
CS 15-859: Algorithms for Big Data Fall 2021

Lecture 4.2 — 09/30
Prof. David Woodruff Scribe: Chittesh Thavamani

1 Fast Approximation of Leverage Scores

We previously showed that leverage score sampling yields a valid subspace embedding. Now, given
an n× d matrix A, we just need a fast method to approximate its leverage scores li for i ∈ [n].

Naively, we could compute the SVD A = UΣV > and since the columns of U form an orthonormal
basis for the column space of A, the leverage scores of A are the row norms of U . However, this
would take poly(n) time, which is too slow.

Instead, we perform the following process:

(1) Compute SA for a subspace embedding S using a CountSketch matrix with O(d2/ε2) rows
for any chosen constant ε.

(2) Compute the thin SVD SA = UtΣtV
>

t . This yields a QR decomposition SA = QR−1, where
Q = Ut has orthonormal columns and R−1 = ΣtV

>
t . Compute R = VtΣ−1

t .

(3) Sample a d×O(logn) matrix G of i.i.d. normals. Compute ARG by first computing RG and
then left multiplying by A.

(4) Output the squared row norms of ARG.

1.1 Correctness

Let l′i = |eiAR|22 and l′′i = |eiARG|22. In other words, l′i and l′′i are the squared row norms of AR and
ARG, respectively. We’ll show that both these quantities are constant factor approximations of li.

Claim 1. For all i ∈ [n], li = (1±O(ε))l′i.

Proof. Note that since R is invertible, the column space of AR is the same as A. And A has the
same column space as U , where A = UΣV > is its SVD. So we must have AR = UT−1 for some
change of basis matrix T−1.

Now, since AR has the same column space as A, we can apply the subspace embedding property on
AR. Thus, for all vectors x ∈ Rd

(1− ε)|ARx|2 ≤ |SARx|2 (subspace embedding property)
= |Qx|2 (def of QR decomposition)
= |x|2 (Q has orthonormal cols)

1

Similarly, (1 + ε)|ARx|2 ≥ |x|2. Combining these, we have that

(1±O(ε))|x|2 = |ARx|2
= |UT−1x|2 (def of T−1)
= |T−1x|2 (U is orthonormal)

This means that T−1 (and its inverse T) preserves the lengths of vectors x ∈ Rd up to a factor of
1±O(ε).

Finally, we have that

li = |eiU |22 (def of leverage score)
= |eiART |22 (def of T)
= (1±O(ε))|eiAR|22 (T preserves lengths approximately)
= (1±O(ε))l′i.

Thus, since ε is a chosen constant, l′i is a constant factor approximation of li. �

Theorem 1. Johnson-Lindenstrauss: Let G be a d×O(logn) matrix of i.i.d. normals. Then for
any vector z,

Pr
[
|zG|22 =

(
1± 1

2

)
|z|22

]
≥ 1− 1/n2.

Claim 2. For all i ∈ [n], l′′i = (1± 1/2)l′i.

By the previous theorem, we have for any i ∈ [n] that l′′i = |eiARG|22 = (1±1/2)|eiAR|22 = (1±1/2)l′i
with failure probability 1/n2. By union bound, this is satisfied for all i ∈ [n] with failure probability
at most 1/n. �

Thus, putting our claims together, our output l′′i is a constant factor approximation of li, which is
exactly what we want.

1.2 Runtime

Step 1 takes nnz(A) time since S is a CountSketch matrix.

SA is O(d2/ε2)× d, so computing its thin SVD takes poly(d) time. From there, computing R will
also take poly(d) time.

R is d×d and G is d×O(logn), so RG takes O(d2 logn) time to compute. Then, left multiplying by
A involves multiplying each nonzero element of A with the corresponding row of RG with O(logn)
elements, so this take nnz(A) logn time.

Outputting the squared row norms of ARG of size n×O(logn) takes O(nnz(A) logn) time, since
nnz(A) ≥ n.

Finally, sampling according to leverage scores results and solving that least squares problem will
take poly(d logn/ε) time.

So the overall runtime is O(nnz(A) logn+ poly(d logn/ε)).

2

2 Distributed Low Rank Approximation

Can we solve the low rank approximation problem efficiently in a distributed setting (the data
is distributed over multiple machines) where communication between machines is an additional
constraint? One real world application of this could be k-means clustering, in which we might have
too many data points to fit onto one machine, and a common approach is to project these points
onto a lower dimensional space before performing the clustering.

2.1 Problem formulation

Let A be the matrix whose low rank k approximation we want to find. We have s servers, each holding
a part Ai of the matrix A for i ∈ [s]. Either we have the arbitrary partition model, in which case
A = A1+A2+. . .+As, or we have the row partition model, in which case A =

[
A1 A2 · · · As

]>
.

Note that the arbitrary partition model is a generalization of the row partition model. Assume all
entries of Ai for i ∈ [s] are O(log(nd))-bit integers (WLOG we can scale up floating point values
and round to the nearest integer).

Each server can communicate both ways with a specified other "coordinator" machine. This still
allows us to simulate arbitrary server to server communication up to a factor of 2 in cost (and
an additive factor of O(log s) to specify target machine) just by relaying all messages through the
coordinator node.

The goal is for each server to output the same k-dimensional space W such that

|A− C|F ≤ (1 + ε)|A−Ak|F

where C = A1PW +A2PW + . . . AsPW = APW is the combined low rank approximation for PW a
projection onto W and Ak is the optimal low rank approximation. Our objectives are to minimize
total communication and computation. We also want a constant number of rounds and input
sparsity time.

2.2 Previous Results

1. FSS [2] provides a solution to the row-partition model using O(sdk/ε) real numbers of
communication. Disadvantages of this method is that the bit complexity of communication is
unaddressed. The assumption of being able to send real numbers might not hold in real life.
Also, each server requires an SVD to be performed on its data, which is expensive.

2. KVW [3] provides a solution to the arbitrary partition model using O(sdk/ε) communication.

3. BWZ [1] provides a solution to the arbitrary partition model using O(sdk) + poly(sk/ε)
communication and input sparsity time for computation. Note that this matches the Ω(sdk)
lower bound that’s intuitively required for sharing a d× k matrix across s servers. This can
be proven formally.

3

2.3 FSS: Constructing a Coreset

The first step to the FSS algorithm is constructing what is known as a coreset of A. Let A = UΣV >
be its SVD, and define m = k + k/ε. Define Σm to be the same as Σ except with zeros past the
first m diagonal entries. Similarly, define Um to be the same as U except with zeros beyond the
first m columns. Finally, Am = UΣmV

>.

Claim 3. For all projection matrices Y = I −X onto (d− k)-dimensional subspaces,

|ΣmV
>Y |2F + c = (1± ε)|AY |2F

where c = |A−Am|2F notably doesn’t depend on Y . We call ΣmV
> the coreset of A.

Intuition: Multiplying a vector v by F results in vF = v − vX. Since X is another projection
matrix, |vF |2 corresponds to the distance from v to the subspace represented by X. Thus, |AY |2F is
equal to the sum of squared distances from the row vectors of A to the subspace represented by X.
Similarly, |ΣmV

>Y |2F is the sum of squared distances from the row vectors of the coreset to the
subspace represented by X. The claim is stating that these two quantities are roughly equal for any
choice of projection Y , up to the constant c that is invariant to Y .

We can also think of Um as a sketching matrix S here, because SA = UmUΣV > = ΣmV
>.

Proof. First, we’ll show that |ΣmV
>Y |2F + c ≥ (1− ε)|AY |2F by showing the stronger result that

|AY |2F ≤ |ΣmV
>Y |2F + c.

For a projection matrix P and a matrix M , we have that |M |2F = |PM |2F + |(I − P)M |2F
by use of the Pythagorean Theorem on the columns of M . Now, consider P = UmU

>
m and

M = AY . This gives us

|AY |2F = |UmU
>
mAY |2F + |(I − UmU

>
m)AY |2F

= |UmU
>
mAY |2F + |(A− UmU

>
mA)Y |2F

Here, by the SVD of A, we have that UmU
>
mA = UmU

>
mUΣV > = UmImΣV > = UmΣmV

> =
UΣmV

>, where Im is an identity matrix with zeros as diagonal entries past the mth. It
follows that

|AY |2F = |UΣmV
>Y |2F + |(A− UΣmV

>)Y |2F
= |ΣmV

>Y |2F + |(A−Am)Y |2F (U is orthonormal, def of Am)
≤ |ΣmV

>Y |2F + |A−Am|2F
(projecting through Y would only decrease row norms of A−Am)

= |ΣmV
>Y |2F + c.

Now, we’ll show that |ΣmV
>Y |2F + c ≤ (1 + ε)|AY |2F by showing that |ΣmV

>Y |2F + c− |AY |2F ≤
ε|AY |2F .

By the Pythagorean Theorem, by the definition of projection matrix Y = I −X, for any
vector v, we have that |v|22 = |vY |22 + |vX|22 =⇒ |vY |22 = |v|22 − |vX|22. Extending this to

4

matrices M of stacked row vectors, we have that |MY |2F = |M |2F − |MX|22. It follows that

|ΣmV
>Y |2F + |A−Am|2F − |AY |2F

=|ΣmV
>|2F − |ΣmV

TX|2F + |A−Am|2F − |A|2F + |AX|2F (previous result)
=|UΣmV

>|2F − |ΣmV
TX|2F + |A−Am|2F − |A|2F + |AX|2F (U is orthonormal)

=|Am|2F − |ΣmV
TX|2F + |A−Am|2F − |A|2F + |AX|2F . (def of Am)

Again, by the Pythagorean Theorem, letting M = A and P = UmU
>
m (notation as in proof

of other direction), after some algebra, we have that |A|2F = |Am|2F + |A−Am|2F . It follows
that

|ΣmV
>Y |2F + |A−Am|2F − |AY |2F

=|AX|2F − |ΣmV
TX|2F (prev Pythag thm result)

=|AX|2F − |UΣmV
TX|2F (U is orthonormal)

=|AX|2F − |AmX|2F (def of Am)
=|(A−Am)X|2F (Pythag thm with M = AX,P = UmU

>
m)

=|U(Σ− Σm)V >X|2F (factor SVD of A and Am)
=|(Σ− Σm)V >X|2F (U is orthonormal)

Here, we use a property called submultiplicativity which states that |AB|2F ≤ |A|22 · |B|2F ,
which can be proven by breaking up the Frobenius norm by columns of B and noting that
the norm of each column will be increased by at more the operator norm of A. It follows
that

|ΣmV
>Y |2F + |A−Am|2F − |AY |2F ≤ |(Σ− Σm)V >|22 · |X|2F

Now, we have that the operator norm of (Σ− Σm)V > is its max singular value, which is
σ2

m+1 or the (m+ 1)-th singular value of A. And since X is a projection matrix of rank k,
its Frobenius norm must be k. Thus, it follows that

|ΣmV
>Y |2F + |A−Am|2F − |AY |2F

≤σ2
m+1k

=σ2
m+1ε(m− k) (def of m)

≤ε
m+1∑

i=k+1
σ2

i (include m− k previous singular values)

≤ε
d∑

i=k+1
σ2

i (include all singular values after σm+1)

=ε|A−Ak|2F (squared Frobenius norm is the sum of squared singular values)
≤ε|AY |2F . (A−Ak is the projection of A with minimum Frobenius norm)

Thus, our claim is proven.

This formulation is useful even with the additive constant c, because of the following argument.

5

Suppose Ỹ minimizes |ΣmV
>Y |2F and Y ∗ minimizes |AY |2F . Then, we have that

|AỸ |2F ≤ |ΣmV
>Ỹ |2F + c (stronger result proven in claim)

≤ |ΣmV
>Y ∗|2F + c (def of Ỹ)

≤ (1 + ε)|AY ∗|2F (claim)
= (1 + ε)|A−Ak|2F . (the low rank solution Ak is the projection that minimizes |AY |2F)

This shows that we can reduce the low rank approximation problem to simply finding Ỹ using the
“sketched” matrix.

References

[1] Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal Principal Component Analysis
in Distributed and Streaming Models. 2016. arXiv: 1504.06729 [cs.DS].

[2] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning Big data into tiny data: Constant-
size coresets for k-means, PCA and projective clustering. 2018. arXiv: 1807.04518 [cs.DS].

[3] Ravindran Kannan, Santosh Vempala, and David Woodruff. Principal Component Analysis
and Higher Correlations for Distributed Data. 2014. arXiv: 1304.3162 [cs.DS].

6

https://arxiv.org/abs/1504.06729
https://arxiv.org/abs/1807.04518
https://arxiv.org/abs/1304.3162

	Fast Approximation of Leverage Scores
	Correctness
	Runtime

	Distributed Low Rank Approximation
	Problem formulation
	Previous Results
	FSS: Constructing a Coreset

