Algorithms, 2021 at CIS

Homework 2

- 1. Suppose you have two length-*n* binary integers *a* and *b* and *n* is a power of 3, and you would like to multiply *a* and *b* quickly. Suppose, in O(n) time, you could create 5 length-*n*/3 numbers p_1, \ldots, p_5 and 5 length-*n*/3 numbers q_1, \ldots, q_5 , so that after computing $p_1 \cdot q_1, p_2 \cdot q_2, \ldots, p_5 \cdot q_5$ you could combine the results, in O(n) time, to compute $a \cdot b$. What is the overall big-Oh running time of your algorithm to multiply *a* and *b*?
- 2. Suppose you could multiply two arbitrary 4×4 matrices A and B using 31 multiplications and 71 additions. Using this to devise a divide and conquer algorithm, along the lines of Strassen's, what would your running time be for multiplying two $n \times n$ matrices? Big-Oh notation is fine.
- 3. Suppose you have a degree-2 polynomial p(x) for which p(0) = 5, p(1) = 2, and p(2) = 3. Then $p(x) = ax^2 + bx + c$. Solve for a, b, and c.