15-859 ALGORITHMS FOR Bi1G DATA — Fall 2021

PROBLEM SET 1 SOLUTIONS

Problem 1: Low Rank Tensor Regression

Fix k sign vectors u!,u2, ..., u* € {#1}V4. For each u’, the map v — A(u’ ® v) is a linear map, so there
is an n x v/d matrix B, such that A(u’ ® v) = B,iv. Then let B denote the n x (kv/d + 1) matrix that
concatenates these matrices and the vector b. Note then that by results from class, a Gaussian matrix S

with O(kv/d/e?) rows is a (1 4 €) subspace embedding for the column span of B with probability at least

1 —exp(—0O(k+/d)). By a union bound over the at most 2kVd choices of k-tuples of sign vectors {u'}k_,, this
holds simultaneously for all choices of the u’.
Now let & = Zle u’ ® v* be arbitrary. Then,
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so Az — b is in the span of B as constructed previously. Thus,
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Let 2’ be as in the problem statement and let z* be the true minimizer. Then,
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as requested.

Problem 2: Underconstrained Ridge Regression

1. Let z be the optimal solution and write z = z!l + 2 where z!l is the projection of z onto the row space
of A and 2 is orthogonal to the row space of A, that is, - belongs to the null space of A. If 1 # 0,

then
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so zll is a strictly better solution than z, which contradicts the optimality of .
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Then by the triangle inequality,
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so squaring both sides,
14SSTATy|l; = [[AATy|; £ 2 AATy | ,or(A| ATy, + (o2 (A ][ ATy]],)".
Rearranging and taking absolute values gives
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as requested.

3. By the subspace embedding guarantee,
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By this and the previous part,
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Let y* be the true minimizer. Then,
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as requested.
If we use an SRHT for ST, then we need
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rows (see Theorem 2.4 of [Woo14]). The time required to compute ¢ is O(nnz(A)) and the time required
to compute B is O(ndlogr) (see Theorem 2.4 of [Woo14]). Since B is an 7 x n matrix, it takes O(n?r)
time to compute B' B, and O(n?) time to compute B' BBT B. Tt takes O(nd) time to compute ATb
and another O(nd) time to compute ¢ = A(A"b). Overall, the time bound is

O(ndlogr 4 n*r).

Problem 3: Approximate Matrix Product for SRHT
As suggested by the hint, let F:= HDA and G := HDB so that ATSTSB = FTPTPG. Note that

F'G=(A"TD"H")YHDB)=A"B
since both H and D are orthonormal matrices. By the flattening lemma,
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for any fixed unit vector y, so setting § = 1/(40d), and applying a union bound over the 2d columns of A
and B, with probability at least 19/20,
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for any column y of A or B. We condition on this event.
Now for each ¢ € [s], consider an independent uniformly random row index I; ~ [n] and the corresponding
random matrix X*) :=nF T (ere] )G. Then,
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Also define

so X = FTPTPG. Then for each (i,5) € [d]?,
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where the last inequality is by Equation (1), so
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We now see that we can choose

to get that

B[A7STSB - ATB2] < = |AlLBI;
F] = 20q" "FITTE

Then by Markov’s inequality, we have that
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with probability at least 19/20. Overall, the total failure probability is at most 1/20 + 1/20 = 1/10, as
requested.

Problem 4: Computing the Rank of a Matrix

Let ¢ € N. We first show how to determine whether A has rank at least £ or at most £—1 in O(nnz(A)+£°)
time, with probability at least 1 — 0. Furthermore, we will output the rank if rank(A) < £.

Lemma 1. Let A € R™*" and ¢ € N. Then, there is an algorithm which, with probability at least 1 — ¢,
either outputs the rank of A or reports that rank(A) > ¢, and runs in time

O<(nnz(A) + %) log ;)

fProof. We will first obtain a constant probability algorithm, and then boost its success probability.

Suppose S is an r x n CountSketch matrix with r = O(¢2) rows so that it is a (1+¢) subspace embedding
for n x £ matrices, for ¢ = 1/100. Suppose A has rank k& = rank(A) < ¢. Then, there is a set of k linear
independent columns, which forms a submatrix B. Then,

1S Bzl3 = (1% ¢)|Ball;

for all x € R?, so in particular, SBx = 0 <= Bz = 0. Thus, the columns of SBxz are independent as
well. In addition, SB has rank at most k since B has rank k, so any set of linearly independent columns
will have cardinality at most k. Thus, rank(SA) = rank(A). By similar reasoning, if A has rank k& > ¢,
then there will be a set of ¢ linearly independent columns in SA, so rank(SA) > £.

By applying this on the right side as well for an independent CountSketch matrix R, we find that
SART is a O(£?) x O(¢£?) matrix that has rank at least ¢ if and only if A does, and if rank(A4) < ¢, then
rank(SAR") = rank(A). Furthermore, SAR' can be computed in nnz(A) time. Finally, the rank of an
n X n matrix can be computed in O(n?) time using Gaussian elimination, so it takes O(£°) time to compute
the rank of SART.

To boost the success probability, we repeat this ¢t = (100/3)10g% times and use the majority. That
is, let S1,5s,...,S5; and Ry, R, ..., R; be independent CountSketch matrices as done previously, and let
r; = rank(S; AR ) and define the indicator random variables X; = 1{r; = rank(A4)} and Y; = 1{r; > (}.

Let .
X=>Xi;\ Y=)Y.
] =1

Then, X; and Y; are each Bernoulli variables that are 1 with probability at least 99/100. If rank(A4) < ¢,



then by Chernoff bounds,
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so with probability at least 1 — §, the majority of the ¢ € [¢t] will report the correct rank. Similarly, if
L1r3Lnk(A) > ¢, then the majority of the ¢ € [t] will report as so. O

Néively, one can guess the rank ¢ in powers of 2 from 1 all the way up to O(k) in [log, k] guesses, and
set the failure rate to 6 = 1/logk. This gives an overall

[log, kT
Z O(nnz(A) + (29)%) log % = O(nnz(A)(log k) (log log k) + k°log log k)

i=1

time algorithm.

To optimize the above algorithm, we first note that by setting £ = nnz(A)l/ 6. then we can decide whether
rank(A) < £ or not in O(nnz(A)) time with just one application of the above lemma. If rank(A) < nnz(A)/6,
then we already find the rank of A. Otherwise, we find that k = rank(A) > nnz(A)'/%. In this case, the
néive binary searching algorithm actually runs in time

O(nnz(A)(log k) (loglog k) + k®loglog k) = O(k%(log k)(loglog k)) = poly(k).
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