15-859 ALGORITHMS FOR Bi1G DATA — Fall 2021

PROBLEM SET 1 SOLUTIONS

Problem 1: Low Rank Tensor Regression

Fix k sign vectors u!,u2, ..., u* € {#1}V4. For each u’, the map v — A(u’ ® v) is a linear map, so there
is an n x v/d matrix B, such that A(u’ ® v) = B,iv. Then let B denote the n x (kv/d + 1) matrix that
concatenates these matrices and the vector b. Note then that by results from class, a Gaussian matrix S

with O(kv/d/e?) rows is a (1 4 €) subspace embedding for the column span of B with probability at least

1 —exp(—0O(k+/d)). By a union bound over the at most 2kVd choices of k-tuples of sign vectors {u'}k_,, this
holds simultaneously for all choices of the u’.
Now let & = Zle u’ ® v* be arbitrary. Then,

k k
Aa:—b:ZAui@)vi—b:ZBuwi—b

i=1 i=1
so Az — b is in the span of B as constructed previously. Thus,
2 2
1S(Az —b)[l; = (1 +&)|| Az — b5

Let 2’ be as in the problem statement and let z* be the true minimizer. Then,

142" = b]l5 < (1 +¢)[[SAz’ — Sb|;
< (1+4¢)|SAz* — Sb|2
< (1+¢)?|Az” - bll3
< (14 3¢)||Az* —b||3

as requested.

Problem 2: Underconstrained Ridge Regression

1. Let z be the optimal solution and write z = z!l + 2 where z!l is the projection of z onto the row space
of A and 2 is orthogonal to the row space of A, that is, - belongs to the null space of A. If 1 # 0,

then
2 2 Iy oty g It
| Az —bl|5 + Az[|5 = ||A(z! + =)—b’2—|—)\ Hx +x H2
2 2
= |4zl — b 2+)\(‘x|+xLH2> Azt =0
2 2 T
=4zl —p , + A(‘xI\HQ + Hx H2> Pythagorean theorem
2 2
> || Azl — b +AHxHH
2 2

so zll is a strictly better solution than z, which contradicts the optimality of .
2. First bound
|AATy — ASSTATy||, < |All,||ATy — SSTATy]|,
= o1(A)]|(1 - S5T) ATy,
=0 (A)||[VT(I - SSTHVEU Ty,

o (A)||I - VTSSTV)SU Ty,
1A =VISSTVL |50],
(AN [[EU

o1(4)7]| 47yl

IN N

o
g

Then by the triangle inequality,

[ASST ATy, = [|[AATy[|, £ |[AATy — ASSTATy]|,
= [|[AATy||, £ o1 (A]| ATyl

so squaring both sides,
14SSTATy|l; = [[AATy|; £ 2 AATy | ,or(A| ATy, + (o2 (A][ATy]],)".
Rearranging and taking absolute values gives
| ASSTATY||; — [AATy;| < 2 AATy |01 (AN ATy, + (1 (A0]| ATy ,)*
< 2903 (A)|ATy||; + oH A2 ATy|
< 3902(4) ATy
as requested.

3. By the subspace embedding guarantee,

1STATy|; = (1 =92 ATy|l; = (1 %39)| ATy,

SO
AIAT[3 = MISTATy[5| < 38Xy ATy

By this and the previous part,
|ASSTATy|2 =2y T AATb+ B2+ A||STAT Y|
is within an additive
BXY[[ATyl; + 3yt ()] ATy|[; < x| ATy, + 33| ATyl = GeA][ATy,

of
[AATy — 8]+ ATy = 44T = 25T AAT + 013 + A AT

Let y* be the true minimizer. Then,
[AATy —bll; + M[ATy|l; < (1 +2) || ASSTATY — b5+ A STATY|;]
14e)[[ASSTATy" = b]l; + A STATy"]

1+2)2[||4ATy" |5 + A ATy"||3]

5

<(
<(
<(
<(

14 32) || 44Ty — b5 + A ATy"

as requested.
If we use an SRHT for ST, then we need

r=0(v*(ogm) (Vi + I0gd)?)

2

rows (see Theorem 2.4 of [Woo14]). The time required to compute ¢ is O(nnz(A)) and the time required
to compute B is O(ndlogr) (see Theorem 2.4 of [Woo14]). Since B is an 7 x n matrix, it takes O(n?r)
time to compute B' B, and O(n?) time to compute B' BBT B. Tt takes O(nd) time to compute ATb
and another O(nd) time to compute ¢ = A(A"b). Overall, the time bound is

O(ndlogr 4 n*r).

Problem 3: Approximate Matrix Product for SRHT
As suggested by the hint, let F:= HDA and G := HDB so that ATSTSB = FTPTPG. Note that

F'G=(A"TD"H")YHDB)=A"B
since both H and D are orthonormal matrices. By the flattening lemma,

1 d/é)
Pr! |HDy|. > M <
o 2d
for any fixed unit vector y, so setting § = 1/(40d), and applying a union bound over the 2d columns of A
and B, with probability at least 19/20,

HDyooso(log(n >>|| I, (1)

for any column y of A or B. We condition on this event.
Now for each ¢ € [s], consider an independent uniformly random row index I; ~ [n] and the corresponding
random matrix X*) :=nF T (ere])G. Then,

EXY) = E[nF (ere]) —nz FT (eie])G =FT

Z(eiej)] G=F'G=A"B

Also define

so X = FTPTPG. Then for each (i,5) € [d]?,

1
E[(FTPTPG _ ATB)?J_] — Var[Xi,j] = g Var[X,»(}»)]

i,
1 (1) 1 1 9
< SEUX” ‘] <Y (nFGh N 2GR,
n n
<

2 2
<3 ZHF(%IIOOIIGQ'IIOo

N — Olog nd)
;Z IIA ill5)1 Be;

O(log?(nd) 9 2
= QB D g3
where the last inequality is by Equation (1), so

d d
E[|FTPTPG-ATB|}| =Y Y BIFTPTPG - ATB)

i=1 j=1

d d 2
O(log”(nd)
<D0Y T el Bel;

=1
2
Othos 1nd)y 4125112

We now see that we can choose

to get that

B[A7STSB - ATB2] < = |AlLBI;
F] = 20q" "FITTE

Then by Markov’s inequality, we have that
ToT TRI2 o € 2 2
|ATSTSB— AT} < AR IBIE

with probability at least 19/20. Overall, the total failure probability is at most 1/20 + 1/20 = 1/10, as
requested.

Problem 4: Computing the Rank of a Matrix

Let ¢ € N. We first show how to determine whether A has rank at least £ or at most £—1 in O(nnz(A)+£°)
time, with probability at least 1 — 0. Furthermore, we will output the rank if rank(A) < £.

Lemma 1. Let A € R™*" and ¢ € N. Then, there is an algorithm which, with probability at least 1 — ¢,
either outputs the rank of A or reports that rank(A) > ¢, and runs in time

O<(nnz(A) + %) log ;)

fProof. We will first obtain a constant probability algorithm, and then boost its success probability.

Suppose S is an r x n CountSketch matrix with r = O(¢2) rows so that it is a (1+¢) subspace embedding
for n x £ matrices, for ¢ = 1/100. Suppose A has rank k& = rank(A) < ¢. Then, there is a set of k linear
independent columns, which forms a submatrix B. Then,

1S Bzl3 = (1% ¢)|Ball;

for all x € R?, so in particular, SBx = 0 <= Bz = 0. Thus, the columns of SBxz are independent as
well. In addition, SB has rank at most k since B has rank k, so any set of linearly independent columns
will have cardinality at most k. Thus, rank(SA) = rank(A). By similar reasoning, if A has rank k& > ¢,
then there will be a set of ¢ linearly independent columns in SA, so rank(SA) > £.

By applying this on the right side as well for an independent CountSketch matrix R, we find that
SART is a O(£?) x O(¢£?) matrix that has rank at least ¢ if and only if A does, and if rank(A4) < ¢, then
rank(SAR") = rank(A). Furthermore, SAR' can be computed in nnz(A) time. Finally, the rank of an
n X n matrix can be computed in O(n?) time using Gaussian elimination, so it takes O(£°) time to compute
the rank of SART.

To boost the success probability, we repeat this ¢t = (100/3)10g% times and use the majority. That
is, let S1,5s,...,S5; and Ry, R, ..., R; be independent CountSketch matrices as done previously, and let
r; = rank(S; AR) and define the indicator random variables X; = 1{r; = rank(A4)} and Y; = 1{r; > (}.

Let .
X=>Xi;\ Y=)Y.
] =1

Then, X; and Y; are each Bernoulli variables that are 1 with probability at least 99/100. If rank(A4) < ¢,

then by Chernoff bounds,

el 3 < 2o} < (BT <o (0 1) <

so with probability at least 1 — §, the majority of the ¢ € [¢t] will report the correct rank. Similarly, if
L1r3Lnk(A) > ¢, then the majority of the ¢ € [t] will report as so. O

Néively, one can guess the rank ¢ in powers of 2 from 1 all the way up to O(k) in [log, k] guesses, and
set the failure rate to 6 = 1/logk. This gives an overall

[log, kT
Z O(nnz(A) + (29)%) log % = O(nnz(A)(log k) (log log k) + k°log log k)

i=1

time algorithm.

To optimize the above algorithm, we first note that by setting £ = nnz(A)l/ 6. then we can decide whether
rank(A) < £ or not in O(nnz(A)) time with just one application of the above lemma. If rank(A) < nnz(A)/6,
then we already find the rank of A. Otherwise, we find that k = rank(A) > nnz(A)'/%. In this case, the
néive binary searching algorithm actually runs in time

O(nnz(A)(log k) (loglog k) + k®loglog k) = O(k%(log k)(loglog k)) = poly(k).

References

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput.
Seci., 10(1-2):1-157, 2014. 3

https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

	References

