## Simplifying Surfaces with Color and Texture using Quadric Error Metrics



Michael Garland Paul S. Heckbert

**Carnegie Mellon University** 

October 1998

### **Overview**

### Often want to simplify overly complex models

- Too much for hardware, or simply over-sampled
- Common sources: Scanning & Reconstruction

#### Quadric-based simplification [SIGGRAPH 97]

- Fast method producing quality results
- Convenient characterization of error/shape

#### Generalization required to handle properties

Color, texture, surface normals, etc.

## **Geometric Surface Simplification**



# Fundamental Quadric-Based Simplification Algorithm

### Iterative edge contraction



#### Quadric error metric

- Each vertex has (conceptual) set of planes
- Vertex error = sum of squared distances to planes
- Combine sets when contracting vertex pair

## Measuring Error with Quadrics

Given a plane, we can define a quadric Q

$$Q = (\mathbf{A}, \mathbf{b}, c)$$

measuring squared distance to given plane as

$$Q(\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} + 2 \mathbf{b}^{\mathsf{T}} \mathbf{v} + c$$

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + 2 \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + c$$

## Measuring Error with Quadrics

### Each vertex has an associated quadric

- Measures error at vertex
- Sum quadrics when contracting pair

### Sum of endpoint quadrics determines v'

- Fixed placement: select v<sub>1</sub> or v<sub>2</sub>
- Optimal placement: choose v' minimizing Q(v')

$$\mathbf{v'} = -\mathbf{A}^{-1}\mathbf{b}$$
 is optimal vertex

## A Simple Example: Contraction & "Planes" in 2D

### Lines defined by neighboring segments

- Determine position of new vertex
- Error isocontours shown on right



### Visualizing Quadrics in 3-D



#### Quadric isosurfaces

- Are ellipsoids (maybe degenerate)
- Characterize shape
- Stretch in least curved directions
- Eigenvalues proportional to principal curvatures

## Quadrics Give Good Results, But Ignores Attributes

### Fundamental algorithm works well

- Simple to implement & simplification is fast
- High quality approximations
- Quadrics record useful information about shape

### But many models have additional properties

- Color, texture, normals, etc.
- Need to simplify these as well

## Gouraud Shaded Surface: Single RGB Value Per Vertex



Surface geometry



Radiosity solution

# **Surface Properties as Vertex Attributes**

### Each vertex has a set of properties

- Each property has one unique value per vertex
- Attributes are linearly interpolated over faces
- Primary example: one RGB color per vertex

### Can't treat geometry & color separately

- Position and color are correlated
- Optimal position may lie off the surface
- Must synthesize new color for this position

## Vertex Attributes Become Added Dimensions

### Treat each vertex as a 6-vector [x y z r g b]

- Assume this 6-D space is Euclidean
  - Of course, color space is only roughly Euclidean
- Scale xyz space to unit cube for consistency

### Triangle determines a 2-plane in 6-D space

- Can measure squared distance to this plane
- Distance along all perpendicular directions
  - Generalized Pythagorean Theorem

### Generalized Quadric Metric

### Squared distance to 2-plane has same form:

$$Q(\mathbf{v}) = \mathbf{v}^\mathsf{T} \mathbf{A} \mathbf{v} + 2 \mathbf{b}^\mathsf{T} \mathbf{v} + c$$

- A: 6x6 matrix v,b: 6-vectors c: scalar (for RGB)
- Underlying algorithm remains the same

### May want to selectively weight channels

- Relative importance of space & color
- Relative importance of red & green

### Generalized Quadric Metric

### Common property types

Vertex

Dimension

Color

[xyzrgb]

6x6 quadrics

Texture

[x y z s t]

5x5 quadrics

Normal

[x y z u v w]

6x6 quadrics

Color+Normal

[xyzrgbuvw]

9x9 quadrics

## Simplifying the Dragon Model



20 sec.



50,761 faces

10,000 faces

## Simplifying the Dragon Model



23 sec.



50,761 faces

1,500 faces

## Simplified Dragon Mesh



50,761 faces





1,500 faces

## A Sample Textured Surface



# **Simplifying Geometry Only: Same Texture Coordinates**



## Simplifying with xyzst Quadrics; New Texture Coordinates



### **Related Work**

### Fairly few algorithms address attributes

- Re-sampling height field attributes
- Mesh optimization methods [Hoppe 96]
- Attribute map preservation [Cohen et al 98]

### In comparison, our algorithm is

- Not limited to simple height field re-sampling
- Faster than other general algorithms
- Still capable of producing quality results

### Summary

### Generalized quadric metric

- Handles surfaces with per vertex attributes
- Rapidly produces quality approximations

#### **Future work**

- Handling attribute discontinuities
- Other attribute types
- Attribute characteristics necessary for success

### **Further Details Online**

Online papers,

Sample models,

Experimental code

http:///www.cs.cmu.edu/~garland/quadrics//

