15-859 Algorithms for Big Data — Fall 2022

PROBLEM SET 3

Due: Tuesday, November 8, 11:59pm

Please see the following link for collaboration and other homework policies: http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall22/grading.pdf

Problem 1: ℓ_1 -Median Subspace Embedding (25 points)

In class we saw an ℓ_1 -subspace embedding for an $n \times d$ matrix A using a random $m \times n$ matrix of i.i.d. Cauchy random variables (divided by m i.e., each entry of S is a standard Cauchy random variable divided by m) S with $m = O(d \log d)$. Namely, with probability at least 9/10,

$$\Omega(\|Ax\|_1) = \|SAx\|_1 = O(d\log d)\|Ax\|_1,\tag{1}$$

simultaneously for all vectors $x \in \mathbb{R}^d$. Unfortunately, the $O(d \log d)$ factor can be large for some applications. In this problem we will improve this factor by instead looking at the *median operation*. Namely, let S be an $m \times n$ matrix of i.i.d. Cauchy random variables (divided by m) for $m = O(d \log(d/\epsilon)/\epsilon^2)$. Show that with probability at least 9/10,

$$\frac{1 - \epsilon}{m} ||Ax||_1 \le ||SAx||_{\text{med}} \le \frac{1 + \epsilon}{m} ||Ax||_1, \tag{2}$$

simultaneously for all $x \in \mathbb{R}^d$. Here for a vector y, $||y||_{\text{med}}$ denotes the median of the absolute values of its entries. You can assume that $1/\text{poly}(d) < \epsilon < c$ for a small enough constant c.

To help you prove this statement, here are some properties you may find useful:

- 1. You can continue to assume that (1) holds even with $m = O(d \log(d/\epsilon)/\epsilon^2)$.
- 2. It suffices to prove (2) for any basis of A that we would like. Choose a special kind of basis that we used in class for ℓ_1 .
- 3. It may be helpful to use (1) to argue that $||SAx||_{\infty} \leq \text{poly}(d)||Ax||_1$ for all x.
- 4. A γ -net for the unit ℓ_1 -ball, intersected with the column span of A, has size at most $\gamma^{O(d)}$. You can use this fact without proof, as it follows a similar volume argument that we used in class for ℓ_2 -nets.
- 5. It will be useful to define the notion of S being good for a vector Ax. Say that SAx is good if both

$$|\{i \text{ such that } |(SAx)_i| < (1-\epsilon)||Ax||_1/m\}| \le \left(\frac{1}{2} - C\epsilon\right)m,$$

and

$$|\{i \text{ such that } |(SAx)_i| > (1+\epsilon)||Ax||_1/m\}| \le \left(\frac{1}{2} - C\epsilon\right)m,$$

where C > 0 is a certain constant. Try to argue that the mapping S is good on all net vectors, and try to use this to conclude (2) holds for all vectors x.

HINT: Fix a vector x and try to show that with high probability $(1 - \epsilon) \|Ax\|_1/m \le \|SAx\|_{\text{med}} \le (1 + \epsilon) \|Ax\|_1/m$. Use the 1-stability property of the Cauchy Random variables and then show that median of independent Cauchy Random variables is highly concentrated. Next extend the argument using a union bound to all the net vectors and then to all the vectors.

Problem 2: F_2 -Difference Estimator in a Stream (25 points)

In this problem we consider insertion-only streams, meaning that we just see positive updates to an underlying vector $x \in \{0, 1, 2, ..., M\}^n$ for some M = poly(n). That is, no negative changes to coordinates of x are allowed. We will consider estimating $||x||_2^2$ up to a $(1+\epsilon)$ -multiplicative factor.

Often x is slowly-changing, meaning that at some point in the stream x=u and then at some later point in the stream x=u+v for some $v\in\{0,1,2,\ldots,M\}^n$, and we have $\|u+v\|_2^2-\|u\|_2^2\leq \gamma\|u\|_2^2$ and $\|v\|_2^2\leq \gamma\|u\|_2^2$ for some $0<\gamma<1$. You would like to estimate $\|u+v\|_2^2$ using your previous estimate $\|u\|_2^2$ and using very little space. Show how to estimate $\|u+v\|_2^2$ up to a $(1\pm\epsilon)$ -multiplicative factor with probability at least 9/10, given a $(1\pm\epsilon/2)$ -approximation to $\|u\|_2^2$ and a sketch which uses space $O(\gamma\epsilon^{-2}\log n)$ bits. You can assume that you initialize x=0 and after processing some number of updates you will have x=u at which point you are given a $1\pm\epsilon/2$ approximation to $\|u\|_2^2$. Then you start processing the rest of the updates and finally end up setting x=u+v and at the end of the stream you want to output a $1\pm\epsilon$ approximation to $\|u+v\|_2^2$.

Note that if $\gamma = \Theta(1)$, then there is no improvement over just estimating $||u+v||_2^2$ directly using the sketch from class. However, if for example, $\gamma = \Theta(\epsilon)$, then the memory is only $O(\epsilon^{-1} \log n)$ bits, which is a significant savings.

approximation.

HIVT: Treat the number of rows in your sketch as a variable and see what approximation guarantees you will get in terms of the number of rows. Then set the number of rows so as to obtain a $1 \pm \epsilon$