Sketching Theorem

Theorem:

 There is a probability space over (d log d) × n matrices R such that for any n×d matrix A, with probability at least 99/100 we have for all x:

 $|Ax|_1 \leq |RAx|_1 \leq d \log d \cdot |Ax|_1$

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Cauchy Random Variables

- $pdf(z) = 1/(\pi(1+z^2))$ for z in $(-\infty, \infty)$
- Undefined expectation and infinite variance

- 1-stable:
 - If $z_1, z_2, ..., z_n$ are i.i.d. Cauchy, then for $a \in \mathbb{R}^n$, $a_1 \cdot z_1 + a_2 \cdot z_2 + ... + a_n \cdot z_n \sim |a|_1 \cdot z$, where z is Cauchy
- Can generate as the ratio of two standard normal random variables

- $|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)$
 - The |Z_i| are half-Cauchy
- $\sum_{i} |Z_{i}| = \Omega(d \log d)$ with probability 1-exp(-d log d) by Chernoff
- But the |Z_i| are heavy-tailed...

- $\sum_{j} |Z_{j}|$ is heavy-tailed, so $|RAx|_{1} = |Ax|_{1} \sum_{j} |Z_{j}| / (d \log d)$ may be large
- Each $|Z_i|$ has c.d.f. asymptotic to 1- $\Theta(1/z)$ for z in [0, ∞)
- There exists a well-conditioned basis of A
 - Suppose w.I.o.g. the basis vectors are A_{*1}, ..., A_{*d}
- $|RA_{*i}|_1 = |A_{*i}|_1 \cdot \sum_j |Z_{i,j}| / (d \log d)$
- Let $E_{i,j}$ be the event that $|Z_{i,j}| \le d^3$
 - Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \le d^3$, and $Z'_{i,j} = d^3$ otherwise
 - $E[Z_{i,j} | E_{i,j}] = E[Z'_{i,j} | E_{i,j}] = O(\log d)$
- Let E be the event that for all i,j, E_{i,j} occurs

•
$$\Pr[E] \ge 1 - \frac{\log d}{d}$$

• What is $E[Z'_{i,j} | E]$?

- What is $E[Z'_{i,j} | E]$?
- $E[Z'_{i,j}|E_{i,j}] = E[Z'_{i,j}|E_{i,j}, E] Pr[E | E_{i,j}] + E[Z'_{i,j}|E_{i,j}, \neg E] Pr[\neg E | E_{i,j}]$ $\ge E[Z'_{i,j}|E_{i,j}, E] Pr[E | E_{i,j}]$

$$= E[Z'_{i,j}|E] \cdot \left(\frac{\Pr[E_{i,j}|E]\Pr[E]}{\Pr[E_{i,j}]}\right)$$
$$\geq E[Z'_{i,j}|E] \cdot \left(1 - \frac{\log d}{d}\right)$$

- So, $E[Z'_{i,j}|E] = O(\log d)$
- $|RA_{*i}|_1 = |A_{*i}|_1 \cdot \sum_j |Z_{i,j}| / (d \log d)$
- With constant probability, $\sum_{i} |RA_{i}|_{1} = O(\log d) \sum_{i} |A_{i}|_{1}$

- With constant probability, $\sum_{i} |RA_{i}|_{1} = O(\log d) \sum_{i} |A_{i}|_{1}$
- Recall A_{*1}, ..., A_{*d} is a well-conditioned basis, and we showed the existence of such a basis earlier
- We will use the Auerbach basis which always exists:
 - For all x, $|\mathbf{x}|_{\infty} \leq |\mathbf{A}\mathbf{x}|_1$
 - $\sum_i |A_{*i}|_1 = d$
- $\sum_{i} |RA_{*i}|_1 = O(d \log d)$
- For all x, $|RAx|_1 \le \sum_i |RA_{*_i} x_i| \le |x|_{\infty} \sum_i |RA_{*_i}|_1$ = $|x|_{\infty}O(d \log d)$ = $O(d \log d) |Ax|_1$

Where are we?

- Suffices to show for all x with $|x|_1 = 1$, that $|Ax|_1 \le |RAx|_1 \le d \log d \cdot |Ax|_1$
- We know
 - (1) there is a γ -net M, with $|M| \le \left(\frac{d}{\gamma}\right)^{O(d)}$, of the set {Ax such that $|x|_1 = 1$ }
 - (2) for any fixed x, $|RAx|_1 \ge |Ax|_1$ with probability $1 \exp(-d \log d)$
 - (3) for all x, $|RAx|_1 = O(d \log d)|Ax|_1$
- Set $\gamma = 1/(d^3 \log d)$ so $|M| \le d^{O(d)}$
 - By a union bound, for all y in M, $|Ry|_1 \ge |y|_1$
- Let x with $|x|_1 = 1$ be arbitrary. Let y in M satisfy $|Ax y|_1 \le \gamma = 1/(d^3 \log d)$

•
$$|RAx|_1 \ge |Ry|_1 - |R(Ax - y)|_1$$

 $\ge |y|_1 - O(d \log d)|Ax - y|_1$
 $\ge |y|_1 - O(d \log d)\gamma$
 $\ge |y|_1 - O\left(\frac{1}{d^2}\right)$
 $\ge |y|_1/2 \quad (why?)$

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model and Estimating Norms

L₁ Regression Algorithm Recap

We saw how to solve the above problems by sketching by a matrix of i.i.d. Cauchy random variables

Sketching to solve I₁-regression [CW, MM]

- Most expensive operation is computing R*A where R is the matrix of i.i.d. Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing R as follows:

- For all x, $\left(\frac{1}{d^2 \log^2 d}\right) |Ax|_1 \le |RAx|_1 \le O(d \log d) |Ax|_1$
- Overall time for ℓ_1 -regression is nnz(A) + poly(d/ ϵ)

Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose R as follows
- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

Fun Fact about Cauchy Random Variables

- Suppose you have i.i.d. copies R_1, \ldots, R_n of a random variable with mean 0 and variance σ^2
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- By Central Limit Theorem, this approaches a normal random variable N(0, σ^2/n)
- Intuitively, the variance is decreasing and the average is approaching its expectation
- Now suppose you have i.i.d. copies R₁, ..., R_n of a standard Cauchy random variable
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- It's still a standard Cauchy random variable!

Outline

- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Turnstile Streaming Model

- Underlying n-dimensional vector x initialized to 0ⁿ
- Long stream of updates $x_i \leftarrow x_i + \Delta_j$ for Δ_j in {-M, -M+1, ..., M-1, M} • M \le poly(n)
- Throughout the stream, x is promised to be in {-M, -M+1, ..., M-1, M}ⁿ
- Output an approximation to f(x) with high probability over our coin tosses
- Goal: use as little space (in bits) as possible
 - Massive data: stock transactions, weather data, genomes

Testing if $x = 0^n$

- How can we test, with probability at least 9/10, over our random coin tosses, if the underlying vector $x = 0^n$?
- Can we use O(log n) bits of space?
- We saw that for any fixed vector x, if S is a CountSketch matrix with $O(\frac{1}{\epsilon^2})$ rows, then $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$ with probability at least 9/10
- If we set $\epsilon = \frac{1}{2}$, we use O(log n) bits of space to store the O(1) entries of Sx
- We can store the hash function and sign function defining S using O(log n) bits

Testing if $x = 0^n$

- Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector $x = 0^n$ with o(n log n) bits of space?
- Theorem: any deterministic algorithm requires $\Omega(n \log n)$ bits of space
- Suppose the first half of the stream corresponds to updates to a vector a in $\{0, 1, 2, ..., poly(n)\}^n$
- Let S(a) be the state of the algorithm after reading the first half of the stream
 If |S(a)| = o(n log n), there exist a≠ a' for which S(a) = S(a')
- Suppose the second half of the stream corresponds to updates to a vector b in $\{0,-1,-2,\ldots,-poly(n)\}^n$
- The algorithm must output the same answer on a+b and a'+b, so it errs in one case

Example: Recovering a k-Sparse Vector

- Suppose we are promised that x has at most k non-zero entries at the end of the stream
- k is often small maybe we see all coordinates of a vector a followed by all coordinates of a *similar* vector b, and a-b only has k non-zero entries
- Can we recover the indices and values of the k non-zero entries with high probability?
- Can we use k poly(log n) bits of space?
- Can we do it deterministically?

Example: Recovering a k-Sparse Vector

- Suppose A is an s x n matrix such that any 2k columns are linearly independent
- \bullet Maintain $A\cdot x$ in the stream
- Claim: from $A \cdot x$ you can recover the subset S of k non-zero entries and their values
- Proof: suppose there were vectors x and y each with at most k non-zero entries and $A \cdot x = A \cdot y$
- Then A(x-y) = 0. But x-y has at most 2k non-zero entries, and any 2k columns of A are linearly independent. So x-y = 0, i.e., x = y.
- Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows?

Example: Recovering a k-Sparse Vector

• Vandermonde matrix A with s = 2k rows and n columns. $A_{i,j} = j^{i-1}$

- Determinant of 2k x 2k submatrix of A with set of columns equal to $\{i_1, ..., i_{2k}\}$ is: $\prod_j i_j \prod_{j < j'} (i_j - i_{j'}) \neq 0$, so any 2k columns of A are linearly independent
- But entries of A are exponentially increasing how to store A and A \cdot x?
- Just store $A \cdot x \mod p$ for a large enough prime p = poly(n)

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Example Problem: Norms

- Suppose you want $|x|_p^p = \sum_{i=1}^n |x_i|^p$
- Want Z for which (1-E) $|x|_p^p \le Z \le (1+E) |x|_p^p$ with probability > 9/10
- p = 1 corresponds to total variation distance between distributions
- p = 2 useful for geometric and linear algebraic problems
- $p = \infty$ is the value of the maximum entry, useful for anomaly detection, etc.

Example Problem: Euclidean Norm

- Want Z for which (1- ϵ) $|x|_{2}^{2} \le Z \le (1+\epsilon) |x|_{2}^{2}$
- Sample a random CountSketch matrix S with $1/\epsilon^2$ rows
- Can store S efficiently using limited independence
- If $x_i \leftarrow x_i + \Delta_j$ in the stream, then $Sx \leftarrow Sx + \Delta_j S_{*,i}$
- At end of stream, output $|Sx|_2^2$
- With probability at least 9/10, $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$
- Space complexity is $1/\epsilon^2$ words, each word is O(log n) bits

Example Problem: 1-Norm

- Want Z for which $(1-\epsilon) |x|_1 \le Z \le (1+\epsilon) |x|_1$
- Sample a random Cauchy matrix S?
- Can store S with $\frac{1}{\epsilon}$ words of space [Kane, Nelson, W]
- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S_{*,i}$
- Space complexity is $1/\epsilon^2$ words, each word is O(log n) bits
- At end of stream, output $|Sx|_1$?
- Cauchy random variables have no concentration...

1-Norm Estimator

- Probability density function f(x) of |C| for a Cauchy random variable C is $f(x) = \frac{2}{\pi(1+x^2)}$
- Cumulative distribution function F(z):

$$F(z) = \int_0^z f(x) dx = \frac{2}{\pi} \arctan(z)$$

- Since $tan(\pi/4) = 1$, F(1) = $\frac{1}{2}$, so median(|C|) = 1
- If you take $r = \frac{\log(\frac{1}{\delta})}{\epsilon^2}$ independent samples $X_1, ..., X_r$ from F, and $X = median_i X_i$, then $\epsilon^2 F(X)$ in $[1/2-\epsilon, 1/2+\epsilon]$ with probability $1-\delta$

•
$$F^{-1}(X) = \tan\left(\frac{X\pi}{2}\right) \in [1 - 4\epsilon, 1 + 4\epsilon]$$

p-Norm Estimator

- Can achieve $1/\epsilon^2$ words of space for p-norm estimation for any 0
- Proof is similar to 1-norm estimation, and uses p-stable distributions, which exist only for 0
- No closed form expression for their probability density function but they are efficiently sampleable:

• If
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 and $r \in [0,1]$ are uniformly random, then

 $\frac{\sin(p\,\theta)}{\cos^{\frac{1}{p}}\theta} \left(\frac{\cos(\theta(1-p))}{\ln(\frac{1}{r})}\right)^{\frac{1-p}{p}} \text{ is a sample from a p-stable distribution!}$

 Can discretize them and store a sketching matrix of samples from the pstable distribution using limited independence