
15-859 Algorithms for Big Data — Fall 2021

Problem Set 1 Solutions

Problem 1: Low Rank Tensor Regression

Fix k sign vectors u1, u2, . . . , uk ∈ {±1}
√
d. For each ui, the map v 7→ A(ui⊗ v) is a linear map, so there

is an n ×
√
d matrix Bui such that A(ui ⊗ v) = Buiv. Then let B denote the n × (k

√
d + 1) matrix that

concatenates these matrices and the vector b. Note then that by results from class, a Gaussian matrix S
with O(k

√
d/ε2) rows is a (1 ± ε) subspace embedding for the column span of B with probability at least

1− exp(−Θ(k
√
d)). By a union bound over the at most 2k

√
d choices of k-tuples of sign vectors {ui}ki=1, this

holds simultaneously for all choices of the ui.
Now let x =

∑k
i=1 u

i ⊗ vi be arbitrary. Then,

Ax− b =

k∑
i=1

Aui ⊗ vi − b =

k∑
i=1

Buivi − b

so Ax− b is in the span of B as constructed previously. Thus,

‖S(Ax− b)‖22 = (1± ε)‖Ax− b‖22.

Let x′ be as in the problem statement and let x∗ be the true minimizer. Then,

‖Ax′ − b‖22 ≤ (1 + ε)‖SAx′ − Sb‖22
≤ (1 + ε)‖SAx∗ − Sb‖22
≤ (1 + ε)2‖Ax∗ − b‖22
≤ (1 + 3ε)‖Ax∗ − b‖22

as requested.

Problem 2: Underconstrained Ridge Regression

1. Let x be the optimal solution and write x = x‖+x⊥ where x‖ is the projection of x onto the row space
of A and x⊥ is orthogonal to the row space of A, that is, x⊥ belongs to the null space of A. If x⊥ 6= 0,
then

‖Ax− b‖22 + λ‖x‖22 =
∥∥∥A(x‖ + x⊥)− b

∥∥∥2
2

+ λ

(∥∥∥x‖ + x⊥
∥∥∥2
2

)
=
∥∥∥Ax‖ − b∥∥∥2

2
+ λ

(∥∥∥x‖ + x⊥
∥∥∥2
2

)
Ax⊥ = 0

=
∥∥∥Ax‖ − b∥∥∥2

2
+ λ

(∥∥∥x‖∥∥∥2
2

+
∥∥x⊥∥∥2

2

)
Pythagorean theorem

>
∥∥∥Ax‖ − b∥∥∥2

2
+ λ
∥∥∥x‖∥∥∥2

2

so x‖ is a strictly better solution than x, which contradicts the optimality of x.

2. First bound ∥∥AA>y −ASS>A>y∥∥
2
≤ ‖A‖2

∥∥A>y − SS>A>y∥∥
2

= σ1(A)
∥∥(I − SS>)A>y

∥∥
2

= σ1(A)
∥∥V >(I − SS>)V ΣU>y

∥∥
2

1



= σ1(A)
∥∥(I − V >SS>V )ΣU>y

∥∥
2

≤ σ1(A)
∥∥I − V >SS>V ∥∥

2

∥∥ΣU>y
∥∥
2

≤ σ1(A)γ
∥∥ΣU>y

∥∥
2

= σ1(A)γ
∥∥A>y∥∥

2
.

Then by the triangle inequality,∥∥ASS>A>y∥∥
2

=
∥∥AA>y∥∥

2
±
∥∥AA>y −ASS>A>y∥∥

2

=
∥∥AA>y∥∥

2
± σ1(A)γ

∥∥A>y∥∥
2

so squaring both sides,∥∥ASS>A>y∥∥2
2

=
∥∥AA>y∥∥2

2
± 2
∥∥AA>y∥∥

2
σ1(A)γ

∥∥A>y∥∥
2

+ (σ1(A)γ
∥∥A>y∥∥

2
)2.

Rearranging and taking absolute values gives∣∣∣∥∥ASS>A>y∥∥2
2
−
∥∥AA>y∥∥2

2

∣∣∣ ≤ 2
∥∥AA>y∥∥

2
σ1(A)γ

∥∥A>y∥∥
2

+ (σ1(A)γ
∥∥A>y∥∥

2
)2

≤ 2γσ2
1(A)

∥∥A>y∥∥2
2

+ σ2
1(A)γ2

∥∥A>y∥∥2
2

≤ 3γσ2
1(A)

∥∥A>y∥∥2
2

as requested.

3. By the subspace embedding guarantee,∥∥S>A>y∥∥2
2

= (1± γ)2
∥∥A>y∥∥2

2
= (1± 3γ)

∥∥A>y∥∥2
2

so ∣∣∣λ∥∥A>y∥∥2
2
− λ

∥∥S>A>y∥∥2
2

∣∣∣ ≤ 3λγ
∥∥A>y∥∥2

2
.

By this and the previous part,∥∥ASS>A>y∥∥2
2
− 2y>AA>b+ ‖b‖22 + λ

∥∥S>A>y∥∥2
2

is within an additive

3λγ
∥∥A>y∥∥2

2
+ 3γσ2

1(A)
∥∥A>y∥∥2

2
≤ 3λε

∥∥A>y∥∥2
2

+ 3λε
∥∥A>y∥∥2

2
= 6ελ

∥∥A>y∥∥2
2

of ∥∥AA>y − b∥∥2
2

+ λ
∥∥A>y∥∥2

2
=
∥∥AA>y∥∥2

2
− 2y>AA>b+ ‖b‖22 + λ

∥∥A>y∥∥2
2
.

Let y∗ be the true minimizer. Then,∥∥AA>y′ − b∥∥2
2

+ λ
∥∥A>y′∥∥2

2
≤ (1 + ε)

[∥∥ASS>A>y′ − b∥∥2
2

+ λ
∥∥S>A>y′∥∥2

2

]
≤ (1 + ε)

[∥∥ASS>A>y∗ − b∥∥2
2

+ λ
∥∥S>A>y∗∥∥2

2

]
≤ (1 + ε)2

[∥∥AA>y∗ − b∥∥2
2

+ λ
∥∥A>y∗∥∥2

2

]
≤ (1 + 3ε)

[∥∥AA>y∗ − b∥∥2
2

+ λ
∥∥A>y∗∥∥2

2

]
as requested.

If we use an SRHT for S>, then we need

r = O
(
γ−2(log n)(

√
n+

√
log d)2

)
2



rows (see Theorem 2.4 of [Woo14]). The time required to compute c is O(nnz(A)) and the time required
to compute B is O(nd log r) (see Theorem 2.4 of [Woo14]). Since B is an r×n matrix, it takes O(n2r)
time to compute B>B, and O(n3) time to compute B>BB>B. It takes O(nd) time to compute A>b
and another O(nd) time to compute c = A(A>b). Overall, the time bound is

O(nd log r + n2r).

Problem 3: Approximate Matrix Product for SRHT

As suggested by the hint, let F := HDA and G := HDB so that A>S>SB = F>P>PG. Note that

F>G = (A>D>H>)(HDB) = A>B

since both H and D are orthonormal matrices. By the flattening lemma,

Pr

{
‖HDy‖∞ ≥ C

√
log(nd/δ)

n

}
≤ δ

2d

for any fixed unit vector y, so setting δ = 1/(40d), and applying a union bound over the 2d columns of A
and B, with probability at least 19/20,

‖HDy‖∞ ≤ O

(√
log(nd)

n

)
‖y‖2 (1)

for any column y of A or B. We condition on this event.
Now for each t ∈ [s], consider an independent uniformly random row index It ∼ [n] and the corresponding

random matrix X(t) := nF>(eIte
>
It

)G. Then,

E[X(t)] = E[nF>(eIte
>
It)G] = n

n∑
i=1

1

n
F>(eie

>
i )G = F>

[
n∑
i=1

(eie
>
i )

]
G = F>G = A>B.

Also define

X :=
1

s

s∑
t=1

X(t)

so X = F>P>PG. Then for each (i, j) ∈ [d]2,

E[(F>P>PG−A>B)2i,j ] = Var[Xi,j ] =
1

s
Var[X

(1)
i,j ]

≤ 1

s
E

[∣∣∣X(1)
i,j

∣∣∣2] ≤ 1

s

n∑
k=1

1

n
(nFk,iGk,j)

2 =
n

s

n∑
k=1

F 2
k,iG

2
k,j

≤ n

s

n∑
k=1

‖Fei‖2∞‖Gej‖
2
∞

≤ n

s

n∑
k=1

O(log2(nd)

n2
‖Aei‖22‖Bej‖

2
2

=
O(log2(nd)

s
‖Aei‖22‖Bej‖

2
2

where the last inequality is by Equation (1), so

E
[∥∥F>P>PG−A>B∥∥2

F

]
=

d∑
i=1

d∑
j=1

E[(F>P>PG−A>B)2i,j ]

3



≤
d∑
i=1

d∑
j=1

O(log2(nd)

s
‖Aei‖22‖Bej‖

2
2

=
O(log2(nd)

s
‖A‖2F ‖B‖

2
F .

We now see that we can choose

s =
O(d log2(nd))

ε2

to get that

E
[∥∥A>S>SB −A>B∥∥2

F

]
≤ ε2

20d
‖A‖2F ‖B‖

2
F .

Then by Markov’s inequality, we have that

∥∥A>S>SB −A>B∥∥2
F
≤ ε2

d
‖A‖2F ‖B‖

2
F

with probability at least 19/20. Overall, the total failure probability is at most 1/20 + 1/20 = 1/10, as
requested.

Problem 4: Computing the Rank of a Matrix

Let ` ∈ N. We first show how to determine whether A has rank at least ` or at most `−1 in O(nnz(A)+`6)
time, with probability at least 1− δ. Furthermore, we will output the rank if rank(A) < `.

Lemma 1. Let A ∈ Rn×n and ` ∈ N. Then, there is an algorithm which, with probability at least 1 − δ,
either outputs the rank of A or reports that rank(A) ≥ `, and runs in time

O

(
(nnz(A) + `6) log

1

δ

)
.

Proof. We will first obtain a constant probability algorithm, and then boost its success probability.
Suppose S is an r×n CountSketch matrix with r = O(`2) rows so that it is a (1+ε) subspace embedding

for n × ` matrices, for ε = 1/100. Suppose A has rank k = rank(A) < `. Then, there is a set of k linear
independent columns, which forms a submatrix B. Then,

‖SBx‖22 = (1± ε)‖Bx‖22

for all x ∈ Rd, so in particular, SBx = 0 ⇐⇒ Bx = 0. Thus, the columns of SBx are independent as
well. In addition, SB has rank at most k since B has rank k, so any set of linearly independent columns
will have cardinality at most k. Thus, rank(SA) = rank(A). By similar reasoning, if A has rank k ≥ `,
then there will be a set of ` linearly independent columns in SA, so rank(SA) ≥ `.

By applying this on the right side as well for an independent CountSketch matrix R, we find that
SAR> is a O(`2) × O(`2) matrix that has rank at least ` if and only if A does, and if rank(A) < `, then
rank(SAR>) = rank(A). Furthermore, SAR> can be computed in nnz(A) time. Finally, the rank of an
n×n matrix can be computed in O(n3) time using Gaussian elimination, so it takes O(`6) time to compute
the rank of SAR>.

To boost the success probability, we repeat this t = (100/3) log 1
δ times and use the majority. That

is, let S1, S2, . . . , St and R1, R2, . . . , Rt be independent CountSketch matrices as done previously, and let
ri = rank(SiAR

>
i ) and define the indicator random variables Xi = 1{ri = rank(A)} and Yi = 1{ri ≥ `}.

Let

X =

t∑
i=1

Xi, Y =

t∑
i=1

Yi.

Then, Xi and Yi are each Bernoulli variables that are 1 with probability at least 99/100. If rank(A) < `,

4



then by Chernoff bounds,

Pr

{
t∑
i=1

Xi ≤
2

3
E[X]

}
≤ exp

(
−E[X](1/3)2

3

)
≤ exp

(
99

100

1

27
t

)
≤ δ

so with probability at least 1 − δ, the majority of the i ∈ [t] will report the correct rank. Similarly, if
rank(A) ≥ `, then the majority of the i ∈ [t] will report as so.

Näively, one can guess the rank ` in powers of 2 from 1 all the way up to O(k) in dlog2 ke guesses, and
set the failure rate to δ = 1/ log k. This gives an overall

dlog2 ke∑
i=1

O(nnz(A) + (2i)6) log
1

δ
= O(nnz(A)(log k)(log log k) + k6 log log k)

time algorithm.
To optimize the above algorithm, we first note that by setting ` = nnz(A)1/6, then we can decide whether

rank(A) < ` or not in O(nnz(A)) time with just one application of the above lemma. If rank(A) < nnz(A)1/6,
then we already find the rank of A. Otherwise, we find that k = rank(A) ≥ nnz(A)1/6. In this case, the
näive binary searching algorithm actually runs in time

O(nnz(A)(log k)(log log k) + k6 log log k) = O(k6(log k)(log log k)) = poly(k).

References

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput.
Sci., 10(1-2):1–157, 2014. 3

5

https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

	References

