
(1)

An issue with Cauchy random variables is that they take real values and thus cannot be communicated efficiently. Note that ε is assumed to be $\Omega(1/\text{poly}(n))$. Now rounding the entries of the vectors Sa, Sx to nearest multiple of 1/poly(n) will modify the value of Z computed by at most 1/poly(n) and therefore for all (x, y), (a, b) such that $||x + y||_1 + ||a + b||_1 \ge 1$, rounding of the vectors Sx, Sa still means that the value Z computed satisfies (1). In the case when x + y = 0 and a + b = 0, rounding of the vectors might lead to Bob computing a different value but as rounding changes the norm by at most 1/poly(n), Z computed is such that $Z \le 1/\text{poly}(n)$. Then Bob can infer that $||x + y||_1 + ||a + b||_1 = 0$. Note that $||x + y||_1 + ||a + b||_1$ can only take integer values and thus we covered all the cases.

2.2 Part 2

We prove a lowerbound by reducing from the index problem. Alice gets a set $S \subseteq [n]$ and Bob gets an index $i \in [n]$ and wants to determine if $i \in S$ or not. Alices sets the vectors x = a to be the vectors that corresponds to the set S. Bob sets y to be a vector such that $y_i = +1$ and y_j and b to be a vectors such that $b_i = -1$ and $b_j = 0$ for all $j \neq i$. Then it is easy to see that

$$||x+y||_1 - ||a+b||_1 = \begin{cases} 0 & \text{if } i \notin S\\ 2 & \text{if } i \notin S. \end{cases}$$

Thus, by checking the value of *Z* computed with $\varepsilon = 1/2$, Bob can check if $i \in S$ and will be correct with probability $\geq 9/10$. But as index problem has a lower-bound of $\Omega(n)$ one-way communication complexity, we obtain that this problem also has a $\Omega(n)$ lowerbound.

3 Part 3

Let \tilde{Z} be such that $(1 - \varepsilon/2) \|a + b\|_2^2 \leq \tilde{Z} \leq (1 + \varepsilon/2) \|a + b\|_2^2$. Suppose $\|a + b\|_2^2 \geq 2$. We have $\tilde{Z} \geq 2 - \varepsilon$. In this case $\tilde{Z} - 1$ satisfies

$$(1 - \varepsilon/2) \|a + b\|_2^2 - 1 \le Z - 1 \le (1 + \varepsilon/2) \|a + b\|_2^2 - 1.$$

We have

$$(1+\varepsilon)(\|a+b\|_2^2-1) - ((1+\varepsilon/2)\|a+b\|_2^2-1) = (\varepsilon/2)\|a+b\|_2^2 - \varepsilon \ge 0.$$

Similarly,

$$(1 - \varepsilon/2) \|a + b\|_2^2 - 1 - (1 - \varepsilon)(\|a + b\|_2^2 - 1) = \varepsilon/2 \|a + b\|_2^2 - \varepsilon \ge 0.$$

Therefore we have

$$(1-\varepsilon)(\|a+b\|_2^2 - 1) \le Z - 1 \le (1+\varepsilon)(\|a+b\|_2^2 - 1)$$

if $||a + b||_2^2 \ge 2$. If $||a + b||_2^2 < 2$, there are only two possibilities as a, b have integer coordinates.

- <u>Case 1</u>: $||a + b||_2^2 = 1$. We have $(1 \varepsilon/2) \le \tilde{Z} \le (1 + \varepsilon/2) < 2 \varepsilon$. So if \tilde{Z} computed by Bob is $< 2 \varepsilon$ and nonzero, then we can conclude that $||a + b||_2^2 = 1$ and $|||a + b||_2^2 1| = 0$.
- <u>Case 2</u>: $||a + b||_2^2 = 0$. Then \tilde{Z} computed is also equal to 0 and we can conclude that $|||a + b||_2^2 1| = |-1| = 1$.

Therefore based on value of \tilde{Z} , Bob can compute $1 \pm \varepsilon$ approximation to $|||a + b||_2^2 - 1|$ and such a \tilde{Z} can be computed using $O(\log(n)/\varepsilon^2)$ bits of communication as seen in class. Bob can also compute $1\pm\varepsilon$ approximation to $||x+y||_1$ by sketching with Cauchy matrix and a communication of $O(\log(n)/\varepsilon^2)$ bits. Now multiplying both values gives a $1\pm O(\varepsilon)$ approximation and appropriately scaling ε lets Bob compute a Z such that

$$(1-\varepsilon)(\|x+y\|_1 \cdot |\|a+b\|_2^2 - 1|) \le Z \le (1+\varepsilon)(\|x+y\|_1 \cdot |\|a+b\|_2^2 - 1|)$$

using a protocol that has communication complexity $O(\log(n)/\varepsilon^2)$. Rounding issues can be similarly solved as in Part 1.

4 Part 4

We again show a lowerbound by reducing from the index problem. Alice obtains a set $S \subseteq [n]$ and Bob obtains an index $i \in [n]$ and Bob wants to determine if $i \in S$ or not. As we've seen, this problem has $\Omega(n)$ lower bound on the one-way communication complexity.

Alice sets the vector *a* to correspond to the set *S* i.e., $a_j = 1$ if $j \in S$ and 0 otherwise and sets x = 0. Bob sets the vector b = 0 and *y* to be the vectors such that $y_i = 1$ and $y_j = 0$ for all $j \neq i$. We now have $||(D_a - D_b) \cdot (x - y)||_1 = 1$ if $i \in S$ and 0 otherwise which can be distinguished using a value of $\varepsilon = 1/2$. Lowerbound on Index problem implies a $\Omega(n)$ lower bound on this problem.