
CS 15-859: Algorithms for Big Data Fall 2020

Lecture 6.1 — October 21
Prof. David Woodruff Scribe: Tarun Chiruvolu

1 Introduction to the Streaming Model

Now, we turn our focus away from sketching algorithms for linear regression and low rank ap-
proximation to another important topic in modern computer science - streaming algorithms. The
streaming model formalizes a situation where we are presented inputs piecemeal, and storing all of
them and analyzing them would be prohibitive. Instead, we seek algorithms that can perform useful
computations approximately by making a single pass over the data stream. Streaming algorithms
have myriad applications in the real world, ranging from financial analysis to scientific applications
such as processing genomic data.

1.1 Turnstile Streaming Model

In this class, we begin by focusing on the turnstile streaming model, which is specified by a few
crucial components.

1. We have an underlying n-dimensional vector x with all of its components initialized to 0 that
serves as the state of our data.

2. We are presented with a long stream of updates of the form xi ←− xi + ∆j , where xi is the
i-th component of the vector and ∆j is the update we receive at time j. In addition, we
are guaranteed that each ∆j is an element of the set {−M,−M + 1, · · · , M − 1, M}, where
M ≤ poly(n).

3. Furthermore, throughout the stream, x is promised to be in {−M,−M + 1, · · · , M − 1, M}n.

4. We are given a particular function f(x) that we’d like to approximate, and we can choose to
use a randomized strategy to do so.

Our goal (for now) is to use as few bits as possible when approximating the function. Note that in
this problem setting, we assume n is very large, so trivially storing the entirety of x and exactly
computing the result at the end would be impossible.

2 Estimating Norms in the Streaming Model

The first application of streaming algorithms we choose to consider is the problem of computing the
norm of the vector x. Formally, suppose we’d like to estimate the ℓp norm of the vector x at the
end of the streaming process. We want to output a scalar z such that

(1− ϵ)∥x∥pp ≤ z ≤ (1 + ϵ)∥x∥pp

1

with probability at least 9/10. We see that particular values of p have useful properties that can
arise in natural applications:

• p = 1 : Choosing p = 1 can correspond to the total variation distance between two probability
distributions.

• p = 2 : The ℓ2 norm is frequently used in linear algebra and has several useful geometric
properties in Euclidean space.

• p =∞ : When p =∞, the norm estimation problem corresponds to applications like anomaly
detection.

2.1 Example Problem: Euclidean Norm

Restating the problem, we’d like to output a scalar z such that

(1− ϵ)∥x∥22 ≤ z ≤ (1 + ϵ)∥x∥22

with probability at least 9/10. To solve this problem, we turn to a familiar tool - using sketching.
Recall that for any vector x, multiplying by a CountSketch matrix S with O(1/ϵ2) rows gives us
the above property with constant probability. In particular,

∥Sx∥22 ∈ (1± ϵ)∥x∥22

with probability 9/10. To update the vector, we’d like to perform Sx←− S(x + ∆jei), where ei is
the i-th standard basis vector. By linearity, this is equal to

Sx + ∆jSi

since multiplying the i-th basis vector is the same as extracting the i-th column of a matrix. This
gives us a relatively convenient form for computing updates, since we only need to add scaled
columns of S, which we already have, to refresh our state.
Each entry of the vector Sx is bounded from above by poly(n) since each entry of x is promised to
be within poly(n). That means we can store 1/ϵ2 such entries in O(log n), giving us O(n/ϵ2) space
complexity for storing Sx. Note that we’d also like to store S efficiently, and naively, storing the
matrix in its full form would take O(n) space.
However, in the CountSketch lecture, we mentioned how S could be represented as a 2-wise
independent hash function h : [n]→ [1/ϵ2] and a 4-wise independent hash function σ : [n]→ {−1, 1}.
Therefore, we can store S in O(log n) bits as well.

2.2 Example Problem: ℓ1 Norm

Now, we’d like to output a scalar z such that

(1− ϵ)∥x∥1 ≤ z ≤ (1 + ϵ)∥x∥1.

Borrowing the idea from ℓ1 regression, we decide to sample a matrix S of Cauchy random variables
and use it as a sketching matrix. In terms of the space complexity, there are ways to store S with

2

O(1/ϵ) words of space, and as before, we can store Sx using 1/ϵ2 words of O(log n) bits.
Our intuition would lead us to arrive at outputting ∥Sx∥1, as this would not only be a natural
choice but it would also copy our strategy for p = 2. If we examine this value more closely, we can
observe that each (Sx)i is the dot product of a vector of Cauchy random variables and a vector, so
it follows a Cauchy distribution scaled by the ℓ1 norm of x. Since Cauchy random variables have
poor concentration, we can’t expect this value to behave well, and we have to look at alternative
methods for approximating the ℓ1 norm.

2.2.1 Median as an ℓ1 norm Estimator

Instead of directly outputting ∥Sx∥1, we’ll instead output the median of the absolute values of the
entries of Sx. For a Cauchy random variable C, the pdf of its absolute value |C| is given by the
function

f(z) = 2
π(1 + z2) .

Integrating over x the cdf becomes

F (z) =
∫ z

0

2
π(1 + z2)dz = 2

π
arctan(z)

which gives us a relatively nice functional form to work with. The median is given when F (z) = 1/2.
Solving for z gives us z = 1, so the median of the absolute value of a Cauchy random variable is 1.
Claim 1. If we take r = log(1/δ)

ϵ2 samples from F , and we take X to be the median of the samples
Xi, then F (X) ∈ [1/2− ϵ, 1/2 + ϵ] with probability 1− δ.
In other words, if we take r samples, we can guarantee that the probability of the empirical median
will be close to the probability of the true median of the distribution. This can be shown using a
Chernoff bound. However, we aren’t immediately guaranteed that the value of X is close to the
true median since |C| has heavy tails. To show this, we’ll consider the inverse cdf of |C|

F −1(z) = tan
(

πz

2

)
.

Plugging in 1/2 + ϵ and 1/2− ϵ gives us tan (π/4 + πϵ/2) and tan (π/4− πϵ/2). It can be shown
using a Taylor expansion that these values are bounded from both sides by [1− 4ϵ, 1 + 4ϵ], so we
are also guaranteed that the empirical median is close to the true median not only in probability
but also in value.
Therefore, taking a matrix S of Cauchy random variables and performing an update scheme identical
to the ℓ2 case gives us a vector of O(1/ϵ2) components where each value is ⟨Si, x⟩ ∼ |Ci|∥x∥1. Taking
the median of these components gives us a scalar z such that

(1− 4ϵ)∥x∥1 ≤ z ≤ (1 + 4ϵ)∥x∥1
as desired.

2.3 General Case: ℓp Norm

2.3.1 0 < p < 2

In this case, it can be shown that 1/ϵ2 words with size O(log n) each is sufficient [Kane, Nelson,
Woodruff]. The proof mirrors that of the ℓ1 norm case, and uses the existence of p-stable distributions.

3

Although these distributions have no closed functional form, we can take a random sample θ ∈
[−π/2, π/2] and r ∈ [0, 1] and compute

sin(pθ)
cos1/p(θ)

(cos(θ(1− p))
log(1/r)

)(1−p)/p

which is a sample from a p-stable distribution. We can discretize these samples and store them
using limited independence in a similar way to CountSketch.

2.3.2 p > 2

Unfortunately, p-stable distributions do not even exist for p > 2. Furthermore, we have a lower
bound of Ω(n1−2/p) of space required for norm estimation in this case. Nonetheless, we can match
the lower bound up to logarithmic factors by providing a Õ(n1−2/p) algorithm for estimating the
norm. To do so, we will leverage some useful properties of exponential random variables. Our goal is
to get a constant factor approximation, and the sketch matrix will be of the form PD, where P is a
regular CountSketch matrix, and D is an n× n diagonal matrix where the entries are reciprocals of
independent exponential variables raised to the 1/p power. Although we did not cover the algorithm
in lecture, we briefly comment on some useful properties of exponential random variables.

Stability of Exponential Random Variables: Recall that an exponential random variable
is parameterized by a rate λ and can be used to model continuous arrival rates. The pdf of an
exponential random variable with rate λ is

f(x) = λe−λx

with support on the nonnegative reals. The cdf, by integration of the pdf, is then given by

F (x) = 1− e−λx.

If we scale the variable by t ≥ 0, the cdf becomes

F (x) = 1− e−λx/t.

Also, consider a vector y = (y1, y2, · · · yn) living in Rn and a collection of independent exponential
random variables {Ei}ni=1. Then, let q = min{E1/|y1|p, E2/|y2|p, · · · , En/|yn|p}. It is a well known
property of exponential random variables that a random variable given by the minimum of a set of
independent random variables is also an exponential random variable with a rate given by the sum
of the rates of its constituent random variables. We can see this by writing

P[q > x] = P
[
∀i, Ei

|yi|p
≥ x

]
=

n∏
i=1

e−x|yi|p = e−x∥y∥p
p

so q is also an exponential random variable.

4

3 Other Example Problems

3.1 Testing if x = 0n

In this problem, our goal is to check whether the vector x is 0 after the updates with probability at
least 9/10. While we have been using randomized strategies until this point, it is natural to wonder
whether we can use a deterministic strategy and achieve similar improvements in space complexity.
A trivial deterministic algorithm would be to store all of the entries of the vector in Θ(n log n) space
and compute the result. However, can we do better in terms of space complexity deterministically?

Theorem 1. Any deterministic algorithm for this problem requires Ω(n log n) space.

Proof. Assume for sake of contradiction that there exists some algorithm that uses o(n log n) space.
Consider a stream whose first half corresponds to the vector a = {0, 1, 2, · · · , poly(n)}n. Let S(a)
denote the state of the algorithm at this point. Since |S(a)| = o(n log n), there must be at least one
other vector a′ such that S(a) = S(a′) by the pigeonhole principle. Then, let the second half of
the stream correspond to the vector b = {−0,−1,−2, · · · ,−poly(n)}n. Then we will get the same
answer for S(a + b) and S(a′ + b), when only one of them can be 0, resulting in a contradiction. ■

This result forces us to use randomization to do better. We turn again to CountSketch matrices to
solve this problem. Since we get multiplicative error, if x = 0, then CountSketch will necessarily
output the zero vector, and our norm will be 0. On the other hand, if x ̸= 0, then we get
∥Sx∥ ∈ (1± ϵ)∥x∥22 with probability 9/10, so Sx ̸= 0. Once again, the space complexity remains
the same.

3.2 Recovering a k-sparse vector

Suppose we are given some vector x that has at most k nonzero entries at the end of the stream.
We’d like to recover the indices and values of the k nonzero entries with high probability. Our
goal is to see whether we can do it with O(k log n) bits of space as well as provide an alternative
deterministic algorithm.

Claim 2. We claim that if we have a matrix A where every set of 2k columns is linearly independent,
then we can maintain Ax in the stream and recover the nonzero values, as well as their locations.

Proof. Suppose, towards a contradiction, that there exist two vectors x, y such that Ax = Ay.
Then, A(x− y) = 0. The vector x − y can have at most 2k nonzero entries, when none of the
nonzero entries line up. However, since any set of 2k columns is linearly independent, multiplying
by the nonzero entries guarantees that we cannot have an output of the 0 vector, resulting in a
contradiction. ■

Now, we need to provide an example of a matrix that satisfies this property. We can use the
Vandermonde matrix 

1 1 1 · · ·
1 2 3 · · ·
1 4 9 · · ·
1 8 27 · · ·


5

where each entry (i, j) is ji−1. When we compute the determinant of any 2k × 2k submatrix with
columns {i1, · · · , i2k}, the formula is given as ∏

j ij
∏

j<j′(ij − ij′) ̸= 0, so the determinant cannot
be 0. Note that storing the entries can be exponential in n, so instead, we just take Ax modulo
p = poly(n) where p is some sufficiently large prime number. If p is large enough, then none of the
entries of S will be divisible by p. Also, since the entries of x are bounded, we can assume the same
for it. Finally, we don’t want the determinant to go to 0, but looking at the product formulation for
the determinant, it is clear to see that it will not be divisible mod p.

4 References

On the Exact Space Complexity of Sketching and Streaming Small Norms. Daniel M. Kane, Jelani
Nelson, and David P. Woodruff. Proceedings of the 2010 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2010, 1161-1178

6

	Introduction to the Streaming Model
	Turnstile Streaming Model

	Estimating Norms in the Streaming Model
	Example Problem: Euclidean Norm
	Example Problem: 1 Norm
	Median as an 1 norm Estimator

	General Case: p Norm
	0 < p < 2
	p > 2

	Other Example Problems
	Testing if x = 0n
	Recovering a k-sparse vector

	References

