
Reviewers: please watch the five supplementary MPEG movies. The Figures are best viewed in color. Thanks.

Articulated Shape-From-Silhouette and its Use for
Human Body Kinematics Estimation and Motion Capture

Paper Submission Number : 123

Abstract

Shape-From-Silhouette (SFS), also known as Visual Hull
(VH) construction, is a popular 3D reconstruction method
which estimates the shape of an object from multiple silhou-
ette images. The original SFS formulation assumes that all
of the silhouette images are captured either at the same time
or while the object is static. This assumption is violated
when the object moves or changes shape. Hence the use
of SFS with moving objects has been restricted to treating
each time instant sequentially and independently. Recently
we have successfully extended the traditional SFS formu-
lation to refine the shape of a rigidly moving object over
time. Here we further extend SFS to apply to dynamic ar-
ticulated objects. Given silhouettes of a moving articulated
object, the process of recovering the shape and motion re-
quires two steps: (1) correctly segmenting (points on the
boundary of) the silhouettes to each articulated part of the
object, (2) estimating the motion of each individual part us-
ing the segmented silhouette. In this paper, we propose an
iterative algorithm to solve this simultaneous assignment
and alignment problem. Once we have estimated the shape
and motion of each part of the object, the articulation points
between each pair of rigid parts are obtained by solving a
simple motion constraint between the connected parts. To
validate our algorithm, we first apply it to segment the dif-
ferent body parts and estimate the joint positions of a per-
son. The acquired kinematic (shape and joint) information
is then used to track the motion of the person in new video
sequences.

1. Introduction

Traditional Shape-From-Silhouette (SFS) assumes either
that all of the silhouette images are captured at the same
time or that the object is static [16, 21, 14, 15]. Although
systems have been proposed to apply SFS to video [3, 2],
these systems apply SFS to each frame sequentially and in-
dependently.

Recently there has been some work on using SFS on
rigidly moving objects to recover shape and motion [24,
25], or to refine the shape over time [17]. These methods
involve the estimation of the 6 DOF rigid motion of the ob-
ject between successive frames. In [25] the motion is as-
sumed to be circular. Frontier points are extracted from the
silhouette boundary and used to estimate the axis of rota-
tion. In [24], Ponce et. al. define a local parabolic structure
on the surface of a smooth curved object and use epipolar
geometry to locate corresponding frontier points on three

silhouette images. The motion between the images is then
estimated by a two-step minimization.

In [17] the 6 DOF motion is estimated by combining
both the silhouette and the color information. At each time
instant, 3D line segments called Bounding Edges are con-
structed from rays through the camera centers and points on
the silhouette boundary. Using the fact that each Bounding
Edge touches the object at at least one point, a multi-view
stereo algorithm is proposed to extract the colors and posi-
tions of these touching points (subsequently referred to as
Colored Surface Points). The motion between consecutive
frames is then computed by minimizing the errors of pro-
jecting the Colored Surface Points into the images. Once
the 6 DOF rigid motion is recovered and compensated for,
all the silhouette images are treated as taken at the same
time and traditional SFS is applied to get a refined shape of
the object.

In this paper we extend [17] to handle articulated ob-
jects. An articulated object consists of a set of rigidly mov-
ing parts which are connected to each other at certain artic-
ulation points. A good example of an articulated object is
the human body (if we approximate the body parts as rigid).
Here we propose an algorithm to automatically recover the
joint positions, and the shape and motion of each part of
an articulated object. We begin with silhouette images, al-
though color information is used to break the alignment am-
biguity as in [17].

Given silhouettes of a moving articulated object, recov-
ering the shape and motion requires two inter-related steps:
(1) correctly segment (points on the boundary of) the silhou-
ettes to each part of the object and (2) estimate the shape
and motion of the individual parts. We propose an itera-
tive algorithm to solve this simultaneous assignment and
6 DOF motion estimation problem. Once the motions of
the rigid parts are known, their articulation points are es-
timated by imposing motion constraints between adjoining
parts. To test our algorithm, we apply it to acquire the shape
and joint locations of articulated human models. Once this
kinematic information of the person has been acquired, we
show how the 6 DOF motion estimation algorithm can be
used to track the articulated motion of that person in new
video sequences. Results on both synthetic and real data
are presented to show the validity of our algorithms.

2. Background

In [8] and [17] we extended the traditional SFS formu-
lation to rigidly moving objects. Combining the silhouette
and color images, we first extract 3D points on the surface
of the object at each time instant. These surface points are
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Figure 1. The Bounding Edge
���� is obtained by first pro-

jecting the ray � � � onto ���� , �	�� , �	
� and then re-projecting the
segments overlapping the silhouettes back into 3D space.� �� is the intersection of the reprojected segments. The
point where the object touches

� �� is located by searching
along

� �� for the point with the minimum projected color
variance. Note that the image from camera 4 is not used
because it is occluded. See [17] for details.

then used to estimate the 6 DOF motion between succes-
sive frames. Once the rigid motion across time is known,
all of the silhouette images are treated as being captured at
the same time and SFS is performed to estimate the shape
of the object. Below we give a brief review of this temporal
SFS algorithm.

2.1. Visual Hulls and Their Bounding Edges

The term Visual Hull (VH) was first coined by Lauren-
tini in [13] to denote the 3D shape obtained by intersecting
the visual cones formed by the silhouette images and the
camera centers [13, 14, 2]. One useful property of a VH
is that it provides an upper bound on the shape of the ob-
ject. In [17], we introduced a new representation of a VH
called the Bounding Edge representation. Assume there are�

color-balanced and calibrated cameras positioned around
a Lambertian object � . Let 
��������� ������������! " ! #� ��$
be the set of color and corresponding silhouette images of
the object � obtained from the

�
cameras at time % � . Let&('� be a point on the boundary of the silhouette image � �� .

Through the center of camera � , &	'� defines a ray ) '� in 3D
space. A Bounding Edge * '� is defined as the portion of) '� such that the projection of * '� on the image planes of all
the other cameras lies completely inside the silhouettes. An
example is shown in Figure 1. * '� can be constructed by
successively projecting the ray ) '� onto each silhouette im-
age, and retaining the portion whose projection overlaps all
the silhouettes.

2.2. Colored Surface Points (CSP)

The most important property of a Bounding Edge is the
Second Fundamental Property of Visual Hulls (2nd FPVH)

which states that each Bounding Edge touches the object
(which forms the silhouette images) at at least one point
[17]. Using this property, we are able to locate points on
the surface of the object using a multi-stereo color match-
ing approach. Consider a Bounding Edge * '� . Since we
assume the object is Lambertian and the cameras are color
balanced, there exists at least one point on * '� (the point
where it touches the object) such that the projected colors
of this point in all the visible color images �+�� are the same.
In other words, this point has zero projected color variance
among the visible color images. In practice, due to noise
and inaccuracies in color balancing, instead of searching for
the point that has zero projected color variance, we assign
the touching point on * '� to be the point with the minimum
color variance, as shown in Figure 1. We refer to this point
as a Colored Surface Point (CSP) of the object and repre-
sent its position and color (which is obtained by averaging
its projected color across all visible cameras) by , '� and-�'� respectively. By sampling the boundaries of all the sil-
houette images, a set of . � Colored Surface Points can be
constructed. Note that there is no point-to-point correspon-
dence relationship between two different sets of CSPs ob-
tained at different time instant. The only property common
to the CSPs is that they all lie on the surface of the object.

2.3. SFS Across Time for Rigid Objects

We now describe our algorithm for recovering the 6 DOF
motion of a rigid object using the CSPs. Without loss
of generality, we assume that the orientation and position
of the object at time %0/ is 132 � 0

¯
4

and that at time % � it is165 � �87 � 4 �:9;�=<+�! " ! #�!> . The rigid object alignment prob-
lem is then equivalent to recovering 165 � �87 � 4@? 9 . Consider
the motion between % / and %BA as an example and assume we
have two sets of data 
�������C� ��D� , '��� -�'�E�GFD�:�E�" ! " #� . � �H�I��E�"J!J!J!J!J!J"� � �K9H�L�E�M< $ obtained at %C/ and % A respectively.
To find 165 A �07 A 4 , we align the CSPs with the 2D silhouette
and color images. The idea is very similar to that in [22] for
2D image alignment.

Suppose we have an estimate of 1N5OA �07 A 4 . For a CSP, '/ (with color -�'/ ) at time %0/ , its 3D position at time % A
would be 5PA", '/RQ 7 A . Consider two different cases of the
projection of 5 A , '/ Q 7 A into the �TS3U camera:

1. The projection lies inside the silhouette � �A . In this
case, we use the color difference as an error measure:

V W �A 1N5 A , '/ Q 7 A 4DX - ' /MY A � (1)

where
W �A 16Z 4 is the projected color of a 3D point Z

into the color image ���A . Here we assume this color
error is zero if the projection of Z lies outside � �A .

2. The projection lies outside � �A . In this case, we use
the distance of the projection from � �A , represented by[ �A 165 A , '/ Q 7 A 4 as an error measure. The distance is
zero if the projection lies inside � �A .
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Figure 2. Results of our temporal SFS algorithm [17] ap-
plied to synthetic data: (a) one of the input images, (b) un-
aligned CSPs, (c) aligned CSPs, (d) refined visual hull.

Summing over all cameras in which , '/ is visible, the error
measure of , '/ with respect to 165OA �87 A 4 is given by\ 'A!] / � ^ � 
"_G` [ �A 165 A , '/ Q 7 A 4 QV W �A 165PA", '/aQ 7 A 4�X -�'/ Y A $ � (2)

where _ is a weighing constant. Similarly, the error measure
of a CSP , 'A at time % A is written as\ ' / ] A � ^ � 
�_b` [ � / 165PcA 16, 'A X 7 A 404 QV W � / 165 cA 1N, 'A X 7 A 484dX -�'A Y A $  (3)

Now the problem of estimating the motion 1N5 A �87 A 4 is posed
as minimizing the total error

egfih5kj ] 7 j \ � egfih5lj ] 7 j
m jn
'io / \ ' / ] ApQ

mrqn
'io / \ 'A!] / � (4)

which can be solved using a gradient descent or Iterative
Levenberg-Marquardt algorithm [23]. Hereafter we refer to
this motion estimation process as either “temporal SFS” or
the visual hull alignment algorithm.

To show the validity of our visual hull alignment algo-
rithm, we apply it to both synthetic and real sequences of
a rigidly moving person. In the synthetic sequence, a com-
puter graphics model of a person is made to rotate about
the z-axis. Twenty five sets of color and silhouette images
of the model from eight virtual cameras are rendered us-
ing OpenGL. One example of the rendered color images is
shown in Figure 2(a). CSPs are then extracted and aligned.
Figure 2(b) and (c) illustrate respectively the unaligned and
aligned CSPs for all 25 frames. Figure 2(d) shows the vi-
sual hull constructed by applying SFS to all the silhouette
images (compensating for the alignment). A real sequence
of a person standing on a turn table was also captured by
eight cameras with thirty frames per camera (a whole rev-
olution of the turn table). The person was asked to remain
still throughout the capture process to satisfy the rigidity as-
sumption. The results are presented in Figure 3. It can be
seen that excellent shape estimates (the visual hulls shown
in Figures 2(d) and Figure 3(d)) of the human bodies can be
obtained using our temporal SFS algorithm [17].
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(d)

(c)

Figure 3. Results of our temporal SFS algorithm [17] ap-
plied to estimate the shape of a real human body (a) one
of the input images, (b) unaligned CSPs, (c) aligned CSPs,
(d) refined visual hull displayed from several different view
points.

Although the 3D shape of a person can be obtained in de-
tail using the VH alignment algorithm described above, the
acquired shape does not contain any kinematic information
(joint positions and body parts segmentation). This kine-
matic information is essential for applications such as mo-
tion tracking, capture, recognition and rendering. We now
show how this information can be obtained automatically
and accurately using our articulated SFS algorithm.

3. Articulated Shape-From-Silhouette

To extend the temporal SFS algorithm to articulated ob-
jects we employ a similar idea to that used for multiple lay-
ered motion estimation in [18]. The rigid parts of the articu-
lated object are first modeled as separate and independent of
each other. With this assumption, we iteratively (1) assign
the extracted CSPs to different parts of the object and (2)
apply the temporal SFS algorithm to align each part across
time. Once the motions of all the parts are recovered, an
articulation constraint is applied to estimate the joint posi-
tions. Note that this iterative approach can be categorized
as belonging to the Expectation Maximization framework
[5]. The whole algorithm is explained below in detail using
a two-part, one-joint articulated object.

3.1. Segmentation/Alignment Algorithm

Consider an one-joint object � which consists of two
rigid parts s and t as shown in Figure 4 at two dif-
ferent time instants % / and %BA . Assume CSPs of the ob-
ject are extracted from the color and silhouette images
of
�

calibrated and color-balanced cameras, denoted by
��T����C� ��D� , '��� -�'�E� 9u�v���C< $ . Furthermore, treating s
and t as two independently moving rigid objects allows
us to represent the relative motion of s between %M/ and % A
as 1N5kwA �07 wA 4 and that of t as 1N5PxA �07 xA 4 . Now consider the
following two complementary cases.
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Figure 4. A two-part articulated object at two different time
instants y � and y � .

3.1.1. Alignment with known segmentation

Suppose we have segmented the CSPs at % � into groups
belonging to part s and part t , represented by z w� andz x� respectively for both 9{� ���C< . By applying the
temporal SFS algorithm described in Section 2 (Eq. (4))
to s and t separately, estimates of the relative motions165PwA �07 wA 4 � 1N5kxA �87 xA 4 are obtained.

3.1.2. Segmentation with known alignment

Assume we are given the relative motion165PwA �07 wA 4 � 1N5kxA �87 xA 4 of s and t from %C/ to % A . For a
CSP , '/ at time %0/ , consider the following two error
measures\ ' ] wA#] / � ^ � 
�_b` [ �A 1N5PwA , '/ Q 7 wA 4 QV W �A 1N5 wA , '/ Q 7 wA 4�X -�'/MY A $ � (5)\ ' ] xA!] / � ^ � 
"_|` [ �A 165 xA , '/}Q 7 xA 4 QV W �A 165 xA , '/}Q 7 xA 4�X - ' / Y A $  (6)

Here \ ' ] wA!] / is the error of , '/ with respect to the
color/silhouette images at % A if it belongs to part s (thus
following the motion model 5PwA �87 wA ). Similarly \ ' ] xA#] / is the
error if , '/ lies on the surface of t . In these expressions the
summations are over all visible cameras � . By comparing
these two errors, a simple strategy to classify the point , '/
is devised as follows:

, '/�~
�� � z w / if \ ' ] wA#] /I��� ` \ ' ] xA!] /z x / if \ ' ] xA#] / ��� ` \ ' ] wA#] /zb�/ otherwise

� (7)

where �@� � � � is a thresholding constant and z � / contains
all the CSPs which are classified as neither belonging to
part s nor part t . Similarly, the CSPs at time %8A can be
classified using the errors \ ' ] w/ ] A and \ ' ] x/ ] A .

In practice, the above decision rule does not work very
well because of image/silhouette noise and camera calibra-
tion errors. Here we suggest using spatial coherency and
temporal consistency to improve the segmentation. To use
spatial coherency, the notion of a spatial neighborhood has

to be defined. Since it is difficult to define a spatial neigh-
borhood for the scattered CSPs in 3D space (see for example
Figure 3(b)), an alternate way is used. Recall that each CSP, '/ lies on a Bounding Edge which in turn corresponds to
a boundary point &�'/ of the silhouette image � �/ . We define
two CSPs , '/ and , 'i� // as “neighbors” if their correspond-
ing 2D boundary points &	'/ and & '�� // are neighboring pixels
(in 8-connectivity sense) in the same silhouette image. This
neighborhood definition allows us to easily apply spatial co-
herency to the CSPs. From Figure 5(a) it can be seen that
different parts of an articulated object usually project onto
the silhouette image as continuous outlines. Inspired by this
property, the following spatial coherency rule (SCR) is pro-
posed:

Spatial Coherency Rule (SCR):
If , '/ is classified as belonging to part s by Eq.(7), it stays
as belonging to part s if all of its � left and right immediate
“neighbors” are also classified as belonging to part s by
Eq. (7), otherwise it is reclassified as belonging to zH�/ . The
same procedure applies to part t .

Figure 5(a) shows how the spatial coherency rule can be
used to remove spurious partition error. The second con-
straint we utilize to improve the segmentation results is tem-
poral consistency as illustrated in Figure 5(b). Consider
three successive frames captured at % �#� / , % � and % � � / . For a
CSP , '� , it has two classifications due to motion from % �#� /
to % � and motion from % � to % � � / . Since , '� either belongs
to part s or t , the temporal consistency rule (TCR) simply
requires that the two classifications have to agree with each
other:

Temporal Consistency Rule (TCR):
If , '� has the same classification by SCR from % �#� / to % �
and from % � to % � � / , the classification is maintained, other-
wise, it is reclassified as belonging to zG�� .
Note that SCR and TCR not only remove wrongly seg-
mented points, but they also remove some of the correctly
classified CSPs. Overall though they are effective because
few but more accurate data is always preferred over abun-
dant but less accurate data, especially in our case where the
segmentation has a great effect on motion estimation.

3.1.3. Iterative algorithm

Summarizing the above discussion, we propose an iterative
segmentation/alignment process to estimate the shape and
motion of parts s and t over > frames as follows :

1. Given segmentations 
�z w� � z x� $ of CSPs, recover the
relative motions 
T165kw� �07 w� 4 � 1N5kx� �87 x� 4 $ of s and t
over all frames 9���<��! " ! �> using the temporal SFS
algorithm.

2. Repartition the CSPs according to the estimated mo-
tions by applying Eq. (7), followed by the intra-frame
SCR and inter-frame TCR.
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Figure 5. (a) Spatial coherency removes spurious segmenta-
tion errors, (b) Temporal consistency ensures segmentation
agrees between successive frames.

3. Repeat Steps 1 and 2 until the segmentation/alignment
converges or for a fixed maximum number of times.

Although for the sake of explanation we have described
this algorithm for an articulated object with two rigid parts,
it can easily be generalized to apply to objects with � parts.

3.2. Initialization

As common to all iterative EM algorithms, initialization
is always a problem [18]. Here we suggest two different ap-
proaches to start our algorithm. Both approaches are com-
monly used in the layer estimation literature [18, 12]. The
first approach uses the fact that the 6 DOF motion of each
part of the articulated object represents a single point in a six
dimensional space. In other words, if we have a large set of
estimated motions of all the parts of the object, we can ap-
ply clustering algorithms on these estimates in the 6D space
to separate the motion of each individual part. To get a set
of estimated motions for all the parts, the following method
is used. The CSPs at each time instant are first divided into
subgroups by cutting the corresponding silhouette bound-
aries into arbitrary segments. These subgroups of CSPs
are then used to generate the motion estimates using the
VH alignment algorithm, each time with a randomly cho-
sen subgroup from each time instant. Since this approach
requires the clustering of points in a 6D space, it performs
best when the motions between different parts of the artic-
ulated object are relatively large so that the motion clusters
are distinct from each other.

The second approach is applicable in situations where
one part of the object is much larger than the other. As-
sume, say, part s is the dominant part. Since this assump-
tion means that most of the CSPs of the object belong to s ,
the dominant motion 165 w �87 w 4 of s can be approximated
using all the CSPs. Once an approximation of 165;w �87 w 4 is
available, the CSPs are sorted in terms of their errors with
respect to this dominant motion. An initial segmentation is
then obtained by thresholding the sorted CSPs errors.

3.3. Articulation Point Estimation

After recovering the motions of parts s and t sepa-
rately, the point of articulation between them is estimated.
Suppose we represent the joint position at time %M/ as � x/ .
Since � x/ lies on both s and t , it must satisfy the motion
equation from %C/ to % A as follows

5kwA � x/ Q 7 wA � 5PxA � x/ Q 7 xA  (8)

Putting together similar equations for � x/ over > frames,
we get �

�� 5lwA X 5kxA...5 w � X 5 x �
���
� � x/ �

�
�� 7 xA X 7 wA...7 x � X 7 w �

���
�  (9)

The least squares solution of Eq. (9) can be computed using
Singular Value Decomposition.

3.4. Human Body Kinematics Acquisition

Here we apply our articulated SFS algorithm to segment
the body parts and to estimate the joint positions of a per-
son. Instead of estimating all the joints at the same time, we
take a sequential approach and model the joints one by one.
To find the position of, say the left shoulder joint, the per-
son is asked to move his whole left arm around the shoulder
while keeping the rest of the body still. This makes the hu-
man body a one-articulation point object. Since the size of
the whole body is much larger than a single body part, the
dominant motion initialization method is used. Figure 6(a)
shows some of the input images and the results for the right
elbow and the right hip joints of the computer graphics
model used in the synthetic sequence (Figure 2) at the end
of Section 2. Figure 6(b) presents some of the input images
and the results for the left shoulder and the left knee joints
of the person in Figure 3. The input images, CSPs and re-
sults for the left hip/knee joints of the synthetic data set can
be seen in the movie syn-kinematics-leftleg.mpg and those
for the right shoulder/elbow and right hip/knee joints of the
real person in the movie real-kinematics-rightarm.mpg and
real-kinematics-rightleg.mpg respectively.

To create a complete articulated human model (after each
body part is segmented and its joint position is located us-
ing our articulated SFS algorithm) the various body parts
are aligned to the whole body voxel model acquired at the
end of Section 2 (Figures 2(d) for the synthetic data and
3(d) for the real person). The alignment is done between
the 3D CSPs of the body part and the reference image of
the sequences that are used to obtain the whole body voxel
model. Figure 7(a) displays the complete articulated model
of the synthetic data set with the joint locations and seg-
mented body parts (shown in terms of the 3D points derived
from the voxel centers of the model). We have also added a
skeleton by joining the joint locations together. The articu-
lated model of the real person is shown in Figure 7(b).

The work most similar to our vision-based human body
kinematic information acquisition is by Kakadiaris et. al.
in [11]. They first use deformable templates to segment
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Figure 6. (a). Estimated right elbow and right hip joints of a
synthetic data set. (b). Estimated left shoulder and left knee
joints of a real data set. For each joint, the unaligned CSPs
from different frames are drawn with different colors. The
aligned and segmented CSPs are shown with two different
colors to show the segmentation. The estimated articulation
point (joint location) is indicated by the black sphere.

2D body parts in a silhouette sequence. The segmented
2D shapes from three orthogonal view-points are then com-
bined into a 3D shape by SFS. Here we address the acqui-
sition of motion, shape and articulation information at the
same time, while [11] focuses mainly on shape estimation.

4. Application: Motion Capture

Due to increased applications in entertainment, secu-
rity/surveillance and human-computer interaction, the prob-
lem of vision-based motion capture has gained much at-
tention in recent years. Several researchers have pro-
posed systems to track body parts from video sequences
[9, 1, 10, 4, 3, 20, 19, 6, 7]. In most of these sys-
tems, generic shapes (e.g. rectangles/ellipses in 2D, cylin-
ders/ellipsoids in 3D) are used to model the body parts of
the person. Although generic models/shapes are simple to
use and can be generalized to different persons easily, they
suffer from two disadvantages. Firstly they only coarsely
approximate the actual body shape of the person. Secondly
generic shapes/models also lack accurate joint information
of the person. In vision-based motion capture systems, pre-
cise kinematic information (shape and joint) is essential to
obtain accurate motion data.

In this section we show how to use the acquired human
kinematic model of the person in the previous section to
perform motion capture from color and silhouette image se-
quences. As compared to other systems which use either
only color images [1, 19] or only silhouette images [4, 3],
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Figure 7. Complete articulated human model of (a) the syn-
thetic data set (different body parts shown with different
colors), (b) the real person. These are the models used for
motion tracking in the experimental results in Section 4.3.

our algorithm combines both silhouette and color informa-
tion to fit the articulated model.

4.1. Human Body Model

The articulated human model used in our tracking algo-
rithm is the same as those depicted in Figure 7. It consists of
nine body parts (torso, right/left lower/upper arms, right/left
lower/upper legs) connected by eight joints (right/left shoul-
der/elbow joints, right/left hip/knee joints). Each body part
is assumed to be rigid with the torso being the base. The
shoulder and hip joints have 3 DOF each while there is 1
DOF for each of the elbow and knee joints. Including trans-
lation and rotation of the torso base, there are a total of 22
DOF in the model.

4.2. Tracking with An Articulated Model

Assume we have estimated the kinematic information of
all nine body parts of the person at a reference time %M/ with
color and silhouette images � �/ �M� �/ . Represent the shape of
body part � in terms of a set of CSPs as 16, ' ] �/ � - ' ] �/ ��Fd��E�"J!J!J!J!J!J"� . � / 4 , its joint as � �/ and call this the model data
set. Now suppose we are given the run-time data set at % � ,
which consists of

�
color/silhouette images and the corre-

sponding CSPs 
��T����M� ���� , '� $ of the person. Let   �� be the
rotation matrix of � at its joint � �� and ¡ c(¢¤£� be the trans-
lation of the torso base at % � . Without loss of generality,
assume ¡ c(¢¤£/ is zero and   � / is the identity matrix for all
body parts at %0/ . The motion capture problem can be posed
as estimating ¡ c(¢¤£� and   �� for all the body parts � from
the color and the silhouette images 
����� �C� �� $ .

The most straightforward way to solve the above motion
capture problem is to align all the body parts (with a total
of 22 DOF) of the human model directly to the silhouette
and color images all at once. Although this all-at-once ap-
proach can be done by generalizing the temporal SFS algo-
rithm to perform a non-linear optimization over all 22 DOF,
in practice it is prone to the problem of falling into local
minima because of the high dimensionality. To avoid this



local minimum problem, we instead use a two-step hierar-
chical approach: first fit the torso base and then each limb
independently. This approach makes use of the fact that the
motion of the body is largely independent of the motion of
the limbs which are, under most of the cases, largely inde-
pendent of each other.

The first step of our hierarchical approach in-
volves recovering the global translation and orientation16  c�¢¤£� � ¡ c�¢¤£� 4

of the torso base. This can be done by using
the 6 DOF temporal SFS algorithm described in Section 2.
Once the global motion of the body is estimated, the four
joint positions: left/right shoulders and left/right hips are
calculated. The four limbs of the body are then aligned sep-
arately around these fixed joint positions in the second step.
For each limb, the two joint rotations (shoulder and elbow
for arms, hip and knee for legs) are estimated simultane-
ously. We briefly explain the second step below using the
left arm as an example. Here only the errors of projecting
the model CSPs onto the run-time color/silhouette images
are considered. This can be extended to include the pro-
jection errors of the run-time CSPs by segmenting them to
individual part of the body.

Assume we have recovered the torso translation and ori-
entation 16  c(¢¤£A �87 c(¢¤£A 4

, then the joint location � mr¥ wA and
the transformed position ¦, ' ] mr¥ w/ of a model CSP , ' ] mr¥ w/
on the left upper arm (LUA) at time %8A are expressed as

� m(¥ wA �  lc�¢¤£A � mr¥ w/ Q ¡ c(¢¤£A �
¦, ' ] mr¥ w/ �   c�¢�£A   mr¥ wA 1N, ' ] m(¥ w/ X � m(¥ w/ 4 Q � mr¥ wA  

Using these and Eq. (2), we can express the sum of pro-
jected color/silhouette error \ ' ] mr¥ wA#] / of ¦, ' ] m(¥ w/ across visi-
ble cameras at % A as a function of the unknown   mr¥ wA . Sim-
ilarly, the error \ ' ] m+m wA!] / for each CSP on the Left Lower Arm
(LLA) can be written as function of   mr¥ wA and   m+m wA . By
optimizing the combined errors of the whole left arm as

egf�h k§©¨¤ªj ]  l§«§«ªj
V m §«§«ªqn
'�o / \ ' ]

m¬m wA#] / Q
m §©¨¤ªqn
'io / \ ' ]

mr¥ wA!] / Y � (10)

the joint rotation matrices are estimated. This simultaneous
estimation approach, as compared to estimating the joint ro-
tations (e.g. first shoulder and then elbow) of the limb indi-
vidually and sequentially, is better because both joint con-
straints are incorporated implicitly into the equations at the
same time.

4.3. Experimental Results

4.3.1. Synthetic sequences

Two synthetic motion video sequences: KICK (60 frames)
and PUNCH (72 frames) were generated using the synthetic
human model in Figure 2(a). A total of eight cameras are
used. The complete articulated model shown in Figure 7(a)
is used to track the motion in these sequences. Figure 8
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Figure 8. Graphs comparing ground-truth and estimated
joint angles of the left arm and right leg of the synthetic
sequence KICK. The estimated joint angles closely follow
the ground-truth values throughout the whole sequence.

compares the ground-truth and estimated joint angles of the
left arm and right leg of the body in the KICK sequence.
It can be seen that our tracking algorithm performs very
well. The movie file syn-track.mpg illustrates the track-
ing results on both sequences. In the movie, the upper left
corner shows one of the input camera sequences, the upper
right corner shows the tracked body parts and joint skeleton
(rendered color) overlaid on one of the input images (which
are converted from color to gray-scale for clarity). The
lower left corner depicts the ground-truth motion rendered
through an avatar and the lower right corner represents the
tracked motions through the same avatar. The avatar ren-
derings show that the ground-truth and tracked motions are
almost indistinguishable from each order.

4.3.2. Real sequences

Three video sequences: STILLMARCH (158 frames) ,
AEROBICS (110 frames) and KUNGFU (200 frames) of
the real person in Figure 3(a) were captured to test the track-
ing algorithm. Eight cameras are used in each sequence
and the articulated model in Figure 7(b) acquired in Section
3.4 is used. Figure 9(a)(b) shows the tracking results on
AEROBICS and KUNGFU respectively. Each figure shows
four selected frames of the sequence with the (color) tracked
body parts and the joint skeleton overlaid on one of the eight
camera (turned gray-scale) input images. The movie real-
track.mpg contains results on all three sequences. The up-
per left corner represents one of the input camera images
and the upper right corner illustrates the tracked body parts
with joint skeleton overlaid on a gray-scale version of the
input images. The lower left corner illustrates the results of
applying the estimated joint angles to a 3D articulated vi-
sual hull (voxel) model (obtained by combining the results
in Figure 3(d) and the kinematic information) of the person
while the lower right corner shows the results of applying
the estimated motion data to an avatar. This video demon-
strates that our algorithm is able to track the body parts and
joint angles correctly in difficult real sequences, although
in the KUNGFU sequence, the tracking of the right arm is
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Figure 9. Tracking results for the two sequences (a) AER-
OBICS and (b) KUNGFU. Each set of images contains se-
lected frames of the tracked body parts and joint skeleton
(rendered color) overlaid on one of the input camera im-
ages (which are converted from color to gray-scale for clar-
ity). All the frames of both sequences can be seen in the
movie real-track.mpg.

lost in frame 91 for 10 frames due to local minimum but
recovers automatically at frame 101.

5. Summary

We have proposed an articulated SFS algorithm to re-
cover the motion, shape and joints of an articulated object
from silhouette and color images. The algorithm iteratively
segments points on the silhouettes to each articulated part of
the object and estimates the motion of each individual part
using the segmented silhouette. Once the motion/shape of
each part is recovered, the joints are estimated by articula-
tion constraints. We applied our articulated SFS algorithm
to acquire the kinematic information (shape of body parts
and joint positions) of a person and then used the model to
track the person in new video sequences.
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