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Theorem:
 There is a probability space over (d log d)  n matrices R such that for any 

nd matrix A, with probability at least 99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Sketching Theorem
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Cauchy Random Variables

 pdf(z) = 1/(π(1+z2)) for z in (-1, 1)

 Undefined expectation and 

infinite variance

 1-stable:
 If z1, z2, …, zn are i.i.d. Cauchy, then for a 2 Rn,

a1¢z1 + a2¢z2 + … + an¢zn » |a|1¢z, where z is Cauchy

 Can generate as the ratio of two standard normal random variables

z
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Proof of Sketching Theorem

 By 1-stability,

 For all rows r of R,
 <r, Ax> = |Ax|1¢Z / (d log d), 

where Z is a Cauchy

 RAx = » (|Ax|1 ¢ Z1, …, |Ax|1 ¢ Zd log d) / (d log d),
where Z1, …, Zd log d are i.i.d. Cauchy

 |RAx|1 = |Ax|1 j |Zj| / (d log d)
 The |Zj| are half-Cauchy

 j |Zj| = (d log d) with probability 1-exp(-d log d) by Chernoff

 But the |Zj| are heavy-tailed…

z
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Proof of Sketching Theorem 

 j |Zj| is heavy-tailed, so |RAx|1 = |Ax|1 j |Zj| / (d log d) may be large

 Each |Zj| has c.d.f. asymptotic to 1-Θ(1/z) for z in [0, 1)

 There exists a well-conditioned basis of A 
 Suppose w.l.o.g. the basis vectors are A*1, …, A*d

 |RA*i|1 » = |A*i|1 ¢ j |Zi,j| / (d log d)

 Let ୧,୨ be the event that | ୧,୨
ଷ

 Define ୧,୨
ᇱ

୧,୨ if | ୧,୨
ଷ, and ୧,୨

ᇱ ଷ otherwise

 ୧,୨ ୧,୨ ୧,୨
ᇱ

୧,୨

 Let E be the event that for all i,j, ୧,୨ occurs


୪୭୥ ୢ

ୢ

 What is ୧,୨
ᇱ ?
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Proof of Sketching Theorem

 What is ୧,୨
ᇱ ?

 ୧,୨
ᇱ

୧,୨ ୧,୨
ᇱ

୧,୨ ୧,୨ ୧,୨
ᇱ

୧,୨ ୧,୨

୧,୨
ᇱ

୧,୨ ୧,୨

୧,୨
ᇱ

୔୰ ୧,୨ ୔୰ ୉

୔୰ ୉౟,ౠ

୧,୨
ᇱ

 So, ୧,୨
ᇱ

 |RA*i|1 » = |A*i|1 ¢ j |Zi,j| / (d log d)

 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1
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Proof of Sketching Theorem 

 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1

 Recall A*1, …, A*d is a well-conditioned basis, and we 
showed the existence of such a basis earlier

 We will use the Auerbach basis which always exists:
 For all x, |x|1 · |Ax|1
 i |A*i|1 = d

  i |RA*i|1 = O(d log d)

 For all x, |RAx|1 · i |RA*i xi|· |x|1 i |RA*i|1
= |x|1O(d log d) 
= O(d log d) |Ax|1
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 Suffices to show for all x with ଵ that |Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1
 We know

 (1) there is a -net M, with 
ୢ

ஓ

୓(ୢ)

, of the set {Ax such that ଵ }

 (2) for any fixed x, ଵ ଵ with probability 

 (3) for all x, ଵ ଵ

 Set ଷ so ୓(ୢ)

 By a union bound, for all y in M, ଵ ଵ

 Let x with ଵ be arbitrary. Let y in M satisfy ଵ
ଷ

 ଵ ଵ ଵ

ଵ ଵ

ଵ

ଵ
ଵ

ୢమ

ଵ (why?)

Where are we?
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Outline

 Quick recap of -regression, and how to speed it up

 Introduction to the Streaming Model and Estimating 
Norms
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Regression Algorithm Recap

Compute poly(d)-
approximation

Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 
the residual of the poly(d)-

approximation

Solve l1-regression on the sample, obtaining vector x, and output x

We saw how to solve the above problems by sketching by a
matrix of i.i.d. Cauchy random variables 



123

Sketching to solve l1-regression [CW, MM]

 For all x, 
ଵ

ୢమ୪୭୥మୢ ଵ ଵ ଵ

 Overall time for ଵ-regression is nnz(A) + poly( ) 

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

¢
C1

C2

C3

…
Cn

 Most expensive operation is computing R*A where R is the matrix of i.i.d. 
Cauchy random variables

 All other operations are in the “smaller space”

 Can speed this up by choosing R as follows:



124

Further sketching improvements [WZ] 

 Can show you need a fewer number of sampled rows in later steps if 
instead choose R as follows

 Instead of diagonal of Cauchy random variables, choose diagonal of 
reciprocals of exponential random variables

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

¢
1/E1

1/E2

1/E3

…
1/En

 For all x, 
ଵ

ୢ.ఱ୮୭୪୷(୪୭୥ ୬ୢ ) ଵ ଵ ଵ
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Fun Fact about Cauchy Random Variables

 Suppose you have i.i.d. copies Rଵ, … , R୬ of a random variable with mean 0 and 
variance σଶ

 What is the distribution of 
∑ ୖ౟

 
౟

୬
 ?  

 By Central Limit Theorem, this approaches a normal random variable N(0, σଶ/n)

 Intuitively, the variance is decreasing and the average is approaching its 
expectation

 Now suppose you have i.i.d. copies Rଵ, … , R୬ of a standard Cauchy random 
variable

 What is the distribution of 
∑ ୖ౟

 
౟

୬
 ?  

 It’s still a standard Cauchy random variable!
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Outline

 Introduction to the Streaming Model 

 Estimating Norms in the Streaming Model



Turnstile Streaming Model

• Underlying n-dimensional vector x initialized to 0n

• Long stream of updates xi xi + Δj for Δj in {-M, -M+1, …, M-1, M}
•

• Throughout the stream, x is promised to be in {-M, -M+1, …, M-1, M}n

• Output an approximation to f(x) with high probability over our coin 
tosses

• Goal: use as little space (in bits) as possible
• Massive data: stock transactions, weather data, genomes



Testing if x = 

• How can we test, with probability at least 9/10, over our random coin tosses, if the 
underlying vector ୬

• Can we use O(log n) bits of space?

• We saw that for any fixed vector x, if S is a CountSketch matrix with ଵ

஫మ rows, then 

ଶ
ଶ

ଶ
ଶ with probability at least 9/10

• If we set ଵ

ଶ
we use O(log n) bits of space to store the O(1) entries of Sx

• We can store the hash function and sign function defining S using O(log n) bits



Testing if x = 

• Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector x = 0୬

with o(n log n) bits of space?

• Theorem: any deterministic algorithm requires Ω(n log n) bits of space

• Suppose the first half of the stream corresponds to updates to a vector a in 0, 1, 2, … , poly n ୬

• Let S(a) be the state of the algorithm after reading the first half of the stream
• If |S(a)| = o(n log n), there exist a≠ a′ for which S(a) = S(a’)

• Suppose the second half of the stream corresponds to updates to a vector b in 
0, −1, −2, … , −poly n ୬

• The algorithm must output the same answer on a+b and a’+b, so it errs in one case 



Example: Recovering a k-Sparse Vector

• Suppose we are promised that x has at most k non-zero entries at the end of the 
stream

• k is often small – maybe we see all coordinates of a vector a followed by all 
coordinates of a similar vector b, and a-b only has k non-zero entries

• Can we recover the indices and values of the k non-zero entries with high 
probability?

• Can we use k poly(log n) bits of space?

• Can we do it deterministically?



Example: Recovering a k-Sparse Vector

• Suppose A is an s x n matrix such that any 2k columns are linearly independent

• Maintain in the stream

• Claim: from you can recover the subset S of k non-zero entries and their values

• Proof: suppose there were vectors x and each with at most k non-zero entries and = 

• Then A(x-y) = 0. But x-y has at most 2k non-zero entries, and any 2k columns of A are linearly 
independent. So x-y = 0, i.e., x = y. 

• Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows? 



Example: Recovering a k-Sparse Vector

1 1 1 …
1 2 3 …
1 4 9 …
1 8 27 …

• Vandermonde matrix A with s = 2k rows and n columns. ୧,୨
୧ିଵ

• Determinant of 2k x 2k submatrix of A with set of columns equal to ଵ ଶ୩ is:
୨ ୨ ୨ᇲ

 
୨ழ୨ᇱ

 
୨ , so any 2k columns of A are linearly independent

• But entries of A are exponentially increasing – how to store A and 

• Just store mod p for a large enough prime p = poly(n)



Outline

• Quick recap of ଵ-regression, and how to speed it up

• Introduction to the Streaming Model 

• Estimating Norms in the Streaming Model



Example Problem: Norms

• Suppose you want |x|p
p = Ʃi=1

n |xi|p

• Want Z for which (1-Ɛ) |x|p
p Z (1+Ɛ) |x|p

p with probability > 9/10

• p = 1 corresponds to total variation distance between distributions

• p = 2 useful for geometric and linear algebraic problems

• p = is the value of the maximum entry, useful for anomaly detection, etc.
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Example Problem: Euclidean Norm

• Want Z for which (1-Ɛ) |x|2
2 Z (1+Ɛ) |x|2

2  

• Sample a random CountSketch matrix S with ଶ rows

• Can store S efficiently using limited independence 

• If xi ← xi + Δj in the stream, then Sx ← Sx + Δ୨S∗,୧

• At end of stream, output Sx ଶ
ଶ

• With probability at least 9/10, ଶ
ଶ

ଶ
ଶ

• Space complexity is ଶ words, each word is O(log n) bits
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Example Problem: 1-Norm

• Want Z for which (1-Ɛ) |x|1 Z (1+Ɛ) |x|1

• Sample a random Cauchy matrix S? 

• Can store S with ଵ
஫

words of space [Kane, Nelson, W]

• If xi xi + Δj in the stream, then ୨ ∗,୧

• Space complexity is ଶ words, each word is O(log n) bits 

• At end of stream, output ଵ ?

• Cauchy random variables have no concentration…
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1-Norm Estimator

• Probability density function f(x) of |C| for a Cauchy random variable 
C is ଶ

஠ ଵା୶మ

• Cumulative distribution function F(z):

 

଴

୸

• Since tan( , F(1) = ½, so median(|C|) = 1

• If you take 
୪୭୥

భ

ಌ

஫మ independent samples ଵ ୰ from F, and 
୧ ୧ , then     F(X) in [1/2- , 1/2+ with probability 1-

• ିଵ ଡ଼஠

ଶ
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p-Norm Estimator

• Can achieve ଶ words of space for p-norm estimation for any 0 < p < 2

• Proof is similar to 1-norm estimation, and uses p-stable distributions, 
which exist only for 0 < p < 2

• No closed form expression for their probability density function but they 
are efficiently sampleable:

• If ஠

ଶ

஠

ଶ
and are uniformly random, then

ୱ୧୬ ୮ ஘

ୡ୭ୱ
భ
౦ ஘

ୡ୭ୱ ஘ ଵି୮

୪୬
భ

౨

భష౦

౦

is a sample from a p-stable distribution!

• Can discretize them and store a sketching matrix of samples from the p-
stable distribution using limited independence


