
200 Chapter VITheorem 6.3 Let the eigenvalues �i of A be ordered decreas-ingly. Then the angle �(ui;Km) between the exact eigenvector uiassociated with �i and the m � th Krylov subspace Km satis�esthe inequality,tan �(ui;Km) � �iCm�i(1 + 2i) tan �(v1; ui) ; (6.39)where �1 = 1; �i = i�1Yj=1 �j � �n�j � �i for i > 1 (6.40)and, i = �i � �i+1�i+1 � �n : (6.41)Proof. To prove the theorem for the case i = 1 we start byexpanding the vector yi de�ned in the previous lemma in theeigenbasis fujg as y1 = nXj=2�jujwhere the �j's are such that nPj=2 j�jj2 = 1. From this we get,kp(A)y1k22 = nXj=2 jp(�j)�jj2 � maxj=2;:::;n jp(�j)j2 � max�2[�n;�2] jp(�)j2 :The result follows by a direct use of theorem 4.8 stated in Chap-ter IV. For the general case (i 6= 1), we can use the upper boundobtained by restricting the polynomials to be of the formp(�) = (�1 � �) � � � (�i�1 � �)(�1 � �i) � � � (�i�1 � �i) q(�)where q is now any polynomial of degree k� i such that q(�i) = 1.Proceeding as for the case i = 1, we arrive at the inequality,kp(A)yik2 � max�2[�i+1;�n] ������i�1Yj=1 �j � ��j � �i q(�)������



Krylov Subspace Methods 201� i�1Yj=1 �j � �n�j � �i max�2[�i+1;�n] jq(�)j :The result follows by minimizing this expression over all polyno-mials q satisfying thr constraint q(�i) = 1.6.2. Convergence of the EigenvaluesWe now turn our attention to the approximate eigenvalues. Thefollowing error bounds concerning the approximate eigenvalues�(m)i actually show that these converge to the corresponding eigen-values of A if exact arithmetic were used.Theorem 6.4 The di�erence between the i�th exact and approx-imate eigenvalues �i and �(m)i satis�es the double inequality,0 � �i � �(m)i � (�1 � �n)0@�(m)i tan �(v1; ui)Cm�i(1 + 2i) 1A2 (6.42)where i is de�ned in the previous theorem and �(m)i is given by�(m)1 � 1; �(m)i = i�1Yj=1 �(m)j � �n�(m)j � �i ; i > 1 :Proof. We prove the result only for the case i = 1. The �rstinequality is one of the properties proved for general projectionmethods when applied to Hermitian matrices. For the second, wenote that �(m)1 = maxx6=0;x2Km�1(Ax; x)=(x; x)and hence,�1 � �(m)1 = minx6=02Km�1((�1I � A)x; x)=(x; x) :



202 Chapter VIRemembering that Km�1 is the set of all vectors of the form q(A)v1where q runs in the space Pm�1 of polynomials of degree notexceeding m� 1 this becomes�1 � �(m)1 = min06=q2 Pm�1 ((�1 � A)q(A)v1; q(A)v1)(q(A)v1; q(A)v1) : (6.43)Expanding the initial vector v1 in an orthonormal eigenbasis fujgas v1 = nXj=1�jujwe �nd that�1 � �(m)1 = min06=q2 Pm�1 nPj=2(�1 � �j)j�jq(�j)j2nPj=1 j�jq(�j)j2from which we obtain the upper bound�1 � �(m)1 � (�1 � �n) min06=q2 Pm�1 Pnj=2 j�jq(�j)j2Pnj=1 j�jq(�j)j2� (�1 � �n) min06=q2 Pm�1 nPj=2 j�jq(�j)j2j�1q(�1)j2� (�1 � �n) min06=q2 Pm�1 maxj=2;3;:::;n jq(�j)j2jq(�1)j2 nPj=2 j�jj2j�1j2De�ning p(�) = q(�)=q(�1) and observing that the set of allp's when q runs in the space Pm�1 is the set of all polynomials ofdegree not exceeding m � 1 satisfying the constraint p(�1) = 1,we obtain�1��(m)1 � (�1��n) minp2 Pm�1;p(�1)=1 max�2[�n;�2] jp(�)j2 tan2 �(u1; v1) :



Krylov Subspace Methods 203The result follows by expressing the min-max quantity in theabove expression using Chebyshev polynomials according to The-orem 4.8.The general case i > 1 can be proved by using the Courant-Fisher characterization of �(m)i . The i-th eigenvalue is the max-imum of the Rayleigh quotient over the subspace of Km that isorthogonal to the �rst i� 1 approximate eigenvectors. This sub-space can be shown to be the same as the subspace of all vectorsof the form q(A)v1 where q is a polynomial of degree not exceedingm� 1 such that q(�(m)1 ) = q(�(m)2 ) = � � � = q(�(m)i�1) = 0.6.3. Convergence of the EigenvectorsTo get a bound for the angle between the exact and approximateeigenvectors produced by the Lanczos algorithm, we exploit thegeneral result of Theorem 4.6 seen in Chapter IV. The theoremtells us that for any eigenpair �i; ui of A there is an approximateeigenpair ~�; ~ui such that,sin [�(ui; ~ui)] � s1 + 2�2i sin [�(ui;Km)] (6.44)were �i is the distance between �i and the set of approximateeigenvalues other than ~�i and  = kPmA(I � Pm)k2. We noticethat in the present situation we have(I � Pm)APm = (I � VmV Hm )AVmV Hm= (I � VmV Hm )(VmHm + �m+1vm+1eHm)V Hm= �m+1vm+1vHm ;in which we used the relation (6.8). As a result = kPmA(I � Pm)k2 = k(I � Pm)APmk2 = �m+1 :Since the angle between ui and the Krylov subspace has beenmajorized in Theorem 6.3, a bound on the angle �(ui; ~ui) can be



204 Chapter VIreadily obtained by combining these two results. For example, wecan writesin [�(ui; ~ui)] � q1 + �2m+1=�2i sin [�(ui;Km)]� q1 + �2m+1=�2i tan [�(ui;Km)]� �iq1 + �2m+1 = �2iCm�i(1 + 2i) tan �(v1; ui)where the constants �i and i are de�ned in Theorem 6.3.7. Convergence of the Arnoldi ProcessIn this section we will analyze the speed of convergence of an ap-proximate eigenvalue/ eigenvector obtained by Arnoldi's methodto the exact pair. This will be done by considering the distance ofa particular eigenvector ui from the subspace Km. We will assumefor simplicity that A is diagonalizable and de�ne�(m)i � minp2 P�m�1 max�2�(A)��i jp(�)j; (6.45)where P�m�1 represents the set of all polynomials of degree notexceeding m�1 such that p(�i) = 1. The following lemma relatesthe distance k(I � Pm)uik2 to the above quantity.Lemma 6.2 Assume that A is diagonalizable and that the initialvector v1 in Arnoldi's method has the expansion v1 = Pk=nk=1 �kukwith respect to the eigenbasis fukgk=1;:::;n in which kukk2 = 1; k =1; 2; : : : ; n and �i 6= 0. Then the following inequality holds:k(I � Pm)uik2 � �i�(m)iwhere �i = nXk=1k 6=i j�jjj�ij :



Krylov Subspace Methods 205Proof. From the relation between Km and Pm�1 we havek(I � Pm)�iuik2 = minq2 Pm�1 k�iui � q(A)v1k2� minq2 Pm�1; q(�i)=1 k�iui � q(A)v1k2;and therefore, calling p the polynomial realizing the minimum onthe right-hand-sidek(I � Pm)�iuik2 � k nXj=1j 6=i �jp(�j)ujk2 � maxj 6=i jp(�j)j nXj=1j 6=i j�jjwhich follows by using the triangle inequality and the fact thatthe component in the eigenvector u1 is zero. The result is thenestablished by dividing both members by j�ij.The question has been therefore converted into that of es-timating the quantity (6.45) on which we will now focus. Thequantity �(m)i represents the smallest possible in�nity norm overthe set �(A), of all polynomials of the form 1 � (z � �1)s(z),with s of degree not exceeding m � 1. We seek an exact expres-sion for �(m)i or, equivalently for the best uniform approximationof the function unity on the set �(A), by polynomials of degree� m, satisfying the constraint that they vanish at the point �1.Without loss of generality we will restrict ourselves to the casei = 1, i.e., we are interested in �(m)1 . We will need the followinglemma from approximation theory see, for example Cheney [16].We recall that a set of functions satisfy the Haar condition on thepoints x1; x2; : : : ; xk if any linear combination f of these functionsvanishes when f(xi) = 0; i = 1; : : : ; k.Lemma 6.3 Let ~q be the best uniform approximation of a con-tinuous function f by a set of m polynomials satisfying the Haarcondition on a compact set � consisting of at least m + 1 points.Then there exist at least m + 1 points �0; : : : ; �m of � such that



206 Chapter VIthe error e(z) = f(z)� ~q(z) reaches its maximum modulus at the�j's , i.e., such that:je(�j)j = maxz2� je(z)j j = 0; 1; : : : ; mSuch points are called critical points.Recall that we denote by P�m the set of polynomials p of degree� m such that p(�1) = 1. In our case the function f is thefunction unity f(x) � 1 and the set of polynomials by which it isapproximated is the set of polynomials of degree � m, satisfyingthe constraint that they vanish at the point �1. This set is nothingbut the set of polynomials �1 + P�m which constitutes a vectorspace of polynomials, of dimension m. Let �2; : : : ; �m+2 be thecritical points corresponding to this best approximation as de�nedby the lemma. Then a useful basis of this space of polynomials isthe basis consisting of the polynomials!j(z) = (z � �1)l̂j(z); j = 2; : : : ; m+ 1; (6.46)where l̂j is the Lagrange polynomial of degree j � 1,l̂j(z) = m+1Yk=2k 6=j z � �k�j � �k ; j = 2; : : : ; m+ 1: (6.47)With this we can prove the following lemma.Lemma 6.4 The underdetermined linear system of m equationsand m + 1 unknowns zi; i = 2; : : : ; m+ 2m+2Xi=2 !j(�i)zi = 0; j = 2; 3; : : : ; m+ 1 (6.48)admits the nontrivial solutionzi = m+2Yk=2k 6=i �1 � �k�i � �k ; i = 2; : : : ; m+ 2:



Krylov Subspace Methods 207Proof. Because of the Haar condition, the system of polyno-mials f!jgj=2;:::;m+1, forms a basis and therefore there exists anontrivial solution to the above linear system. By the de�nitionof the Lagrange polynomials, all the terms in the i�th equationvanish except those corresponding to j = i and to j = m + 2.Thus, the ith equation can be rewritten as(�i � �1)zi + zm+2(�m+2 � �1)m+1Yk=2k 6=i �m+2 � �k�i � �k = 0:The unknown zm+2 can be assigned an arbitrary nonzero value(since the system is underdetermined) and then the other un-knowns are determined uniquely by:zizm+2 = �(�m+2 � �1)(�i � �1) m+1Yk=2;k 6=i �m+2 � �k�i � �k = �m+1Yk=1k 6=i (�m+2 � �k)(�i � �k) :Multiplying numerator and denominator by (�i � �m+2) we getzi = C�1 � �i m+2Yk=2k 6=i 1�i � �kwhere C is the following constant, which depends on the choiceof zm+2, C � zm+2 m+2Yk=1(�m+2 � �k) :The result follows by choosing zm+2 so that,C = m+2Yk=2 (�1 � �k):



208 Chapter VIWe should point out that the solution fzkg does not dependon the basis chosen for the space of polynomials �1 + P�m. Forexample choosing the usual power basis (z��1)zj�1; j = 1; : : : ; m,yields the same set fzjg; see Exercise P-6.12. The basis f!ig isfar more convenient than the power basis for determining thissolution because of the simplicity of the resulting linear system(6.48). The following lemma will now be proved.Lemma 6.5 Let �p be the (unique) polynomial of degree m sat-isfying the constraint p(�1) = 1, and having the smallest in�nitynorm on a compact set � consisting of at least m + 1 points.Let the m + 1 critical points as de�ned by Lemma 6.3 be labeled�2; : : : ; �m+2. Let zk; k = 2; : : : ; m+2 be any solution of the linearsystem (6.48) and write each zk in the form zk = �ke�i�k where�k is real and positive and � is real. Then, �p can be expressed as�p(z) = m+2Pk=2 ei�k lk(z)m+2Pk=2 ei�k lk(�1) (6.49)where lk is the Lagrange polynomial of degree mlk(z) = m+2Yj=2j 6=k z � �j�k � �j :Proof. By the equations (6.48) that de�ne the zk's we havefor any v belonging to the space of polynomials �1 + P�m =spanf!igi=2;:::;m+1, m+2Xk=2 �ke�i�kv(�k) = 0: (6.50)Let �p the polynomial de�ned by (6.49). We must show thatk�p+ vk1 � k�pk1 (6.51)



Krylov Subspace Methods 209for any v in �1 + P�m, where k:k1 represents the in�nity normover the set �. Let us set� = "m+2Xk=2 ei�k lk(�1)#�1 : (6.52)Notice that j�j is the uniform norm of �p in �. From (6.50) it isclear that for some k0 we have<e h�e�i�k0v(�k0)i � 0:Therefore,k�p+ vk21 = maxj=2;:::;m+2 j�p(�j) + v(�j)j2� j�p(�k0) + v(�k0)j2� j�e�i�k0 + v(�k0)j2= j�j2 + jv(�k0)j2 + 2<e f�e�i�k0v(�k0)g� j�j2 = k�pk21which shows that (6.51) is true and completes the proof.We are now ready to state the main result of this section.Theorem 6.5 Let m < n. Then there exist m eigenvalues of Awhich can be labeled �2; �3; �m+1 such that:�(m)1 = 0@m+1Xj=2 m+1Yk=2;k 6=j j�k � �1jj�k � �jj1A�1 : (6.53)Proof. Observe that the solution of the linear system (6.48)satis�es zj = lj(�1). The proof is obtained by simply replacingthis solution in the expression of � de�ned in (6.52). Note thatthe polynomials for the lemmas are of degree m whereas the thecandidate polynomials in (6.45) are of degree m� 1.



210 Chapter VIFor the case where the eigenvalue is in the outermost part ofthe spectrum, the above expression can be interpreted as follows.In general, the distances j�k��1j are larger than the correspond-ing distances j�k � �jj of the denominator. This is illustrated inFigure (6.2). Therefore, many of the products will be large whenm is large and the inverse of their sum will be small. This is in-dependent of the actual locations of the critical points which arenot known. The conclusion is that the eigenvalues that are in theoutermost part of the spectrum are likely to be well approximated.
-

6
<e(z)

=m(z) � �1��k ��j
��k0Figure 6.2 Illustration of Theorem 6.5 for �1 in theoutermost part of the spectrum of A.We can illustrate the above theorem with a few examples.Example 6.4 Assume that�k = k � 1n� 1 ; k = 1; 2; : : : n;and consider the special case when m = n� 1. Then,�(m)1 = 12m � 1 :



Krylov Subspace Methods 211Indeed, since m = n� 1 there is no choice for the �j's in the theorembut to be the remaining eigenvalues and (6.53) yields,(�(m)1 )�1 = m+1Xj=2 m+1Yk=2k 6=j jk � 1jjk � jj= m+1Xj=2 m!(j � 1)!(m + j � 1)!= mXj=1� jm� = 2m � 1 :Example 6.5 Consider now a uniform distribution of eigenvaluesover a circle instead of a real line,�k = ei 2(k�1)�n ; k = 1; 2; : : : ; n :We assume once more that m = n� 1. Then we have�(m)1 = 1m :To prove the above formula, we utilize again the fact that the eigenval-ues involved in the theorem are known to be �2; �3; :::; �n. We de�ne! = e2i�=n and write each product term in the formula (6.53) asm+1Yk=2k 6=j j!k�1 � 1jj!k�1 � !j�1j = mYk=1k 6=j j!k � 1jj!k � !j j= " mYk=1 j!k � 1j# 264j1� !jj mYk=1k 6=j j!k � !jj375�1 :Recalling that the !k's are the powers of the n-th root of unity, weobserve that a simple renumbering of the products in the denominatorwill show that the numerator and denominator have the same modulus.Hence the above product term is equal to one and by summing theseproducts and inverting, we will get the desired result.



212 Chapter VIThe above two examples show a striking di�erence in behaviorbetween two seemingly similar situations. The complex uniformdistribution of eigenvalues over a circle is a much worse situationthan that of the uniform distribution over a line segment. It in-dicates that there are cases where the eigenvalues will convergeextremely slowly. Note that this poor convergence scenario mayeven occur if the matrix A is normal, since it is only the distribu-tion of the eigenvalues that cause the di�culty.Apart from the qualitative interpretation given above, it isalso possible to give a simple explicit upper bounds for �(m)i .Proposition 6.10 Let C(c; �) be a circle of center c and radius� that encloses all the eigenvalues of A except �1. Then,�(m)1 �  �j�1 � cj!m�1 :Proof. An upper bound is obtained by using the particularpolynomial q(z) = (z � c)m�1=(�1 � c)m�1 from which we get�(m)1 � maxj=2;3;:::;n j�j � cjj�1 � cj!m�1 � �m�1=j�1 � cjm�1 :It was seen in Chapter IV (Lemma 4.3) that the polynomial usedin the proof is actually optimal.
-6 <e(z)=m(z) c c+ec-e c+ac-a

Figure 6.3 Ellipse containing the spectrum of A.



Krylov Subspace Methods 213Still from what was seen on Chebyshev polynomials in Chap-ter IV. we may be able to get a better estimate of �(m)1 if we canenclose the eigenvalues of the matrix A in an ellipse centered atc with focal distance e and major semi-axis a, as is illustrated inFigure 6.3. In this situation the results on the Chebyshev poly-nomials of the �rst kind allow us to state the following theorem.Theorem 6.6 Assume that all the eigenvalues of A expect �1 lieinside the ellipse centered at c, with foci c+e; c�e and with majorsemi axis a. Then, �(m)1 � Cm�1 �ae�jCm�1 ��1�ce � j (6.54)where Cm�1 is the Chebyshev polynomial of degree m � 1 of the�rst kind. In addition, the relative di�erence between the left andthe right hand sides tends to zero as m tends to in�nity.ProblemsP-6.1 To measure the degree of invariance of a subspace X withrespect to a matrix A, we de�ne the measure v(X;A) = k(I�P )APk2where P is the orthogonal projector onto the subspace. (1) Show thatif X is invariant then v(X;A) = 0. (2) Show that when X is the m-thKrylov subspace generated from some initial vector v, then v(X;A) =�m+1. (3) Let ri; i = 1; : : : ;m be the residual vectors associated withthe approximate eigenvalues obtained from an orthogonal projectionprocess onto X, and let R = [r1; :::; rm]. Show that v(X;A) = kRk2.P-6.2 Consider the matrixA = 0BBBBBBBB@ 0 11 01 01 .... . . ...1 0
1CCCCCCCCA



214 Chapter VI(1) What are eigenvalues of A? (2) What is the m-th Krylov sub-space associated with A when v1 = e1, the �rst column of the identitymatrix? (3) What are the approximate eigenvalues obtained fromArnoldi's method in this case? How does this relate to Example 6.5?P-6.3 Assume that k Schur vectors have already been computed andlet P be an orthogonal projector associated with the corresponding in-variant subspace. Assume that Arnoldi's method is applied to the ma-trix (I�P )A starting with a vector that is orthogonal to the invariantsubspace. Show that the Hessenberg matrix thus obtained is the sameas the lower (m� k)� (m� k) principal submatrix obtained from animplicit deation procedure. Show that an approximate Schur vectorassociated with the corresponding projection procedure is an approx-imate Schur vector for A. This suggests another implementation ofthe implicit deation procedure seen in Section 2.3 in which only the(m�k)�(m�k) Hessenberg matrix is used. Give a corresponding newversion of Algorithm 6.4. What are the advantages and disadvantagesof this approach?P-6.4 Show that for the Lanczos algorithm one has the inequalitymaxi=1;2;:::;m[�2i+1 + �2i + �2i�1]1=2 � maxj=1;:::;n j�jjShow a similar result in which max is replaced by min.P-6.5 Consider a matrix A that is skew-Hermitian. (1) Show thatthe eigenvalues of A are purely imaginary. What additional propertydo they satisfy in the particular case when A is real skew-symmetric?[Hint: eigenvalues of real matrices come in complex conjugate pairs...]What can you say of a real skew-symmetric matrix of odd dimensionn? (2) Assume that Arnoldi's procedure is applied to A starting withsome arbitrary vector v1. Show that the algorithm will produce scalarshij such that hij = 0; for i < j � 1<e[hjj ] = 0; j = 1; 2; :::;mhj;j+1 = �hj+1;jj = 1; 2; :::;m(3) From the previous result show that in the particular where A isreal skew-symmetric and v1 is real, then the Arnoldi vectors vj satisfy



Krylov Subspace Methods 215a two term recurrence of the form�j+1vj+1 = Avj + �jvj�1(4) Show that the approximate eigenvalues of A obtained from theArnoldi process are also purely imaginary. How do the error boundsof the Lanczos algorithm (Hermitian case) extend to this case?P-6.6 How do the results of the previous problem extend to the casewhere A = �I +S where � is a real scalar and S is skew-Hermitian orskew symmetric real?P-6.7 We consider the following tridiagonal matrix An of size n� nAn = 0BBBBB@ 2 11 2 :1 : 1: 2 11 2
1CCCCCA :(1) Consider the vector z of length n whose j� th component is sin j�where � is a real parameter such that 0 < � � �=2. Show that(2(1 + cos �)I �An)z = sin((n+ 1)�)enwhere en = (0; 0; :::0; 1)H . (2) Using the previous question �nd all theeigenvalues and corresponding eigenvectors of An. (3) Assume nowthat m steps of the Lanczos algorithm are performed on An with thestarting vector v1 = e1 = (1; 0; :::; 0)H . (3.a) Show that the Lanczosvectors vj are such that vj = ej ; j = 1; 2; :::;m. (3.b) What is thematrix Tm obtained from the Lanczos procedure? What are the ap-proximate eigenvalues and eigenvectors? (Label all the eigenvalues indecreasing order). (3.c) What is the residual vector and the residualnorm associated with the �rst approximate eigenvalue �(m)1 ? [Hint:It will be admitted thatsin2 �(m+ 1) + sin2 2�(m+ 1) + :::+ sin2 m�(m+ 1) = m+ 12 ]How would you explain the fact that convergence is much slower thanexpected?



216 Chapter VIP-6.8 Show that the vector vm+1 obtained at the last step of Arnoldi'smethod is of the form vm+1 = pm(A)v1, in which  is a certain nor-malizing scalar and pm is the characteristic polynomial of the Hessen-berg matrix Hm.P-6.9 Develop a modi�ed version of the non-Hermitian Lanczos al-gorithm that produces a sequence of vectors vi; wi that are such thateach vi is orthogonal to every wj with j 6= i and kvik2 = kwik2 = 1 forall i. What does the projected problem become?P-6.10 Develop a version of the non-Hermitian Lanczos algorithmthat produces a sequence of vectors vi; wi which satisfy(vi; vj) = ��ij ;but such that the matrix Tm is Hermitian tridiagonal. What does theprojected problem become in this situation? How can this version becombined with the version de�ned in the previous exercise?P-6.11 Using the notation of Section 3.2 prove that qj+k(x) = xkpj(x)is orthogonal to the polynomials p1; p2; : : : ; pj�k, assuming that k � j.Show that if we orthogonalized qj+k against p1; p2; : : : ; pj�k, we wouldobtain a polynomial that is orthogonal to all polynomials of degree<j + k. Derive a general look-ahead non-Hermitian Lanczos proce-dure based on this observation.P-6.12 It was stated after the proof of Lemma (6.4) that the solu-tion of the linear system (6.48) is independent of the basis chosen toestablish the result in the proof of the lemma. 1) Prove that this isthe case. 2) Compute the solution directly using the power basis, andexploiting Vandermonde determinants.Notes and References. There has been several papers published onArnoldi's method and its variants for solving eigenproblems. The originalpaper by Arnoldi [2] came out about one year after Lanczos' breakthroughpaper [89] and is quite di�erent in nature. The author hints that his methodcan be viewed as a projection method and that it might be used to approxi-mate eigenvalues of large matrices. Note that the primary goal of the methodis to reduce an arbitrary (dense) matrix to Hessenberg form. At the time,the QR algorithm was not yet invented, so the Hessenberg form was desired



Krylov Subspace Methods 217only because it leads to a simlpe recurrence for the characteristic polyno-mial. The 1980 paper by Saad [139] showed that the method could indeed bequite useful as a projection method to solve large eigenproblems, and gave afew variations of it. Later, sophisticated versions have been developed andused in realistic applications, see [17, 105, 106, 115, 123, 154], among others.During roughly the same period, much work was devoted to exploiting thebasic non-Hermitian Lanczos algorithm by Parlett and co-workers [125] andby Cullum and Willoughby [24, 26] and Cullum, Kerner and Willoughby [22].The �rst successful application of the code in a real life problem seems to bein the work by Carnoy and Geradin [12] who used a version of the algorithmin a �nite element model.The block Lanczos algorithm seems to have been developed �rst by Goluband Underwood [61]. The equivalent Block Arnoldi algorithm, has not beengiven much attention, except in control problems where it is closely associatedwith the notion of controllability for the multiple-input case [6]. In factArnoldi's method (single input case) and its block analogue (multiple inputcase) are useful in many areas in control, see for example [149, 150].The error bounds on the Hermitian Lanczos algorithm are from [138].Bounds of a di�erent type have been proposed by Kaniel [83] (however therewere a few errors for the case i>1 in Kaniel's original paper and some ofthese errors were later corrected by Paige [112]). We have omitted to discusssimilar bounds for the Block Lanczos algorithm but these were also developedin Saad [138]. The convergence theory for the Arnoldi process is adapted fromSaad [141].The various implementations of the Lanczos algorithm in the Hermitiancase are covered in detail in Parlett's book [118]. Implementations on mas-sively parallel machines have recently been discussed by Petiton [126] on theCM-2 and by Scott [161] on the iPSC/2.Concerning software, there is little that is publically available. Cullumand Willoughby o�er a FORTRAN code for the Hermitian case in their book[25] based on the Lanczos algorithm without any form of reorthogonaliza-tion. A similar (research) code was also developed by Parlett and Reid [122].Recently, Freund, Gutknecht, and Nachtigal published a FORTRAN imple-mentation of their Look-Ahead Lanczos algorithm [49]. We know of no othercodes based on the Lanczos algorithm with or without reorthogonalization.There has been a few implementations of the Hermitian Lanczos and theBlock Lanczos algorithm with some form of reorthogonalization. We refer tothe survey by Parlett concerning software availability in 1984 [119]. Interest-ingly enough, there has been very little new happening in the software scenesince then, so this survey seems almost up to date, in 1991. �
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Chapter VII
Acceleration Techniquesand Hybrid MethodsMany of the early algorithms for eigenvalue extraction were basedon using the powers of the matrix A. The prototype of these tech-niques is the power method, a technique that is attractive becauseof its simplicity but whose convergence rate may be unacceptablyslow. Acceleration methods can be valuable tools for speeding upthe convergence of this and other algorithms. In this chapter wewill present a number of techniques that are commonly termedpolynomial acceleration techniques for vector iterations. Theyare based on an interesting blend of approximation theory andnumerical linear algebra. A polynomial iteration takes the formzk = pk(A)z0 where pk is a polynomial which is determined fromsome knowledge on the distribution of the eigenvalues of A. Afundamental problem, which will utilize ideas from approximationtheory, lies in computing a good polynomial pk. By combining abasic method such as Arnoldi's method, with polynomial acceler-ation, e�cient algorithms for computing an eigenvector or a feweigenvectors of a large sparse matrix can be derived.



220 Chapter VII1. The Basic Chebyshev IterationLet A be a real nonsymmetric (or non Hermitian complex) matrixof dimension n and consider the eigenvalue problem,Au = �u: (7.1)Let �1; � � � ; �n be the eigenvalues of A labeled in decreasing orderof their real parts, and suppose that we are interested in �1 whichis initially assumed to be real.We consider a polynomial iteration of the form: zk = pk(A)z0,where z0 is some initial vector and where pk is a polynomial ofdegree k. We would like to choose pk in such a way that thevector zk converges rapidly towards an eigenvector of A associatedwith �1 as k tends to in�nity. Assuming for simplicity that A isdiagonalizable, we expand z0 in the eigenbasis fuig as,z0 = nXi=1 �iui;which leads to the following expression for zk = pk(A)z0:zk = nXi=1 �ipk(�i)ui = �1pk(�1)u1 + nXi=2 �ipk(�i)ui: (7.2)The above expansion shows that if zk is to be a good approxima-tion of the eigenvector u1, then the second term must be muchsmaller that the �rst and this can be achieved by making everypk(�j), with j 6= 1, small in comparison with pk(�1). This leadsus to seek a polynomial which takes `small' values on the discreteset R = f�2; �3; � � � ; �ng;and which satis�es the normalization conditionpk(�1) = 1: (7.3)An ideal such polynomial would be one which minimizes the (dis-crete) uniform norm on the discrete set R over all polynomials of



Acceleration Techniques 221degree k satisfying (7.3). However, this polynomial is impossibleto compute without the knowledge of all eigenvalues of A and as aresult this approach has little practical value. A simple and com-mon alternative, is to replace the discrete min-max polynomial bythe continuous one on a domain containing R but excluding �1.Let E be such a domain in the complex plane, and let Pk denotethe space of all polynomials of degree not exceeding k. We arethus seeking a polynomial pk which achieves the minimumminp2 Pk; p(�1)=1 max�2E jp(�)j: (7.4)For an arbitrary domain E, it is di�cult to solve explicitly theabove min-max problem. Iterative methods can be used, however,and the exploitation of the resulting min-max polynomials forsolving eigenvalue problems constitutes a promising research area.A preferred alternative is to restrict E to be an ellipse having itscenter on the real line, and containing the unwanted eigenvalues�i; i = 2; � � � ; n.
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Figure 7.1 Ellipse containing the spectrum of A withe real.Let E(c; e; a) be an ellipse containing the setR = f�2; �3; � � � ; �ng;and having (real) center c, foci c + e, c� e, and major semi-axisa. When A is real the spectrum of A is symmetric with respect



222 Chapter VIIto the real axis, so we can restrict E(c; e; a) to being symmetricas well. In other words, the main axis of the ellipse is either thereal axis or a line parallel to the imaginary axis. Therefore, a ande are either both real or both purely imaginary. These two casesare illustrated in Figure 7.1 and Figure 7.2 respectively.
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c-aFigure 7.2 Ellipse containing the spectrum ofA, withe purely imaginary.A result that is known in approximation theory and shown inSection IV-4 is that when E is the ellipse E(c; e; a) in (7.4), anasymptotically best min-max polynomial is the polynomialpk(�) = Ck[(�� c)=e]Ck[(�1 � c)=e] ; (7.5)where Ck is the Chebyshev polynomial of degree k of the �rstkind.The computation of zk = pk(A)z0; k = 1; 2; � � �, is simpli�edby the three{term recurrence for the Chebyshev polynomials,C1(�) = �; C0(�) = 1;Ck+1(�) = 2�Ck(�)� Ck�1(�); k = 1; 2; � � � :



Acceleration Techniques 223Letting �k = Ck[(�1 � c)=e]; k = 0; 1; � � �, we obtain�k+1pk+1(�) = Ck+1[�� ce ] = 2 �� ce �kpk(�)� �k�1pk�1(�):We can simplify this further by de�ning �k+1 � �k=�k+1,pk+1(�) = 2�k+1�� ce pk(�)� �k�k+1pk+1(�):A straightforward manipulation using the de�nitions of �i, �i andthe three{term recurrence relation of the Chebyshev polynomialsshows that �i; i = 1; 2; � � �, can be obtained from the recurrence,�1 = e�1 � c ;�k+1 = 12�1 � �k ; k = 1; 2; � � � :The above two recursions de�ning zk and �k can now be as-sembled together to yield a basic algorithm for computing zk =pk(A)z0; k � 1. Although �1 is not known, recall that it is usedin the denominator of (7.5) for scaling purposes only, so we mayreplace it by some approximation � in practice.Algorithm 7.1 Chebyshev Iteration1. Start: Choose an arbitrary initial vector z0 and compute�1 = e�1 � c ; (7.6)z1 = �1e (A� cI)z0: (7.7)2. Iterate: For k = 1; 2; � � � ; until convergence do:�k+1 = 12=�1 � �k ; (7.8)zk+1 = 2�k+1e (A� cI)zk � �k�k+1zk�1 : (7.9)



224 Chapter VIIAn important detail, which we have not considered for the sakeof clarity, concerns the case when e is purely imaginary. It can beshown quite easily that even in this situation the above recursioncan still be carried out in real arithmetic. The reason for thisis that the scalars �k+1=e and �k+1�k in the above algorithm arereal numbers. The primary reason for scaling by Ck[(�1� c)=e] in(7.5) is to avoid overow but we have just given another reason,namely avoid complex arithmetic when e is purely imaginary.1.1. Convergence Properties.In order to understand the convergence properties of the sequenceof approximations zk we consider its expansion (7.2) and examinethe behavior of each coe�cient of ui, for i 6= 1. By the de�nitionof pk we have: pk(�i) = Ck[(�i � c)=e]Ck[(�1 � c)=e] :From the standard de�nition of the Chebyshev polynomials in thecomplex plane seen in Chapter IV, the above expression can berewritten as pk(�i) = wki + w�kiwk1 + w�k1 ; (7.10)where wi represents the root of largest modulus of the equationin w: 12(w + w�1) = �i � ce : (7.11)From (7.10), pk(�i) is asymptotic to [wi=w1]k, hence the followingde�nition.De�nition 7.1 We will refer to �i = jwi=w1j as the dampingcoe�cient of �i relative to the parameters c, e. The convergenceratio �(�1) of �1 is the largest damping coe�cient �i for i 6= 1.The meaning of the de�nition is that each coe�cient in the eigen-vector ui of the expansion (7.2) behaves like �ki , as k tends to



Acceleration Techniques 225in�nity. The damping coe�cient �(�) can obviously be also de-�ned for any value � in the complex plane, not necessarily aneigenvalue. Given a set of r wanted eigenvalues, �1; �2; : : : ; �r,the de�nition 7.1 can be extended for an eigenvalue �j j � r asfollows. The damping coe�cient for any `unwanted' eigenvalue�i; i > r must simply be rede�ned as jwi=wjj and the convergenceratio �(�j) with respect to the given ellipse is the largest dampingcoe�cient �l, for l = r + 1; : : : ; n.One of the most important features in Chebyshev iteration liesin the expression (7.11). There are in�nitely many points � in thecomplex plane whose damping coe�cient �(�) has the same value�. These points � are de�ned by (� � c)=e = (w + w�1)=2 andjw=w1j = � where � is some constant, and belong to the sameconfocal ellipse E(c; e; a(�)). Thus a great deal of simpli�cationcan be achieved by locating those points that are real as it ispreferable to deal with real quantities than imaginary ones in theabove expression de�ning �i. As was seen in Section IV-4 themapping J(w) = 12(w+w�1), transforms a circle into an ellipse inthe complex plane. More precisely, for w = �ei�, J(w) belongs toan ellipse of center the origin, focal distance 1, and major semi-axis � = 12(�+��1). Moreover, given the major semi-axis � of theellipse, the radius � is determined by � = 12 [� + (�2 � 1)1=2]. Asa consequence the damping coe�cient �i is simply �i=�1 where�i � 12 [�i + (�2i � 1)1=2] and �i is the major semi-axis of theellipse centered at the origin, with focal distance one and passingthrough (�j � c)=e. Since �1 > �i; i = 2; 3; � � � ; n, it is easy tosee that �1 > �i, i > 1, and hence that the process will converge.Note that there is a further mapping between �j and (�j � c)=ewhich transforms the ellipse E(c; e; aj) into the ellipse E(0; 1; �j)where aj and �j are related by �j = aj=e. Therefore, the aboveexpression for the damping coe�cient can be rewritten as:�i = �i�1 = ai + (a2i � 1)1=2a1 + (a21 � 1)1=2 ; (7.12)where ai is the major semi-axis of the ellipse of center c, focaldistance e, passing through �i. From the expansion (7.2), the



226 Chapter VIIvector zk converges to �1u1, and the error behaves like �(�1)k.The algorithm described above does not address a certainnumber of practical issues. For example, the parameters c ande will not generally be known beforehand, and their estimation isrequired. The estimation is typically done in a dynamic manner.In addition, the algorithm does not handle the computation ofmore than one eigenvalue. In particular what can we do in case�1 is complex, i.e., when �1 and �2 = ��1 form a complex pair?2. Arnoldi{Chebyshev IterationAs was just argued, Chebyshev iteration alone has a few impor-tant limitations. In fact it is rarely used as a single vector iterationin practice but rather combined with some other technique. Thepurpose of this section is to describe one such combination.Suppose that E(c; e; a) contains all the eigenvalues of A ex-cept for a few of them. Looking closely at the expansion of zk, weobserve that it will typically contain more than just an approxi-mation to u1. In general, the vector has the formzk = �1u1 + �i1ui1 + : : :+ �ipuip + �; (7.13)where �i1 ; � � � ; �ip are the eigenvalues outside E(c; e; a) and � is arelatively small term in comparison with the �rst r ones. All weneed is a method to extract those eigenvalues from the single vec-tor zk. We will refer to such a method as a puri�cation process.One process of this type can be achieved via the Arnoldi methodseen in the preceding Chapter. In fact any of the projection tech-niques seen earlier can be used as well.2.1. Puri�cation by Arnoldi's MethodAn important property of Arnoldi's method seen in Chapter VI,is that if the initial vector v1 is exactly in an invariant subspace ofdimension r and not in any invariant subspace of smaller dimen-sion, i.e., if the grade of v1 is r, then the algorithm stops at step



Acceleration Techniques 227m = r, because we will obtain kv̂r+1k = 0. However, as Proposi-tion 6.2 shows in this case Kr will be invariant, which implies byProposition 4.3 that the r computed eigenvalues are exact.This suggests that a good choice for the initial vector v1 inArnoldi's method would be to take a vector which is close to beingin an invariant subspace of small dimension. Polynomial iterationcan help construct such vectors. After a Chebyshev iteration isapplied to some initial vector v the resulting vector will have largecomponents in any eigenvalue that is outside the best ellipse. Ifthere is a small number of such eigenvalues in addition to thewanted ones �1; �2; :::; �r, then the Arnoldi projection process willcompute them with a good accuracy and they will be used tocorrect the convex hull and the ellipse. Normally, in the nextiteration, they should not appear again and others may possiblysurge and will be added to the convex hull again. This can givean e�cient adaptive and self correcting process. A few details ofthis combination which we refer to as the enhanced initial vectorapproach will be given in the next sections.2.2. The Enhanced Initial Vector ApproachSuppose that we can �nd an ellipse E(c; e; a) that contains all theeigenvalues of A except the r wanted ones, i.e., the r eigenvaluesof A with largest real parts. We will describe in a moment anadaptive way of getting such an ellipse. Then an appealing algo-rithm would be to run a certain number of steps of the Chebysheviteration and take the resulting vector zk as initial vector in theArnoldi process. From the Arnoldi puri�cation process one ob-tains a set of m eigenvalues, r of which are approximations to ther wanted ones, as was suggested in the previous section, while theremaining ones will be useful for adaptively constructing the bestellipse. After a cycle consisting of k steps of the Chebyshev itera-tion followed by m steps of the puri�cation process, the accuracyrealized for the r rightmost eigenpairs may not be su�cient andrestarting will then be necessary. The following is an outline of a



228 Chapter VIIsimple algorithm based on the above ideas:Algorithm 7.2 Arnoldi-Chebyshev1. Start: Choose an initial vector v1, a number of Arnoldisteps m and a number of Chebyshev steps k.2. Iterate:(a) Performm steps of the Arnoldi algorithm starting withv1. Compute the m eigenvalues of the resulting Hes-senberg matrix. Select the r eigenvalues of largest realparts ~�1; � � � ; ~�r and take ~R = f~�r+1; � � � ; ~�mg. If satis-�ed stop.(b) Using ~R, obtain the new estimates of the parametersc and e of the best ellipse. Then compute the initialvector z0 for the Chebyshev iteration as a linear combi-nation of the approximate eigenvectors ~ui; i = 1; � � � ; r.(c) Perform k steps of the Chebyshev iteration to obtainzk. Take v1 = zk=kzkk and go back to 1.Next, we will give some details on practicalities concerning theabove algorithm.2.3. Computing an Optimal EllipseAs was explained earlier we would like to �nd the `best' ellipseenclosing the set R of unwanted eigenvalues, i.e., the eigenvaluesother than the ones with the r algebraically largest real parts. Wemust begin by clarifying what is meant by `best' in the presentcontext. Consider Figure 7.3 representing a spectrum of somematrix A and suppose that we are interested in the r rightmosteigenvalues, i.e., r = 4 in the �gure.
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Figure 7.3 Example of a spectrum and the enclosingbest ellipse for r = 4.If r = 1 then one may simply seek the best ellipse in thesense of minimizing the convergence ratio �(�1). This situationis identical to that of Chebyshev Iteration for linear systems forwhich much work has been done.When r > 1, then we have several convergence ratios, eachcorresponding to one of the desired eigenvalues �i; i = 1; � � � ; r,and several possible strategies may be de�ned to try to optimizethe process.Initially, assume that �r is real (Figure 7.3) and consider anyellipse E(c; e; a) including the set R of unwanted eigenvalues andnot the eigenvalues f�1; �2; � � � ; �rg:It is easily seen from our comments of subsection 1.1 that if wedraw a vertical line passing through the eigenvalue �r, all eigen-values to the right of the line will converge faster than those tothe left. Therefore, when �r is real, we may simply de�ne theellipse as the one that minimizes the convergence ratio of �r withrespect to the two parameters c and e.When �r is not real, the situation is more complicated. Wecould still attempt to maximize the convergence ratio for theeigenvalue �r, but the formulas giving the optimal ellipse do notreadily extend to the case where �r is complex and the best ellipsebecomes di�cult to determine. But this is not the main reasonwhy this choice is not suitable. A close look at Figure 7.3, in



230 Chapter VIIwhich we assume r = 5, reveals that the best ellipse for �r maynot be a good ellipse for some of the desired eigenvalues. Forexample, in the �gure the eigenvalues �2, �3 should be computedbefore the pair �4; �5 since their real parts are larger. However,because they are enclosed by the best ellipse for �5 they may notconverge until many other eigenvalues will have converged includ-ing �4; �5; �n; �n�1 and possibly other unwanted eigenvalues notshown in the �gure.
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Figure 7.4 Case where � = �r (complex): the eigen-values �2 and �3 are inside the `best' ellipse.The di�culty comes from the fact that this strategy will notfavor the eigenvalues with largest real parts but those belongingto the outermost confocal ellipse. It can be resolved by just max-imizing the convergence ratio of �2 instead of �5 in this case. In amore complex situation it is unfortunately more di�cult to deter-mine at which particular eigenvalue �k or more generally at whichvalue � it is best to maximize �(�). Clearly, one could solve theproblem by taking � = <e(�r), but this is likely to result in asuboptimal choice.



Acceleration Techniques 231As an alternative, we can take advantage of the previous el-lipse, i.e., an ellipse determined from previous puri�cation steps.We determine a point � on the real line having the same conver-gence ratio as �r, with respect to the previous ellipse. The next`best' ellipse is then determined so as to maximize the conver-gence ratio for this point �. This reduces to the previous choice� = <e(�r) when �r is real. At the very �rst iteration one can set� to be <e(�r). This is illustrated in Figure 7.5. In Figure 7.5 theellipse in solid is the optimal ellipse obtained from some previouscalculation from the dynamic process. In dashed line is an ellipsethat is confocal to the previous ellipse which passes through �r.The point � is de�ned as one of the two points where this ellipsecrosses the real axis.
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Figure 7.5 Point on the real axis whose convergenceis equivalent with that of �r with respect to the pre-vious ellipse.The question which we have not yet fully answered concernsthe practical determination of the best ellipse. At a typical stepof the Arnoldi process we are given m approximations ~�i; i =1; � � � ; m, of the eigenvalues of A. This approximate spectrum isdivided in two parts: the r wanted eigenvalues ~�1; � � � ; ~�r and theset ~R of the remaining eigenvalues ~R = f~�r+1; � � � ; ~�mg. From



232 Chapter VIIthe previous ellipse and the previous sets ~R, we would like todetermine the next estimates for the optimal parameters c and e.A similar problem was solved in the context of linear systemsof equations and the technique can easily be adapted to our sit-uation. We refer the reader to the two articles by Manteu�el[99, 100]. The change of variables � = (���) easily transforms �into the origin in the �{plane and the problem of maximizing theratio �(�) is transformed into one of maximizing a similar ratio inthe �{plane for the origin, with respect to the parameters c ande. An e�ective technique for solving this problem has been devel-oped in [98], [100] but its description is rather tedious and will beomitted. We only indicate that there exist reliable software thatwill deliver the optimal values of � � c and e at output if giventhe shifted eigenvalues �� ~�j; j = r + 1; � � � ; m on input.We now wish to deal with a minor di�culty encountered when�1 is complex. Indeed, it was mentioned in Section 1 that theeigenvalue �1 in (7.6) should, in practice, be replaced by someapproximation � of �1. Initially, � can be set to some initialguess. Then, as the approximation ~�1 computed from Algorithm7.2 becomes available it can be used. If it is real then we can take� = ~�1 and the iteration can be carried out in real arithmetic aswas already shown, even when e is purely imaginary. However,the iteration will become complex if ~�1 is complex. To avoid thisit su�ces to take � to be one of the two points where the ellipseE(c; e; a1) passing through ~�1, crosses the real axis. The e�ectof the corresponding scaling of the Chebyshev polynomial willbe identical with that using ~�1 but will present the advantage ofavoiding complex arithmetic.2.4. Starting the Chebyshev Iteration.Once the optimal parameters c and e have been estimated we areready to carry out a certain number k of steps of the Chebysheviteration (7.9). In this subsection, we would like to indicate howto select the starting vector z0 for this iteration. In the hybrid



Acceleration Techniques 233algorithm outlined in the previous section, the Chebyshev iter-ation comes after an Arnoldi step. It is then desirable to startthe Chebyshev iteration by a vector which is a linear combinationof the approximate eigenvectors associated with the rightmost reigenvalues.Let �i be the coe�cients of the desired linear combinations.Then the initial vector for the Chebyshev process isz0 = rXi=1 �i~ui = rXi=1 �iVm~yi = Vm " rXi=1 �i~yi# : (7.14)Therefore, the eigenvectors ~ui; i = 1; : : : ; r, need not be computedexplicitly. We only need to compute the eigenvectors of the Hes-senberg matrix Hm and to select the appropriate coe�cients �i.An important remark is that if we choose the �'s to be real andsuch that �i = �i+1 for all conjugate pairs �i; �i+1 = ~�i, then theabove vector z0 is real.Assume that all eigenvectors, exact and approximate, are nor-malized so that their 2{norms are equal to one. One desirable ob-jective when choosing the above linear combination is to attemptto make zk, the vector which starts the next Arnoldi step, equalto a sum of eigenvectors of A of norm unity, i.e., the objective isto have zk = �1u1+ �2u2+ � � �+ �rur, with j�ij = 1; i = 1; 2; � � � ; r.For this purpose, suppose that for each approximate eigenvector~ui = iui+�i, where the vector �i has no components in u1; � � � ; ur.Then: zk = �11u1 + �22u2 + � � �+ �rrur + �;where � = rXi=1 �i�i:Near convergence jij is close to one and k�ik is small. Theresult of k steps of the Chebyshev iteration applied to z0 will bea vector zk such that:zk � �11u1 + �k2�22u2 + � � �+ �kr�rrur + pk(A)�: (7.15)



234 Chapter VIISince � has no components in u1; i = 1; � � � ; r, pk(A)� tends tozero faster than the �rst r terms, as k tends to in�nity. Hence,taking �i = ��ki ; i = 1; � � � ; r, will give a vector which has compo-nents i in the eigenvectors ui; i = 1; � � � ; r. Since jij � 1 nearconvergence this is a satisfactory choice.Another possibility is to weigh the combination of ~ui accordingto the accuracy obtained after an Arnoldi step, for example:�i = k(A� ~�iI)~uik: (7.16)Notice that the residuals of two complex conjugate approximateeigenelements are equal, so this choice will also lead to a real z0.Finally, we would like to mention that an alternative is to com-pute one eigenvalue - Schur vector pair at a time and to proceed toan implicit deation technique. From experience this alternativeis far more reliable than one described in this section and avoidsthe di�culty of having to select the proper z0 as a linear combi-nation of the approximate eigenvectors. The deated algorithmwill be described shortly.2.5. Choosing the Parameters m and k.The number of Arnoldi steps m and the number of Chebyshevsteps k are important parameters that a�ect the e�ectiveness ofthe method. Since we want to obtain more eigenvalues than ther desired ones, in order to use the remainder in choosing theparameters of the ellipse, m should be at least r+2 (to be able tocompute a complex pair). In practice, however, it is preferable totake m several times larger than r. In typical runs m is at least3r or 4r but can very well be even larger if storage is available.It is also possible to change m dynamically instead of keeping it�xed to a certain value but this variation will not be consideredhere.When choosing k, we have to take into account a number offacts. First, taking k too small may slow down of the algorithm;ultimately when k = 0, the method becomes the simple iterative



Acceleration Techniques 235Arnoldi method. On the other hand it may not be e�ective topick k too large, otherwise the vector zk may become nearly aneigenvector which could cause some numerical di�culties in theArnoldi process. In addition, the parameters c, e, of the ellipsemay be far from optimal and it is better to reevaluate them fre-quently.Recalling that the component in the direction of u1 will remainconstant while those in ui; i = 2; � � � ; r, will be of the same orderas �ki , we should attempt to avoid having a vector zk which isentirely in the direction of u1. This can be done by requiring thatall �ki ; i = 2; � � � ; r, be no less than a certain tolerance �, i.e.,k � ln(�)= ln[�j]; (7.17)where �j is the largest convergence ratio among �i; i = 2; � � � ; r.In our experimental codes we have opted to choose � to be nearlythe square root of the unit round{o�.Other practical factors should also enter into consideration.For example, it is desirable that a maximum number of Cheby-shev steps nmax be �xed by the user. Also when we are close toconvergence, we should avoid employing an unnecessarily largenumber of steps as might be dictated by a straightforward appli-cation of (7.17).3. Deated Arnoldi-ChebyshevThere are some disadvantages in the `enhanced initial vector ap-proach' discussed in the previous section. In particular, the pro-cess can be slow of even diverge in some cases when the eigen-values are poorly separated. An alternative is to compute oneeigenvalue-eigenvector pair at a time and proceed just as for therestarted Arnoldi method with deation described in Chapter VI.The algorithm is in fact very similar in structure to Algorithm6.4. The only di�erence is that the initial vector in the outer loopis now preprocessed by a Chebyshev acceleration.



236 Chapter VIIThe implementation uses a single basis v1; v2; :::; vm whose �rstvectors are the Schur vectors of A that have already converged.If the � � 1 vectors v1; v2; :::; v��1 have converged then we startby choosing a vector v� which is orthogonal to v1; ::::; v��1 andof norm 1. We then perform m � � steps of an Arnoldi process,orthogonalizing the vector vj against all previous v0is, includingv1; :::; v��1. Finally, we restart as in the previous algorithm, tak-ing v1 to be pk(A)z0, where z0 is the approximate Schur vectorproduced by the Arnoldi process. The algorithm is sketched be-low.Algorithm 7.3 (Deated Arnoldi-Chebyshev)A. Start: Choose an initial vector v1 of norm unity.B. Eigenvalue Loop: For l = 1; 2; :::; p do:1. Arnoldi Iteration. For j = l; l + 1; :::; m do:� Compute w := Avj;� Compute a set of j coe�cients hij such that w :=w � Pji=1 hijvi is orthogonal to all previous vi's,i = 1; 2; :::; j;� Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j.2. Compute a desired Ritz pair ~ul; ~ul, and correspondingresidual norm �l.3. Update the convex hull of R. Obtain new estimatesfor c and e. Compute next candidate eigenvalue andcorresponding eigenvector ~u. De�ne z0 = ~u.4. Compute zk = pk(A)z0.5. Orthonormalize zk against all previous vj's to get theapproximate Schur vector ~ul and de�ne vl := ~ul.6. If �j is small enough then accept ~vl as the next Schurvector, compute hi;l = (Avl; vi) i = 1; ::; l. Else go to(B.1).



Acceleration Techniques 237Recall that in the B-loop, the Schur vectors associated withthe eigenvalues �1; :::; �l�1 are frozen and so is the correspondingupper triangular matrix corresponding to these vectors.4. Chebyshev Subspace IterationWe will use the same notation as in the previous sections. Sup-pose that we are interested in the rightmost r eigenvalues andthat the ellipse E(c; e; a) contains the set R of all the remainingeigenvalues. Then the principle of the Chebyshev acceleration ofsubspace iteration is simply to replace the powers Ak in the �rstpart of the basic algorithm 5.1 described in Chapter V, by pk(A)where pk is the polynomial de�ned by (7.5). It can be shown thatthe approximate eigenvector ~ui; i = 1; � � � ; r converges towards ui,as Ck(a=e)=Ck[(�i�c)=e], which, using arguments similar to thoseof subsection (1.1) is equivalent to �ki where�i = a+ [a2 � 1]1=2ai + [a2i � 1]1=2 : (7.18)The above convergence ratio can be far superior to the standardratio j�r+1=�ij which is achieved by the non-accelerated algorithm.However, we recall that subspace iteration computes the eigenval-ues of largest moduli. Therefore, the unaccelerated and the ac-celerated subspace iteration methods are not always comparablesince they achieve di�erent objectives.On the practical side, the best ellipse is obtained dynamicallyin the same way as was proposed for the Chebyshev{Arnoldi pro-cess. The accelerated algorithm will then have the following form.Algorithm 7.4 Chebyshev Subspace Iteration1. Start: Q X.2. Iterate: Compute Q pk(A)Q.



238 Chapter VII3. Project: Orthonormalize Q and get eigenvalues and Schurvectors of C = QTAQ. Compute Q QF , where F is thematrix of Schur vectors of C.4. Test for convergence: If Q is a satisfactory set of Schurvectors then stop, else get new best ellipse and go to 2.Most of the ideas described for the Arnoldi process extendnaturally to this algorithm, and we now discuss briey a few ofthem.4.1. Getting the Best Ellipse.The construction of the best ellipse is identical with that seen insubsection 2.3. The only di�culty we might encounter is that theadditional eigenvalues which are used to build the best ellipse maynow be far less accurate than those provided by the more powerfulArnoldi technique. More care must therefore be taken in order toavoid building an ellipse based on too inaccurate eigenvalues asthis may cause substantial slow down in convergence.4.2. Parameters k and m.Here, one can take advantage of the abundant work on subspaceiteration available in the literature. All we have to do is replacethe convergences j�r+1=�ij of the basic subspace iteration by thenew ratios �i of (7.18). For example, one way to determine thenumber of Chebyshev steps k, proposed in Rutishauser [137] andin Jennings and Stewart [77] isn � 12[1 + ln(��1)= ln(�1)];where � is some parameter depending on the unit round{o�. Thegoal of this choice is to prevent the rounding errors from grow-ing beyond the level of the error in the most slowly convergingeigenvector. The parameter k is also limited from above by a user



Acceleration Techniques 239supplied bound nmax, and by the fact that if we are close to con-vergence a smaller k can be determined to ensure convergence atthe next projection step.The same comments as in the Arnoldi{Chebyshev method canbe made concerning the choice of m, namely that m should be atleast r + 2, but preferably even larger although in a lesser extentthan for Arnoldi. For the symmetric case it is often suggested totake to be a small multiple of r, e.g., m = 2r or m = 3r.4.3. DeationAnother special feature of the subspace iteration is the deationtechnique which consists of working only with the nonconvergedeigenvectors, thus `locking' those that have already converged.Clearly, this can be used in the accelerated subspace iteration aswell and will enhance its e�ciency. For the more stable versionssuch as those based on Schur vectors, a similar device can beapplied to the Schur vectors instead of the eigenvectors.5. Least Squares - ArnoldiThe choice of ellipses as enclosing regions in Chebyshev accelera-tion may be overly restrictive and ine�ective if the shape of theconvex hull of the unwanted eigenvalues bears little resemblancewith an ellipse. This has spurred much research in which the ac-celeration polynomial is chosen so as to minimize an L2-norm ofthe polynomial p on the boundary of the convex hull of the un-wanted eigenvalues with respect to some suitable weight function!. The only restriction with this technique is that the degree ofthe polynomial is limited because of cost and storage requirement.This, however, is overcome by compounding low degree polyno-mials. The stability of the computation is enhanced by employinga Chebyshev basis and by a careful implementation in which thedegree of the polynomial is taken to be the largest one for whichthe Gram matrix has a tolerable conditioning. The method for



240 Chapter VIIcomputing the least squares polynomial is fully described in [142]but we present a summary of its main features below.5.1. The Least Squares PolynomialSuppose that we are interested in computing the r eigenvalues oflargest real parts �1; �2; : : : �r and consider the vectorzk = pk(A)z0 (7.19)where pk is a degree k polynomial. Referring to the expansion(7.2) we wish to choose among all polynomials p of degree � k onefor which p(�i); i>r are small relative to p(�i); i � r. Assume thatby some adaptive process, a polygonal region H which enclosesthe remaining eigenvalues becomes available to us. We then arriveat the problem of approximation theory which consists of �ndinga polynomial of degree k whose value inside some (polygonal)region is small while its values at r particular points (possiblycomplex) outside the region are large. For simplicity we startwith the case where r = 1, i.e., only the eigenvalue �1 and itsassociated eigenvectors are sought. We seek a polynomial that islarge at �1 and small elsewhere. For convenience we can alwaysnormalize the polynomial so thatpk(�1) = 1: (7.20)The desired polynomial satisfying the above constraint can besought in the form pk(�) � 1� (�� �1)sk(�) (7.21)where sk is a polynomial of degree k � 1.Since it is known that the maximum modulus of an analyticfunction over a region of the complex plane is reached on theboundary of the region, one solution to the above problem is tominimize an L2-norm associated with some weight function !,over all polynomials of degree k satisfying the constraint (7.20).We need to choose a weight function ! that will facilitate practicalcomputations.
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Figure 7.6 Polygon H containing the spectrum of A.Let the regionH of the complex plane, containing the eigenval-ues �r+1; : : : �n, be a polygon consisting of � edges E1; E2; : : : E�,each edge Ej linking two successive vertices hj�1 and hj of H, seeFigure 7.6. Denoting by cj = 12(hj + hj�1) the center of the edgeEj and by dj = 12(hj�hj�1) its half-width, we de�ne the followingChebyshev weight function on each edge:!j(�) = 2� jd2j � (�� cj)2j�1=2: (7.22)The weight ! on the boundary @H of the polygonal region isde�ned as the function whose restriction to each edge Ej is !j.Finally, the L2-inner-product over @H is de�ned by< p; q >! = Z@H p(�)q(�)!(�)jd�j (7.23)= �Xj=1 ZEj p(�)q(�)!j(�)jd�j; (7.24)and the corresponding L2-norm is denoted by k:k!.Often, the matrix A is real and the convex hull may be takento be symmetric with respect to the real axis. In this situation itis better to de�ne the convex hull as the union of two polygonsH+ and H� which are symmetric to each other. These two are



242 Chapter VIIrepresented in solid line and dashed line respectively in the �gure7.6. Then, when the coe�cients of p and q are real, we only needto compute the integrals over the edges of the upper part H+ ofH because of the relation< p; q >!= 2<e �Z@H+ p(�)q(�)!(�)jd�j� : (7.25)Having de�ned an inner product we now de�ne in the simplestcase where r = 1, the `least-squares' polynomial that minimizesk1� (�� �1)s(�)k!: (7.26)Note that there are other ways of de�ning the least squares poly-nomial. Assume that we use a certain basis t0; : : : ; tk�1. and letus express the degree k � 1 polynomial s(�) in this basis ass(�) = k�1Xj=0 �jtj(�) : (7.27)Each polynomial (� � �1)tj(�) is of degree j + 1 and can be ex-pressed as (�� �1)tj(�) = j+1Xi=0 �ijti(�)Denote by � the vector of the �j's for j = 0; : : : ; k � 1 and by the vector of coe�cients j; j = 0; : : : ; k of (�� �1)s(�) in thebasis t0; : : : ; tk and de�ne �ij = 0 for i > j + 1. Then the abovetwo relations state that(�� �1)s(�) = k�1Xj=0 �j kXi=0 �ijti(�) = kXi=00@k�1Xj=0 �ij�j1A ti(�)In matrix form this means that = Tk�where Tk is the (k+1)�kmatrix of coe�cients tij's, which is upperHessenberg. In fact, it will seen that the matrix Tk is tridiagonalwhen Chebyshev bases are used.



Acceleration Techniques 243The least-squares problem (7.26) will translate into a linearleast-squares problem for the vector �. We will discuss some ofthe details of this approach next. There are two critical parts inthis technique. The �rst concerns the choice of the basis and thesecond concerns the solution least-squares problem.
5.2. Use of Chebyshev BasesTo motivate our choice of the basis ftjg, we assume at �rst thatthe best polynomial is expressed in the `power' basis1; �; �2; � � � :Then, the solution of the least-squares problem (7.26) requiresthe factorization of the Gram matrix consisting of all the innerproducts < �i�1; �j�1 >!:Mk = f< tj; ti >!gi;j=0;:::;k:This matrix, often referred to as the moment matrix , can be-come extremely ill-conditioned and methods based on the use ofthe power basis will generally be limited to low degree calcula-tions, typically not exceeding 10. A more reliable alternative is toreplace the basis f�i�1g by a more stable basis. One such basis,well understood in the real case, is that consisting of Chebyshevpolynomials over an ellipse that contains the convex hull. Thesolution polynomial (7.40) will be expressed in terms of a Cheby-shev basis associated with the ellipse of smallest area containingH. Such an ellipse is illustrated in Figure 7.7.
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Figure 7.7 The ellipse of smallest area containingthe convex hull of �(A) .Computing the ellipse of smallest area that encloses H is arather easy task, far easier than that of computing ellipses whichminimize convergence rates for Chebyshev acceleration, see Exer-cise P-7.3 for details.5.3. The Gram MatrixThe next step in the procedure for computing the best polynomial,is to evaluate the Gram matrix Mk. For the Chebyshev basis,the Gram matrix Mk can be constructed recursively without anynumerical integration.The entries of the Gram matrix are de�ned by,mij =< tj�1; ti�1 >! ; i; j = 1; : : : ; k + 1 :Note that because of the symmetry of the domain, the matrixMkhas real coe�cients. We start by expressing each polynomial ti(�)in terms of the Chebyshev polynomialsCl  �� c�d� ! � Cl(�)for each of the � edges E� , � = 1; : : : ; �. The variable � takesreal values when � lies on the edge E�. In other words we express



Acceleration Techniques 245each ti as ti(�) = iXl=0 (i)l;�Cl(�) ; (7.28)� = �� c�d� : (7.29)Each polynomial ti will have � di�erent expressions of this type,one for each edge E�. Clearly, these expressions are redundantsince one of them is normally enough to fully determine the poly-nomial ti. However, this redundancy is useful from the practicalpoint of view as it allows to perform an e�cient computation in astable manner. The following proposition enables us to computethe Gram matrix from the expressions (7.28).Proposition 7.1 Assuming the expressions (7.28) for each of thepolynomials ti, the coe�cients of the Gram matrix Mk are givenby mi+1;j+1 = 2 <e8<: �X�=10@2 (i)0;�(j)0;� + jXl=1 (i)l;�(j)l;�1A9=; ; (7.30)for all i; j such that 0 � i � j � k.Proof. The result is a simple consequence of the orthogonalityof the Chebyshev polynomials, the change of variables (7.29) andthe expression (7.25).We now need to be able to compute the expansion coe�cients.Because of the three term-recurrence of the Chebyshev polynomi-als it is possible to carry the computation of these coe�cients ina recursive manner. We rewrite the recurrence relation for theshifted Chebyshev polynomials in the form�i+1ti+1(�) = (���i)ti(�)� �iti�1(�); i = 0; 1; : : : ; k; : : : ; (7.31)



246 Chapter VIIwith the convention that t�1 �= 0 and �0 = 0. Using the de�ni-tions (7.28) and (7.29), we get for each edge,�i+1ti+1(�) = (d�� + c� � �i) iXl=0 (i)l;�Cl(�)� �i i�1Xl=0 (i�1)l;� Cl(�)which provides the expressions for ti+1 from those of ti and ti�1by exploiting the relations�Cl(�) = 12[Cl+1(�) + Cl�1(�)] l > 0 ;�C0(�) = C1(�) :The result is expressed in the following proposition.Proposition 7.2 For � = 1; 2; : : : �, the expansion coe�cients(i)l;� satisfy the recurrence relation,�i+1(i+1)l;� = d�2 h(i)l+1;� + (i)l�1;�i+ (c� � �i)(i)l;� � �i(i�1)l;� (7.32)for l = 0; 1; : : : ; i+ 1 with the notational convention,(i)�1;� � (i)1;�; (i)l;� = 0 for l>i :The total number of operations required for computing a Grammatrix with the help of the above two propositions is O(�k3=3).This cost may be high for high degree polynomials. However, thiscost will in general not be signi�cant relatively to the total num-ber of operations required with the matrix A which is typicallyvery large. It is also not recommended to compute least squarespolynomials of degree higher than 40 or 50.5.4. Computing the Best PolynomialIn the simple case where we are attempting to compute the eigen-value �1 and the associated eigenvector, we need to compute thepolynomial s(�) that minimizes the normJ(�) = k1� (�� �1)s(�)kw (7.33)



Acceleration Techniques 247where s(�) is the unknown polynomial of degree k � 1 expressedin the form (7.27).Let Tk be the (k + 1)� k tridiagonal matrixTk = 0BBBBBBBB@�0 �1�1 �1 �2. . . . . . . . .�k�2 �k�2 �k�1` �k�1 �k�1�k
1CCCCCCCCA (7.34)whose coe�cients �i; �i; �i are those of the three-term recurrence(7.31). Given two polynomials of degree kp(�) = kXi=0 iti(�) and q(�) = kXi=0 �iti(�)it is easy to show that the inner product of these two polynomialscan be computed from< p; q >!= (Mk; �) (7.35)where  = (0; 1; : : : ; k)T and � = (�0; �1; : : : ; �k)T . Therefore,an alternative expression for J(�) isJ(�)2 = [e1 � (Tk � �1I)�]HMk[e1 � (Tk � �1I)�]and as a consequence, we can prove the following theorem.Theorem 7.1 Let Mk = LLTbe the Choleski factorization of the (k+1)� (k+1) Gram matrixMk and denote by Hk the (k + 1)� k upper Hessenberg matrixHk = LT (Tk � �1I);where Tk is the tridiagonal matrix (7.34) de�ned from the three-term recurrence of the basis ti. Then the function J(�) satis�esthe relation, J(�) = kl11e1 �Hk�k2: (7.36)



248 Chapter VIITherefore the computation of the best polynomial requires thesolution of a (k+ 1)� k least squares problem. This is best doneby reducing the Hessenberg matrix Hk into upper triangular formby using Givens rotations.The above theorem does not deal with the case where we haveseveral eigenvalues to compute, i.e., with the case r > 1. For thissituation, we need to rede�ne the problem slightly. The followingdevelopment is also of interest because it gives an alternative for-mulation to the least squares polynomial even for the case r = 1.We start by introducing what is referred to as kernel polyno-mials, Kk(�; �) = kXj=0�j(�)�j(�) (7.37)in which the �j's are the orthogonal polynomials with respect tothe appropriate inner product, here < :; : >!. Then the followingwell-known theorem holds [31].Theorem 7.2 Among all polynomials of degree k normalized sothat p(�1) = 1, the one with the smallest !-norm is given byqk(�) = Kk(�1; �)Kk(�1; �1) : (7.38)This gives an interesting alternative to the polynomial derivedpreviously. We will now generalize this result and discuss its prac-tical implementation.We begin by generalizing the constraint (7.20) by normalizingthe polynomial at the points �1; �2; : : : ; �r as follows,rXj=1�jp(�j) = 1 (7.39)in which the �j's , j = 1; : : : r constitute r di�erent weights.Then we have the following generalization of the above theo-rem.



Acceleration Techniques 249Theorem 7.3 Let f�igi=0;:::;k be the �rst k+1 orthonormal poly-nomials with respect to the L2-inner-product (7.24). Then amongall polynomials p of degree k satisfying the constraint (7.39), theone with smallest !-norm is given bypk(�) = Pki=0 �i�i(�)Pki=0 j�ij2 ; (7.40)where �i = Prj=1 �j�i(�j) .Proof. We recall the reproducing property of kernel polynomials[31], < p;Kk(�; �) >!= p(�) ; (7.41)in which the integration is with respect to the variable �. It iseasily veri�ed that the polynomial (7.40) satis�es the constraint(7.39) and that pk can be recast aspk(�) = C kXj=0�jKk(�j; �) (7.42)where C is some constant. Next, we consider any polynomial psatisfying the constraint (7.39) and write p in the formp(�) = pk(�) + E(�);from which we get,kpk2! = kpkk2! + kEk2! + 2<ef< E; pk >!g: (7.43)Since both p and pk satisfy the constraint (7.39) we must haverXj=1�jE(�j) = 0: (7.44)From (7.42) and from the reproducing property (7.41) we see that< E; pk >! = C rXj=1�j < E;Kk(�j; �) >!= C rXj=1�jE(�j) :



250 Chapter VIIHence, from (7.44) < E; pk >!= 0 and (7.43) shows that kpk! �kpkk! for any p of degree � k.As is now explained, the practical computation of the bestpolynomial pk can be carried out by solving a linear system withthe Gram matrix Mk. We could also compute the orthogonalpolynomials �j and take their linear combination (7.40) but thiswould not be as economical.We consider the unscaled version of the polynomial (7.40) usedin (7.42), p̂k(�) = rXj=1 ��jKk(�j; �) ; (7.45)which satis�es a property stated in the next proposition.Proposition 7.3 Let t be the (k + 1)-vector with components�i = rXj=1�jti�1(�j) ; i = 0; : : : ; k :Then the coe�cients of the polynomial p̂k in the basis ftjg are theconjugates of the components of the k-vector,� =M�1k t :Proof. Consider the Choleski factorization Mk = LLT of theGram matrix Mk. If we represent by p(�) and t(�) the vectorsof size k + 1 de�ned byp(�) = (�0(�); �1(�); : : : ; �k(�))Tand t(�) = (t0(�); t1(�); : : : ; tk(�))Tthen we have the important relation,p(�) = L�1t(�) (7.46)



Acceleration Techniques 251which can be easily veri�ed from (7.35). Notice that Kk(�; �) =(p(�); p(�)) where (:; :) is the complex inner product in Ck+1, andtherefore, from (7.45) and (7.46) we getp̂k(�) = rXj=1 ��j �p(�); p(�j)�= rXj=1 ��j �L�1t(�); L�1t(�j)� = rXj=1 ��j �t(�);M�1k t(�j)�= 0@t(�);M�1k rXj=1�jt(�j)1A = �t(�);M�1k t�= k+1Xl=1 ��ltl�1(�) ;which completes the proof.The proposition allows to avoid computing the orthogonalpolynomials and to obtain the best polynomial directly in thedesired basis. Finally, we point out that since the matrix Mk isreal, if the �i's are real then the coe�cient vector � is real if the�j's are selected in pairs of conjugate complex numbers.5.5. Least Squares Arnoldi AlgorithmsA resulting hybrid method similar to the Chebyshev Arnoldi Al-gorithm can be easily derived. The algorithm for computing ther eigenvalues with largest real parts is outlined next.Algorithm 7.5 Least Squares Arnoldi Algorithm1. Start: Choose the degree k of the polynomial pk, the di-mension m of the Arnoldi subspaces and an initial vectorv1.2. Projection step:



252 Chapter VII(a) Using the initial vector v1, perform m steps of theArnoldi method and get the m approximate eigenval-ues f~�1; : : : ~�mg of the matrix Hm.(b) Estimate the residual norms �i; i = 1; : : : ; r, associatedwith the r eigenvalues of largest real parts f~�1; : : : ~�rgIf satis�ed then Stop.(c) Adapt: From the previous convex hull and the setf~�r+1; : : : ~�mg construct a new convex hull of the un-wanted eigenvalues.(d) Obtain the new least squares polynomial of degree k.(e) Compute a linear combination z0 of the approximateeigenvectors ~ui; i = 1; : : : ; r.3. Polynomial iteration:Compute zk = pk(A)z0. Compute v1 = zk=kzkk and goto 2.As can be seen the only di�erence with the Chebyshev algo-rithm is that the polynomial must now be computed. We mustexplain how the vector zk can be computed. We will call wi theauxiliary sequence of vectors wi = ti(A)z0. One possibility wouldbe to compute all the wi's �rst and then accumulate their linearcombination to obtain zk. However, the wi can also be accumu-lated at the same time as they are computed. More precisely, wecan use a coupled recurrence as described in the next algorithm.Algorithm 7.6 (For Computing zk = pk(A)z0)1. Start: �0 := 0, w0, y0 = �0z0.2. Iterate: For i = 1; 2; : : : ; k do:wi+1 = 1�i+1 [(A� �iI)wi � �iwi�1] ;yi = yi�1 + �iwi+1 :3. Finish: zk = yk.



Acceleration Techniques 253The intermediate vectors yi are not related to the vectors zi onlythe last vector yk is.We cannot, for reasons of space, describe all the details of theimplementation. However, we mention that the linear combina-tion at the end of step 3, is usually taken as follows:z0 = rXi=1 �i~uias for the Chebyshev iteration. Note that it is di�cult, in general,to choose a linear combination that leads to balanced convergencebecause it is hard to represent a whole subspace by a single vector.This translates into divergence in many cases especially when thenumber of wanted eigenvalues r is not small. There is always thepossibility of increasing the space dimension m, at a high cost,to ensure convergence but this solution is not always satisfactoryfrom the practical point of view. Use of deation constitutes agood remedy against this di�culty because it allows to computeone eigenvalue at a time which is much easier than computing afew of them at once. We omit the description of the correspond-ing algorithm whose general structure is identical with that ofAlgorithm 7.3.One attractive feature of the deation techniques is that theinformation gathered from the determination of the eigenvalue�i is still useful when iterating to compute the eigenvalue �i+1.The simplest way in which the information can be exploited isby using at least part of the convex hull determined during thecomputation of �i. Moreover, a rough approximate eigenvectorassociated with �i+1 can be inexpensively determined during thecomputation of the eigenvalue �i and then used as initial vectorin the next step for computing �i+1.Another solution is to improve the separation of the desiredeigenvalues by replacing A by a polynomial in A. This will beseen in the next chapter.



254 Chapter VIIProblemsP-7.1 Prove that the relation (7.25) holds when the polynomials pand q are real and the polygon is symmetric with respect to the realline.P-7.2 Show that the recurrence (7.8)-(7.9) can be performed in realarithmetic when A is real but e is complex. Rewrite the recurrenceaccordingly.P-7.3 The purpose of this exercise is to develop formulas for theellipse E(c; e; a) of smallest area enclosing a polygon H. It is assumedthat the polygon is symmetric about the real axis. Therefore theellipse is also symmetric about the real axis. The following result willbe assumed, see for example [99]: The best ellipse is either an ellipsethat passes through 3 vertices of H and encloses H or an ellipse ofsmallest area passing through two vertices of H. Formulas for the�rst case have been established in the literature, see Manteu�el [99].Therefore, we must only consider the second case. Let �1 = (x1; y1)and �2 = (x2; y2) two points in R2. We setA = 12(x2� x1); B = 12(x1 + x2);S = 12(y2� y1); T = 12(y1 + y2)and de�ne the variable z = c � B. At �rst, assume that S 6= 0 andde�ne Q = (S=T + T=S)=2. Show that for a given z (which de�nes c)the only ellipse that passes through �1; �2 is de�ned bye2 = 1z [(z +AT=S)(z +AS=T )(z � ST=A)]a2 = (z +AT=S)(z +AS=T ) :Then show that the optimal z is given byz = ApQ2 + 3�Qwhere� is the sign of AS. In the particular case where S = 0 the aboveformulas break down. But then c = B and one is lead to minimizethe area as a function of a. Show that the minimum is reached fora2 = 2A2 and that the corresponding d is given by d2 = 2(A2 � T 2).



Acceleration Techniques 255P-7.4 Polynomials of degree 2 can be used to calculate intermediateeigenvalues of Hermitian matrices. Suppose we label the eigenvaluesincreasingly and that we have estimates for �1; �i�1; �i; �i+1; �n. Con-sider the family of quadratic polynomials that take the value 1 at �iand whose derivative at �i is zero. Find one such polynomial that willbe suitable for computing �i and the associated eigenvector. Is this agood polynomial.Find a good polynomial for computing the eigenvalue �i.P-7.5 Establish formula (7.35).P-7.6 Prove Theorem 7.1.Notes and References. The contents in this Chapter are taken mostlyfrom Saad [143, 142, 144, 147, 141]. The idea of Chebyshev acceleration foreigenvalue problems is an old one and seems to have been �rst advocated byFlanders and Shortley [47]. However, in a work that has been vastly ignored,Lanczos also did some very interesting contemporary work in accelerationtechnique [90], see also the related paper [93]. Lanczos' approach is radicallydi�erent from that of Flanders and Shortley, which is the approach most nu-merical analysts are familiar with. Concerned about the di�culty in gettingeigenvalue estimates, Lanczos proposed as an alternative to compute a poly-nomial approximation to the Dirac function based on the wanted eigenvalue.The approximation is made over an interval containing the spectrum, whichcan easily be obtained from Gerschgorin estimates. This turns out to leadto the so-called Fejer kernel in the theory of approximation by trigonomet-ric functions and then naturally to Chebyshev polynomials. His approachis a least squares technique akin to the one proposed by Stiefel [173] andlater Saad [142]. Some ideas on implementing Chebyshev acceleration in thecomplex plane were introduced by Wrigley [186] but the technique did notmature until the 1975 PhD thesis by Manteu�el [98] in which a FORTRANimplementation for solving linear systems appeared. The work in [143] wasbased on adapting Manteu�el's implementation for the eigenvalue problem.The least squares polynomial approach presented in this chapter is basedon the technical report [142] and its revised published version [144]. In myexperience, the least squares approach does seem to perform slightly betterin practice than the Chebyshev approach. Its drawbacks (mainly, having touse relatively low degree polynomials) are rather minor in practice. �
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Chapter VIII
PreconditioningTechniquesThe notion of preconditioning is better known for linear systemsthan it is for eigenvalue problems. A typical preconditioned iter-ative method for linear systems amounts to replacing the originallinear system Ax = b by (for example) the equivalent systemB�1Ax = B�1b, where B is a matrix close to A in some sense andde�ned as the product of a lower by an upper sparse triangularmatrices. This equivalent system is then handled by a Krylovsubspace method. For eigenvalue problems, the best known pre-conditioning is the so-called shift-and-invert technique which wealready mentioned in Chapter IV. If the shift � is suitably cho-sen the shifted and inverted matrix B = (A� �I)�1, will have aspectrum with much better separation properties than that of theoriginal matrix A and this will result in faster convergence. Theterm `preconditioning' here is quite appropriate since the bet-ter separation of the eigenvalues around the desired eigenvalueimplies that the corresponding eigenvector is likely to be betterconditioned.



258 Chapter VIII1. Shift-and-invert PreconditioningOne of the most e�ective techniques for solving large eigenvalueproblems is to iterate with the shifted and inverted matrix,(A� �I)�1 (8.1)for standard problems and with (for example)(A� �B)�1B (8.2)for a generalized problem of the form Ax = �Bx. These meth-ods fall under the general suggestive name shift-and-invert tech-niques. There are many possible ways of deriving e�cient tech-niques based on shift and invert. In this section we will discusssome of the issues with one particular implementation in mindwhich involves a shift-and-invert preconditioning of Arnoldi's Al-gorithm.1.1. General ConceptsTypically shift-and-invert techniques are combined with an e�-cient projection method such as Arnoldi's method or the Subspaceiteration. The simplest possible scheme is to choose a shift � andrun Arnoldi's method on the matrix (A� �I)�1. Since the eigen-vectors of A and (A � �I)�1 are identical one can recover theeigenvalues of A from the computed eigenvectors. Note that thiscan be viewed as an acceleration of the inverse iteration algorithmseen in Chapter IV, by Arnoldi's method, in the same way thatthe usual Arnoldi method was regarded as an acceleration of thepower method. It requires only one factorization with the shiftedmatrix.More elaborate algorithms involve selecting automatically newshifts and performing a few factorizations. Strategies for adap-tively choosing new shifts and deciding when to refactor (A��B)are usually referred to as shift-and-invert strategies. Thus, shift-and-invert simply consists of transforming the original problem



Preconditioning Techniques 259(A � �I)x = 0 into (A � �I)�1x = �x. The transformed eigen-values �i are usually far better separated than the original oneswhich results in better convergence in the projection type algo-rithms. However, there is a trade-o� when using shift-and-invert,because the original matrix by vector multiplication which is usu-ally inexpensive, is now replaced by the more complex solutionof a linear system at every step. When a new shift � is selected,the LU factorization of the matrix (A � �I) is performed andsubsequently, at every step of Arnoldi's algorithm (or any otherprojection algorithm), an upper and a lower triangular systemsare solved. Moreover, the cost of the initial factorization can bequite high and in the course of an eigenvalue calculation, severalshifts, and therefore several factorizations, may be required. De-spite these additional costs shift-and-invert is often an extremelyuseful technique, especially for generalized problems.If the shift � is suitably selected the matrix C = (A � �I)�1will have a spectrum with much better separation properties thanthe original matrix A and therefore should require far less itera-tions to converge. Thus, the rationale behind the Shift-and-Inverttechnique is that factoring the matrix (A��I) once, or a few timesduring a whole run in which � is changed a few times, is a priceworth paying because the number of iterations required with Cis so much smaller than that required with A that the expenseof the factorizations is amortized. For the symmetric generalizedeigenvalue problem Bx = �Ax there are further compelling rea-sons for employing shift-and-invert. These reasons are well-knownand have been discussed at length in the recent literature, see forexample, [117, 118, 43, 160]. The most important of these is thatsince we must factor one of the matrices A or B in any case, thereis little incentive in not factoring (A��B) instead, to gain fasterconvergence. For this reason shift and invert has become a fairlystandard tool in structural analysis because of the predominanceof generalized eigenvalue problems in this application area.For nonsymmetric eigenvalue problems, shift-and-invert strate-gies are not as well-known, although the main arguments support-



260 Chapter VIIIing such techniques are the same as in the Hermitian case. Let usconsider the case where the matrices B and A are real and bandedbut the shift � is complex. One possibility is to work entirely incomplex arithmetic. This is probably a �ne alternative. If thematrix is real, it seems that the approach is a little wasteful andalso unnatural. For example, it is known that the eigenvalues ofthe original matrix pencil come in complex conjugate pairs (atleast in the case where B is positive de�nite). It would be desir-able to have algorithms that deliver complex conjugate pairs aswell. This is mainly because there may be a few close pairs ofcomputed eigenvalues and it will become di�cult to match thevarious pairs together if the conjugates are only approximatelycomputed. A wrong match may in fact give incorrect eigenvec-tors. In the next section we consider the problem of performingthe computations in real arithmetic.1.2. Dealing with Complex ArithmeticLet A be real and assume that we want to use a complex shift� = � + i� : (8.3)One can factor the matrix (A � �I) in (8.1) and proceed withan algorithm such as Arnoldi's method working with complexarithmetic. However, an alternative to using complex arithmeticis to replace the complex operator (A� �)�1 by the real oneB+ = <e h(A� �I)�1i = 12 h(A� �I)�1 + (A� ��I)�1i (8.4)whose eigenvectors are the same as those of the original problemand whose eigenvalues �+i are related to the eigenvalues �i of Aby �+i = 12 � 1�i � �i + 1�i � ��i� : (8.5)We can also useB� = =m h(A� �I)�1i = 12i h(A� �I)�1 � (A� ��I)�1i : (8.6)



Preconditioning Techniques 261Again, the eigenvectors are the same as those of A and the eigen-values ��i are given by��i = 12i � 1�i � �i + 1�i � ��i� : (8.7)A few additional possibilities are the followingB(�; �) = �B+ + �B� ;for any nonzero pair �; � andB� = (A� �I)�1(A� ��)�1: (8.8)This last option is known as the double shift approach and hasbeen used by J.G.F. Francis in 1961/62 [48] in the context of theQR algorithm to solve a similar dilemma. The inverse of B� is(A� �I)(A� ��I) = [(A� �I)2 + �2I]:This matrix, which is real, and is a quadratic polynomial in Aand again shares A's eigenvectors. An interesting observation isthat (8.8) is redundant with (8.6).Proposition 8.1 The matrices B� and B� are related byB� = �B� : (8.9)The proof is left as an exercise, see Exercise P-8.4.An obvious advantage in using either (8.4) or (8.6) in placeof (8.1) is that the �rst operator is real and therefore all thework done in the projection method can be performed in realarithmetic. A nonnegligible additional bene�t is that the com-plex conjugate pairs of eigenvalues of original problem are alsoapproximated by complex conjugate pairs thus removing somepotential di�culties in distinguishing these pairs when they arevery close. In a practical implementation, the matrix (A � �I)must be factored into the product LU of a lower triangular ma-trix L and an upper triangular matrix U . Then every time the



262 Chapter VIIIvector w = <e[(A� �I)�1]v must be computed, the forward andbackward solves are processed in the usual way, possibly usingcomplex arithmetic, and then the real part of the resulting vectoris taken to yield w.An interesting question that might be asked is which of (8.4)or (8.6) is best? The experiments in [123] reveal that the choiceis not an easy one. It is readily veri�ed that as �! �,�+ � 12(�� �) ; �� � 12i(�� �) :indicating that B+ and B� give the same enhancement to eigen-values close to �. In contrast, as �!1, B� dampens the eigen-values more strongly than does B+ since,�+ = �� �(�� �)(�� ��) ; �� = �(�� �)(�� ��) : (8.10)The only conclusion from all this is that whichever of the twooptions is used the performance is not likely to be substantiallydi�erent from the other or from that of the standard (8.1).In the following discussion we choose to single out B+, but allthat is said about B+ is also true of B�. In practice it is clearthat the matrix B+ should not be computed explicitly. In facteither of these matrices is full in general and would be prohibitiveto compute. Instead, we �rst factor the matrix (A � �I) at theoutset. This is done in complex arithmetic or by implementingcomplex arithmetic with real arithmetic. For example, if A isbanded, to preserve bandedness and still use real arithmetic, onecan represent the j-th component xj = �j + i�j of a vector zof Cn by the components �2j�1 = �j and �2j = �j of the real2n-vector y of the components �j, j = 1; : : : ; 2n. Translatingthe matrix (A� �I) into this transformation gives a (2n)� (2n)real banded matrix. Once the matrix is factored, a projectiontype method, e.g., subspace iteration, is applied using as operatorB+ = <e(A��I). Matrix-vector products with the matrixB+ arerequired in the subspace iteration. Each of these can be performedas follows.



Preconditioning Techniques 2631. Solve (A� �I)w = v ( possibly in complex arithmetic).2. Set B+v = <e(w) (respectively B�v = =m(w)).
1.3. Shift-and-Invert ArnoldiWe now consider the implementation of shift-and-invert with analgorithm such as Arnoldi's method. Assume that the problem isto compute the p eigenvalues closest to a shift �0. In the symmet-ric case there is an important tool that is used to determine whichof the approximate eigenvalues should be considered in order tobe able to compute all the desired eigenvalues in a given intervalonly once. This tool is Sylvester's inertia theorem which givesthe number of eigenvalues to the right and left of � by countingthe number of negative entries in the diagonal elements of the Upart of the LU factorization of the shifted matrix. In the nonHermitian case a similar tool does not exist. In order to avoid thedi�culty we exploit deation in the following manner. As soonas an approximate eigenvalue has been declared satisfactory weproceed to a deation process with the corresponding Schur vec-tor. The next run of Arnoldi's method will attempt to computesome other eigenvalue close to �0. With proper implementation,the next eigenvalue will usually be the next closest eigenvalue to�0. However, there is no guarantee for this and there is no guar-antee that an eigenvalue will not be missed. This is a weaknessof projection methods in the non Hermitian case, in general.Our experimental code ARNINV based on this approach im-plements a simple strategy which requires two parameters m; krestfrom the user and proceeds as follows. The code starts by using �0as an initial shift and calls Arnoldi's algorithm with (A� �0I)�1Arnoldi to compute the eigenvalue of A closest to �0. Arnoldi'smethod is used with restarting, i.e., if an eigenvalue fails to con-verge after the Arnoldi loop we rerun Arnoldi's algorithm withthe initial vector replaced by the eigenvalue associated with the



264 Chapter VIIIeigenvalue closest to �0. The strategy for changing the shift is dic-tated by the second parameter krest. If after krest calls to Arnoldiwith the shift �0 the eigenpair has not yet converged then theshift �0 is changed to the best possible eigenvalue close to �0 andwe repeat the process. As soon as the eigenvalue has convergedwe deate it using Schur deation as described in the previoussection. The algorithm can be summarized as follows.Algorithm 8.1 Shift-and-Invert Arnoldi1. Initialize:Choose an initial vector v1 of norm unity, an initial shift �,and the dimension and restart parameters m and krest.2. Eigenvalue loop:(a) Compute the LU factorization of (A� �I).(b) If k > 1 then (re)-computehij = ((A� �I)�1vj; vi) i; j = 1; k � 1 :(c) Arnoldi Iteration. For j = k; k + 1; :::; m do:� Compute w := (A� �I)�1vj.� Compute a set of j coe�cients hij so that w :=w � Pji=1 hijvi is orthogonal to all previous vi's,i = 1; 2; :::; j.� Compute hj+1;j := kwk2 and vj+1 := w=hj+1;j.(d) Compute eigenvalue of Hm of largest modulus, corre-sponding approximate eigenvector of (A � �I)�1, andassociated (estimated) residual norm �k.(e) Orthonormalize this eigenvector against all previousvj's to get the approximate Schur vector ~uk and de-�ne vk := ~uk.



Preconditioning Techniques 265(f) If �k is small enough then accept vk as the next Schurvector. Set k : k + 1; if k<p goto 2.(g) If the number of restarts with the same shift exceedskrest select a new shift and goto 1. Else restart Arnoldi'salgorithm, i.e., goto 2-(c).A point of detail in the algorithm is that the (k� 1)� (k� 1)principal submatrix of the Hessenberg matrix Hm is recomputedwhenever the shift changes. The reason is that this submatrixrepresents the matrix (A� �I)�1 in the �rst k � 1 Schur vectorsand therefore it must be updated as � changes. This is in con-trast with the simple Arnoldi procedure with deation describedearlier in Chapter VI. However, there exists a simpler implemen-tation that avoids this, see Exercise P-8.2. The above algorithmis described for general complex matrix and there is no attemptin it to avoid complex arithmetic in case the original matrix isreal. In this situation, we must replace (A � �I)�1vj in B.2 by<e[(A � �I)�1vj] and ensure that we select the eigenvalues cor-responding to the eigenvalues of A closest to �. We also need toreplace the occurrences of eigenvectors by the pair of real partsand imaginary parts of the eigenvectors.Example 8.1 We consider the test problem on Chemical reactionsdescribed in Chapter III. This coupled system is discretized in the in-terval [0; 1] using nx + 1 points with nx = 100 which yields a matrixof size n = 200. We tested ARNINV to compute the six rightmosteigenvalues of A. We took as initial shift the value � = 0, and m = 15,krest = 10. In this case ARNINV delivered all the desired eigenvaluesby making four calls to the Arnoldi subroutine and there was no needto change shifts. The tolerance imposed was � = 10�7. The result ofthe execution is shown in Table 8.1. What is shown in the �gure is theprogress of the algorithm after each projection (Arnoldi) step. Theeigenvalue loop number indicates the eigenvalue that is being com-puted at the particular Arnoldi call. Thus, when trying to computethe eigenvalue number 3, the algorithm has already computed the �rsttwo (in this case a complex conjugate pair), and has deated them. We



266 Chapter VIIIprint the eigenvalue of interest, i.e., the one we are trying to compute,plus the one (or the pair of complex conjugate eigenvalues) that is likelyto converge after it. The last column shows the actual residual normachieved for the eigenvalues shown. After execution, we computed theaverage error for the 6 computed eigenvalues and found that it wasequal to 0:68 � 10�14. The total execution time on an Alliant FX-8computer was about 2.13 seconds.Eig. <e(�) =m(�) Res. Norm1 0.1807540453D-04 0.2139497548D+01 0.212D-090.1807540453D-04 -0.2139497548D+01 0.212D-09-0.6747097569D+00 0.2528559918D+01 0.224D-06-0.6747097569D+00 -0.2528559918D+01 0.224D-063 -0.6747097569D+00 0.2528559918D+01 0.479D-13-0.6747097569D+00 -0.2528559918D+01 0.479D-13-0.2780085122D+01 0.2960250300D+01 0.336D-01-0.2780085122D+01 -0.2960250300D+01 0.336D-015 -0.1798530837D+01 0.3032164644D+01 0.190D-06-0.1798530837D+01 -0.3032164644D+01 0.190D-065 -0.1798530837D+01 0.3032164644D+01 0.102D-11-0.1798530837D+01 -0.3032164644D+01 0.102D-11-0.2119505960D+02 0.1025421954D+00 0.749D-03Table 8.1 Convergence history of ARNINV for chemicalreaction test problem. Each separate outer iteration cor-responds to a call to Arnoldi's moduleWe rerun the above test with a larger number of eigenvalues tocompute, namely nev = 10. The initial shift �, was changed to �0 =�0:5 + 0:2i and we also changed krest to krest = 3. Initially, therun looked similar to the previous one. A pair of complex conjugateeigenvalues were found in the �rst Arnoldi iteration, then another pairin the second iteration, then none in the third iteration and one pair inthe fourth iteration. It took two more iterations to get the eigenvaluesnumber 7 and 8. For the last eigenvalue a new shift was taken becauseit took three Arnoldi iterations without success. However the nextshift that was taken was already an excellent approximation and thenext eigenvalue was computed in the next iteration. The cost was



Preconditioning Techniques 267higher than the previous run with the CPU time on the Alliant FX-8climbing to approximately 5.65 seconds.2. Polynomial PreconditioningWe have seen in the previous chapter a few di�erent ways of ex-ploiting polynomials in A to accelerate simple algorithms such asArnoldi's method or subspace iteration. In this section we willshow another way of combining a projection type technique suchas Arnoldi's method with these polynomials.For a classical eigenvalue problem, one alternative is to usepolynomial preconditioning as is described next. The idea of poly-nomial preconditioning is to replace the operator B by a simplermatrix provided by a polynomial in A. Speci�cally, we considerthe polynomial in A Bk = pk(A) (8.11)where pk is a degree k polynomial. Ruhe [135] considers a moregeneral method in which pk is not restricted to be a polynomialbut can be a rational function. When an Arnoldi type method isapplied to Bk, we do not need to form Bk explicitly, since all wewill ever need in order to multiply a vector x by the matrix Bkis k matrix-vector products with the original matrix A and somelinear combinations.For fast convergence, we would ideally like that the r wantedeigenvalues of largest real parts of A be transformed by pk intor eigenvalues of Bk that are very large as compared with theremaining eigenvalues. Thus, we can proceed as in the previouschapter by attempting to minimize some norm of pk in some regionsubject to constraints of the form,p(�1) = 1 or rXj=1�jp(�j) = 1 : (8.12)Once again we have freedom in choosing the norm of the poly-nomials, to be either the in�nity norm or the L2-norm. Because



268 Chapter VIIIthe L2-norm o�ers more exibility and performs usually slightlybetter than the in�nity norm, we will only consider a techniquebased on the least squares approach. We should emphasize, how-ever, that a similar technique using Chebyshev polynomials caneasily be developed. Therefore, we are faced again with the func-tion approximation problem described in Section 3.3.Once pk is calculated, the preconditioned Arnoldi process con-sists of using Arnoldi's method with the matrix A replaced byBk = pk(A). This will provide us with approximations to theeigenvalues of Bk which are related to those of A by �i(Bk) =pk(�i(A)) It is clear that the approximate eigenvalues of A canbe obtained from the computed eigenvalues of Bk by solving apolynomial equation. However, the process is complicated by thefact that there are k roots of this equation for each value �i(Bk)that are candidates for representing one eigenvalue �i(A). Thedi�culty is by no means unsurmountable but we have preferred amore expensive but simpler alternative based on the fact that theeigenvectors of A and Bk are identical. At the end of the Arnoldiprocess we obtain an orthonormal basis Vm which contains all theapproximations to these eigenvectors. A simple idea is to performa Galerkin process for A onto span[Vm] by explicitly computingthe matrix Am = V Hm AVm and its eigenvalues and eigenvectors.Then the approximate eigenvalues of A are the eigenvalues of Amand the approximate eigenvectors are given by Vmy(m)i where y(m)iis an eigenvector of Am associated with the eigenvalue ~�i. A sketchof the algorithm for computing nev eigenvalues is as follows.Algorithm 8.2 Least-Squares Preconditioned Arnoldi1. Start: Choose the degree k of the polynomial pk, the di-mension parameter m and an initial vector v1. Set iev = 1.2. Initial Arnoldi Step: Using the initial vector v1, performm steps of the Arnoldi method with the matrix A and getinitial set of Ritz values for A.3. Eigenvalue Loop:



Preconditioning Techniques 269(a) Adapt: From the previous convex hull and the newset of Ritz values construct a new convex hull of theunwanted eigenvalues. Obtain the new least squarespolynomial pk of degree k.(b) Update Hm: If iev > 1 then (re)-computehij = (pk(A)vj; vi) i; j = 1; iev � 1 :(c) Arnoldi Iteration: For j = iev; iev + 1; :::; m do:� Compute w := pk(A)vj� Compute a set of j coe�cients hij so that w :=w � Pji=1 hijvi is orthogonal to all previous vi's,i = 1; 2; :::; j.� Compute hj+1;j := kwk2 and vj+1 := w=hj+1;j.(d) Projection Step: Compute the matrix Am = V TmAVmand its m eigenvalues f~�1; : : : ~�mg.(e) Select the next wanted approximate eigenvalue ~�iev andcompute corresponding eigenvector ~z. Orthonormalizethis eigenvector against v1; : : : ; viev�1 to get the approx-imate Schur vector ~uiev and de�ne viev := ~uiev.(f) Test. If �iev is small enough then accept viev as thenext Schur vector and set iev := iev + 1.(g) Restart: if iev<nev goto 2.The general structure of the algorithm is quite close to thatof shift-and-invert with deation. What di�erentiates the two al-gorithms is essentially the fact that here we need to adaptivelycompute a polynomial, while the shift-and-invert algorithm com-putes an LU factorization of a shifted matrix. Practically, we mustbe careful about the number of factorizations needed in shift-and-invert whereas the computational cost of calculating a new poly-nomial is rather low. The di�erence between this method andthose of the previous chapter is that here the polynomial itera-tion is an inner iteration and the Arnoldi iteration is the outer



270 Chapter VIIIloop, while in the hybrid method, the two processes are seriallyfollowing each other. Both approaches can be viewed as means ofaccelerating the Arnoldi method.It is clear that a version without the Schur-Wielandt deationtechnique can also be applied to the polynomial preconditionedArnoldi method but this is not recommended.Example 8.2 We take the same example as in the previous sectionand illustrate the use of an experimental least squares Arnoldi programcalled ARNLS on the above example. We �xed the dimension of theKrylov subspace to be always equal to m = 15. The degree of thepolynomial was taken to be 20. However, note that the program hasthe capability to lower the degree by as much as is required to ensure awell conditioned Gram matrix in the least squares polynomial problem.This did not happen in this run however, i.e. the degree was always 20.Again, ARNLS was asked to compute the six rightmost eigenvalues.The run was much longer so its history cannot be reproduced here.Here are however a few statistics.� Total number of matrix by vector multiplications for the run =2053;� Number of calls to the projection subroutines = 9;� Total CPU time used on an Alliant FX-8 = 3.88 sec.Note that the number of projection steps is more than twice that re-quired for shift-and-invert. The execution time is also more than 80 %higher. We rerun the same program by changing only two parameters:m was increased to m = 20 and the degree of the polynomial was setto k = 15. The statistics are now as follows:� Total number of matrix by vector multiplications for the run =1144;� Number of calls to the projection subroutines = 5;� Total CPU time used = 2.47 sec.Both the number of projection steps and the execution times havebeen drastically reduced and have come closer to those obtained withshift-and-invert.



Preconditioning Techniques 271One of the disadvantages of polynomial preconditionings isprecisely this wide variation in performance depending on thechoice of the parameters. To some extent there is a similar depen-dence of the performance of ARNINV on the initial shift, althoughin practice a good initial shift is often known. A superior featureof shift-and-invert is that it allows to compute eigenvalues insidethe spectrum. Polynomial preconditioning can be generalized tothis case but does not perform too well. We should also commenton the usefulness of using polynomial preconditioning in general.A commonly heard argument against polynomial preconditioningis that is it suboptimal: In the Hermitian case the conjugate gra-dient and the Lanczos methods are optimal polynomial processesin that they provide the best possible approximation, in somesense, to the original problem from Krylov subspaces. Hence theargument that polynomial preconditioning would not perform aswell since it si likely to require a larger number of matrix by vectormultiplications. However, in the non Hermitian case the optimal-ity result is no longer valid. In fact even in the symmetric casethe optimality result is only true in exact arithmetic, which is farfrom real situations in which loss of orthogonality can be rathersevere. A notable di�erence with the situation of linear systemsolutions is that the overhead in computing the best ellipse andbest polynomial may now be amortized over several eigenvalues.In fact one single outer loop may enable one to compute a feweigenvalues/eigenvectors and not just one.The next question is whether or not a simple restarted Arnoldialgorithmwould perform better than a polynomial preconditionedmethod. The answer is a de�nite no. A run with ARNIT [148]an iterative Arnoldi method with deation failed even to deliverthe �rst eigenvalue of the test matrix used in the above example.The initial vector was the same and we tried two cases m = 15,which did not show any sign of convergence and m = 20 whichmight have eventually converged but was extremely slow. Thenonrestarted Arnoldi method would, however be of interest, ifnot for its excessive memory requirement.



272 Chapter VIII3. Davidson's MethodDavidson's method is a generalization of the Lanczos algorithm inthat like the Lanczos algorithm it uses projections of the matrixover a sequence of subspaces of increasing dimension. It is indeeda preconditioned version of the Lanczos method. The di�erencewith the Lanczos algorithm is that the amount of work required ateach step increases at each iteration because, just like in Arnoldi'smethod, we must orthogonalize against all previous vectors. Fromthe implementation point of view the method is akin to Arnoldi'smethod. For example, the process must be restarted periodicallywith the current best estimate of the wanted eigenvector.The basic idea of the algorithm is rather simple. It consists ofgenerating an orthogonal set of vectors onto which a projectionis performed. At each step j, (this is the equivalent to the j-thstep in the Lanczos algorithm) the residual vector of the currentapproximation ~�; ~u to the desired eigenpair is computed. Theresulting vector is then multiplied by (M � ~�I)�1, where M issome preconditioning matrix. In the original algorithms M wassimply the diagonal of the matrix A.Thus, the algorithm consists of two nested loops. The processfor computing the largest (resp. smallest) eigenvalue of A, can bedescribed as follows.Algorithm 8.3 Davidson's method.1. Start: Choose an initial unit vector v1.2. Iterate: Until convergence do:3. Inner Loop: for j = 1; : : : ; m do:� Compute w := Avj.� Compute V Tj w, the last column of Hj := V Tj AVj.� Compute the largest eigenpair �, y of Hj.



Preconditioning Techniques 273� Compute the Ritz vector u := Vjy and its associatedresidual vector r := Au� �u.� Test for convergence. If satis�ed Return.� Compute t := Mjr (skip when j = m).� Orthogonalize t against Vj via Modi�ed Gram-Schmidt:Vj+1 :=MGS([Vj; t]) (skip when j = m).4. Restart: Set v1 := u and go to 3.The preconditioning matrix Mj is normally some approxima-tion of (A � �I)�1. As was already mentioned the simplest andmost common preconditioner Mj is (D � �I)�1 where D is themain diagonal of A (Jacobi Preconditioner). It can only be e�ec-tive when A is nearly diagonal, i.e., when matrix of eigenvectorsis close to the identity matrix. The fact that this is often thesituation in Quantum Chemistry explains the popularity of themethod in this �eld. However, the preconditioner need not be assimple. It should be noticed that, without preconditioning, i.e.,when if Mj = I for all j, then the sequence of vectors vj coin-cide with those produced by the Lanczos algorithm, so that theLanczos and Davidson algorithms are equivalent in this case.When several eigenvalues are sought or when it is known thatthere is a cluster of eigenvalues around the desired eigenvalue thena block version of the algorithm may be preferred. Then severaleigenpairs of Hj will be computed at the same time and severalvectors are added to the basis Vj instead of one.We state a general convergence result due to Sadkane [153].In the following, we assume that we are seeking to compute thelargest eigenvalue �1. We denote by Pj the projection onto asubspace Kj spanned by an orthonormal basis Vj. Thus, thenonrestarted Davidson algorithm is just a particular case of thissituation.Theorem 8.1 Assuming that the Ritz vector u(j)1 belongs to Kj+1,then the sequence of Ritz values �(j)1 is an increasing sequence that



274 Chapter VIIIis convergent. If, in addition, the preconditioning matrices areuniformly bounded and uniformly positive de�nite in the orthogo-nal complement of Kj and if the vector (I � Pj)Mjrj belongs toKj+1 for all j then the limit of �(j)1 as j !1 is an eigenvalue ofA and u(j)1 admits a subsequence that converges to an associatedeigenvector.Proof. For convenience the subscript 1 is dropped from thisproof. In addition we assume that all matrices are real symmet-ric. That �(j) is an increasing sequence is a consequence of theassumptions and the min-max theorem. In addition, the �(j) isbounded from above by � and as result it converges.To prove the second part of the theorem, let us de�ne zj =(I � Pj)Mjrj and wj = zj=kzjk2. Note that since u(j) ? zj andrj ? Kj we have, zHj Au(j) = zHj (�(j)u(j) + rj)= rHj Mj(I � Pj)rj= rHj Mjrj: (8.13)Consider the 2-column matrix Wj = [u(j); wj] and letBj =WHj AWj = ��(j) �j�j �j � (8.14)in which we have set �j = wHj Au(j) and �j = wHj Awj. Note thatby the assumptions spanfWjg is a subspace of Kj+1. Therefore,by Cauchy's interlace theorem and the optimality properties of theRayleigh Ritz procedure the smallest of two eigenvalues �(j)1 ; �(j)2of Bj satis�es the relation�(j) � �(j)1 � �(j+1):The eigenvalues of Bj are de�ned by (�� �(j))(�� �j)� �2j = 0and as a result of j�(j)1 j � kAk2 and j�jj � kAk2 we�2j � 2(�(j)1 � �(j))kAk2 � (�(j+1) � �(j))kAk2 :



Preconditioning Techniques 275The right hand side of the above inequality converges to zero asj !1 and so limj!1 = 0. From (8.13),rHj Mjrj = kzjk2�j � k(I � Pj)Mjrjk�j � kMjrjk�j :Since we assume thatMj is uniformly bounded and using the factthat krjk2 � 2kAk2 the above inequality shows thatlimj!1 rHj Mjrj = 0:In addition, since rj belongs to the orthogonal complement ofKj and by the uniform positive de�niteness of the sequence Mj,rHj Mjrj � krjk22 where  is some positive constant. Therefore,limj!1 rj = 0. To complete the proof, let �� the limit of thesequence �(j). The u(j)'s are bounded since they are all of normunity so they admit a limit point. Taking the relation rj = (A��(j)I)u(j), to the limit, we see that any such limit point �u, mustsatisfy (A� ��I)�u = 0.The result given by Sadkane includes the more general casewhere more than one eigenvalue is computed by the algorithmand is therefore more general, see Exercise P-8.1 for details. Therestriction on the positive de�niteness of the Mj 's is a rathersevere condition in the case where the eigenvalue to be computedis not the largest one. The fact that Mj must remain boundedis somewhat less restrictive. However, in shift-and-invert precon-ditioning, for example, an unbounded Mj is sought rather thanavoided. If we want to achieve rapid convergence, it is desirable tohave Mj close to some (A��I)�1 in some sense and � close to thedesired eigenvalue. The assumptions of the theorem do not allowus to take � too close from the desired eigenvalue. Nevertheless,this result does establish convergence in some instances and weshould add that little else is known concerning the convergence ofDavidson's algorithm.



276 Chapter VIII4. Generalized Arnoldi AlgorithmsIt is interesting to note that the generalized Davidson methodsare similar to preconditioned conjugate gradient type methods.The only additional feature is that the preconditioning is allowedto vary at each step. We can de�ne a preconditioned Arnoldiprocedure using similar ideas. The subspace is constructed byadding at each step a new vector of the formAM�1j rjwhich is then orthonormalized against v1; : : : vj to yield vj+1. Inthe above equationMj is the preconditioner, which in the originalDavidson method is de�ned asMj = diag (A)� ~�jIwhere ~�j is the current approximation to the desired eigenvalue.In the symmetric case the usual implementation of Davidson'smethod requires computing the matrixCj = V Hj AVjwhich is updated at every step. Because of symmetry of the ma-trix Cj this necessitates the computation of exactly j inner prod-ucts, namely (Avj; vi), i = 1; 2; : : : j, at step j.In contrast, the non-Hermitian case does not allow such a sim-ple updating mechanism. The simplest possibility in this situationwould be to save the two sets of vectors vj and wj � Avj gener-ated at every step, thus essentially doubling memory requirement.The matrix Cj = V Hj Wj can then be updated at each step, whereVj = [v1; v2; :::; vj], Wj = [w1; w2; :::; wj]. An alternative is tocompute (Avj; vi); i � j as before and hji = (Avi; vj) i<j viahji = (vi; AHvj)which requires another matrix { vector product but does not ne-cessitate saving the wj's. This allows us to add row j and column



Preconditioning Techniques 277j of the matrix Cm at step j. In spite of these unattractive addi-tional costs, this technique is appealing because of its exceptionalexibility. Any preconditioner can be used and it is allowed tovary at every step. For example, in polynomial preconditioninga di�erent polynomial can be used at each step. Similarly, inShift-and-Invert the shift can be changed at any step.A particularly important application of this technique is whencomputing eigenvalues with largest real parts of a large matrix.In this situation it is desirable to use a preconditioning that com-putes an approximation to exp(A)vj, i.e., at step j of the precon-ditioned procedure we would like to haveMjvj � exp(A)vj:Any such approximation can be used. For example, a techniquebased on Krylov subspace approximations developed in [53, 152]is suitable. The approximation is of the form exp(A)v � qm(A)v,where qm is a polynomial of degree m � 1 that depends on thevector v. In fact this can be viewed as a conjugate-gradient typealgorithm for approximating the exponential propagation oper-ator. The framework of the preconditioned Arnoldi algorithmdescribed above seems perfectly suitable for incorporating thesevariable preconditioners.ProblemsP-8.1 Consider a more general framework for Theorem 8.1, in whichone is seeking l eigenvalues at a time. The new vectors are de�ned asti;j =M�1i;j ri;j i = 1; 2; : : : l:where i refers to the eigenvalue number and j is the step number.As a result the dimension of the Davidson subspace increases by l atevery step instead of one. The assumptions on each of the individualpreconditioners for each eigenvalue are the same as in Theorem 8.1.(1) Establish that the �rst part of Theorem 8.1 is still valid.



278 Chapter VIII(2) To show the second part, de�ne zij = (I�Pj)Mi;jrij and similarlywij = zij=kzijk2 andWj = [u(j)1 ; u(j)2 ; : : : ; u(j)i ; wij ]:Show thatWj is orthonormal and that the matrix Bi;j =WHj AWj hasthe form, Bi;j = 0BBBB@�(j)1 �1j. . . ...�(j)i �ij�1j � � � �ij �j 1CCCCA (8.15)in which we set �kj = wHijAu(j)k ) and �j = wHijAwij .(3) Show that �(j)k � �(j)k � �(j+1)k k = 1; 2; : : : ; i:(4) Taking the Frobenius norm of Bi;j and using the fact thattr(Bi;j) = i+1Xk=1�(j)k = �j + iXk=1�(j)kshow that2 iXk=1�2kj = iXk=1(�(j)k � �(j)k )(�(j)k + �(j)k � �(j)i+1 � �j)� 4kAk2 iXk=1(�(j)k � �(j)k ) :(5) Complete the proof of the result similarly to Theorem 8.1.P-8.2 Using the result of Exercise P-6.3 write a simpler version ofthe shift-and-invert Arnoldi Algorithm with deation, Algorithm 8.1,which does not require the (k�1)�(k�1) principal submatrix of Hm,i.e., the (quasi) upper triangular matrix representing of (A� �I)�1 inthe computed invariant subspace.P-8.3 How can one get the eigenvalues of A from those of B+ or B�.What happens if the approximate eigenvalues are close and complex?What alternative can you suggest for recovering approximate eigenval-ues of A from a given projection process applied to either of these tworeal operators.



Preconditioning Techniques 279P-8.4 Establish the relation (8.9).Notes and References. Although the notion of preconditioning is well-known for linear systems it is not clear who de�ned this notion �rst. In thesurvey paper by Golub and O'Leary [60] it is stated that \The term precon-ditioning is used by Turing (1948) and by then seems standard terminologyfor problem transforming in order to make solutions easier. The �rst appli-cation of the work to the idea of improving the convergence of an iterativemethod may be by Evans (1968), and Evans (1973) and Axelsson (1974)apply it to the conjugate gradient algorithm". However, the idea of poly-nomial preconditioning is clearly described in a 1952 paper by Lanczos [90],although Lanczos does not use the term \preconditioning" explicitly. Theidea was suggested later for eigenvalue calculations by Stiefel who employedleast-squares polynomials [173] and Rutishauser [136] who combined the QDalgorithm with Chebyshev acceleration. The section on Shift-and-Invert pre-conditioning is adapted from [123]. Davidson's method as described in [30]can be viewed as a cheap version of Shift-and-Invert , in which the solution ofthe linear systems are solved (very) inaccurately. The method is well-knownto the physicists or quantum chemists but not as well known to numericalanalysts. The lack of theory of the method might have been one reason forthe neglect. Generalizations and extensions of the method are proposed byMorgan and Scott [104] in the Hermitian case but little has been done in thenon-Hermitian case. �
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Chapter IX
Non-Standard EigenvalueProblemsMany problems arising in applications are not of the standardform Ax = �x but of the `generalized' form Ax = �Bx. Instructural engineering, the A matrix is called the sti�ness matrixand B is the mass matrix. In this situation, both are symmetricreal and often B is positive de�nite. Other problems are quadraticin nature, i.e., they take the form�2Ax + �Bx+ Cx = 0:This chapter gives a brief overview of these problems and of somespeci�c techniques that are used to solve them. In many cases,we will seek to convert a nonstandard problems into a standardone in order to be able to exploit the methods and tools of theprevious chapters.



282 Chapter IX1. IntroductionMany eigenvalue problems arising in applications are either gen-eralized, i.e., of the form Ax = �Bx (9.1)or quadratic, �2Ax + �Bx+ Cx = 0:Such problems can often be reduced to the standard form Ax =�x under a few mild assumptions. For example when B is non-singular, then (9.1) can be rewritten asB�1Ax = �x : (9.2)As will be explained later, the matrix C = B�1A need not becomputed explicitly in order to solve the problem. Similarly, thequadratic eigen-problem can be transformed into a generalizedeigen-problem of size 2n, in a number of di�erent ways.Thus, it might appear that these nonstandard problems maybe regarded as particular cases of the standard problems and thatno further discussion is warranted. This is not the case. First,a number of special strategies and techniques must be applied toimprove e�ciency. For example, when A is symmetric and B issymmetric positive de�nite then an alternative transformation of(9.1) will lead to a Hermitian problem. Second, there are somespeci�c issues that arise, such as the situation where both A andB are singular matrices, which have no equivalent in the standardeigenvalue context.2. Generalized Eigenvalue ProblemsIn this section we will summarize some of the results known for thegeneralized eigenvalue problem and describe ways of transformingit into standard form. We will then see how to adapt some of thetechniques seen in previous chapters.



Non Standard Eigenvalue Problems 2832.1. General ResultsThe pair of matrices A;B in the problem (9.1) is often referredto as a matrix pencil. We will use both the terms matrix pairor matrix pencil. If there is no particular reason why one of thetwo matrices A and B should play a special role, then the mostnatural way of de�ning eigenvalues of a matrix pencil is to thinkof them as pairs (�; �) of complex numbers. Thus, (�; �) is aneigenvalue of the pair (A;B) if by de�nition there is a vector u,called an associated eigenvector, such that�Au = �Bu: (9.3)Equivalently, (�; �) is an eigenvalue if and only ifdet(�A� �B) = 0 :When (�; �) is an eigenvalue pair for (A;B), then (��; ��) is aneigenvalue pair for (AH ; BH) since det(�A� �B)H = 0. The lefteigenvector for A;B is de�ned as a vector for which(�A� �B)Hw = 0: (9.4)This extension of the notion of eigenvalue is not without a fewdrawbacks. First, we note that the trivial pair (0; 0) always sat-is�es the de�nition. Another di�culty is that there are in�nitelymany pairs (�; �) which can be termed `generalized eigenvalues'to represent the same `standard eigenvalue'. This is because wecan multiply a given (�; �) by any complex scalar and still getan eigenvalue for the pencil. Thus, the standard de�nition ofan eigenvalue corresponds to the case where B = I and � = 1.There are three known ways out of the di�culty. A popular wayis to take the ratio �=� as an eigenvalue, which corresponds toselecting the particular pair (�; 1) in the set. When � is zero, theeigenvalue takes the value in�nity and this may not be satisfac-tory from the numerical point of view. A second way would beto use pairs (�; �) but scale them by some norm in C2, e.g., so



284 Chapter IXthat j�j2 + j�j2 = 1. Finally, a third way, adopted by Stewartand Sun [172] is to denote by < �; � > the set of all pairs thatsatisfy (9.3). The eigenvalue is then a set instead of an element inC2. We will refer to this set as a generalized eigenvalue. However,we will sacri�ce a little of rigor for convenience, and also call anyrepresentative element (�; �), in the set, at the exclusion of (0; 0),an eigenvalue pair . Note the distinction between the notation ofan eigenvalue pair (:; :) and the set to which it belongs to, i.e., thegeneralized eigenvalue, denoted by < :; : >. This de�nition is cer-tainly radically di�erent from, and admittedly more complicatedthan, the usual de�nition, which corresponds to arbitrarily select-ing the pair corresponding to � = 1. On the other hand it is moregeneral. In particular, the pair < 1; 0 > is well de�ned whereaswith the usual de�nition it becomes an in�nite eigenvalue.To illustrate the various situations that can arise we considertwo by two matrices in the following examples.Example 9.1 LetA = ��1 00 1� and B = � 0 11 0� :By the de�nition (�; �) is an eigenvalue if det(�A � �B) = 0 whichgives the set of pairs (�; �) satisfying the relation � = �i�. In otherwords, the two generalized eigenvalues are < 1; i > and < 1;�i >.This example underscores the fact that the eigenvalues of a symmetricreal (or Hermitian complex) pencil are not necessarily real.Example 9.2 LetA = ��1 10 0� and B = � 0 01 0� :Here det(�A � �B) = ��, so the de�nition shows that < 0; 1 > and< 1; 0 > are generalized eigenvalues. Note that both matrices aresingular.Example 9.3 LetA = ��1 01 0� and B = � 0 01 0� :



Non Standard Eigenvalue Problems 285In this case any pair < �; � > is an eigenvalue since det(�A��B) = 0independently of the two scalars � and �. Note that this will occurwhenever the two matrices are singular and have a common null space.Any vector of the null-space can then be viewed as a degenerate eigen-vector associated with an arbitrary scalar. Such pencils are said to besingular.Example 9.4 LetA = � 1 01 0� and B = � 0 20 2� :This is another example where any pair (�; �) is an eigenvalue sincedet(�A � �B) = 0 independently of � and �. The two matrices areagain singular but here their two null spaces do not intersect. Any`eigenvalue' (�; �) has the associated `eigenvector' (2�;��)H .The above examples suggests an important case that maycause di�culties numerically. This is the case of `singular pairs'.De�nition 9.1 A matrix pair (A;B) is called singular if �A��Bis singular for all �; �. A matrix pair that is not singular is saidto be regular .The added complexity due for example to one (or both) of thematrices being singular means that special care must be exercisedwhen dealing with generalized eigen-problems. However, the factthat one or both of the matrices A or B is singular does not meanthat trouble is lurking. In fact generalized eigenvalue problem canbe quite well behaved in those situations, if handled properly.We now state a number of de�nitions and properties. If wemultiply both components A and B of the pencil (A;B) to theleft by the same nonsingular matrix Y then the eigenvalues andright eigenvectors are preserved. Similarly, if we multiply them tothe right by the same non-singular matrix X then the eigenvaluesand the left eigenvectors are preserved. The left eigenvectors aremultiplied by Y �H in the �rst case and the right eigenvectors aremultiplied by X�1 in the second case. These transformations gen-eralize the similarity transformations of the standard problems.



286 Chapter IXDe�nition 9.2 If X and Y are two nonsingular matrices, thepencil (Y AX; Y BX) is said to be equivalent to the pencil (A;B).We will now mention a few properties. Recall that if (�; �)is an eigenvalue pair for (A;B), then (��; ��) is an eigenvalue pairfor (AH ; BH). The corresponding eigenvector is called the lefteigenvector of the pair (A;B).A rather trivial property, which may have some nontrivial con-sequences, is that the eigenvectors of (A;B) are the same as thoseof (B;A). An eigenvalue pair (�; �) is simply permuted to (�; �).In the standard case we know that a left and a right eigenvectorassociated with two distinct eigenvalues are orthogonal. We willnow show a similar property for the generalized problem.Proposition 9.1 Let �i =< �i; �i > and �j =< �j; �j > twodistinct generalized eigenvalues of the pair (A;B) and let ui bea right eigenvector associated with �i and wj a left eigenvectorassociated with �j. Then,(Aui; wj) = (Bui; wj) = 0: (9.5)Proof. Writing the de�nition for �i yields,�iAui � �iBui = 0:Therefore,0 = (�iAui � �iBui; wj) = (ui; ( ��iAH � ��iBH)wj) : (9.6)We can multiply both sides of the above equation by �j and usethe fact that (��j; ��j) is an eigenvalue for AH ; BH with associatedeigenvector wj to get,0 = (ui; ��i ��jAHwj � ��i ��jBHwj)0 = (ui; ( ��i��j � ��i ��j)BHwj)0 = (�i�j � �i�j)(Bui; wj):



Non Standard Eigenvalue Problems 287This implies that (Bui; wj) = 0 because�i�j � �i�j = ����� �i �j�i �j �����must be nonzero by the assumption that the two eigenvalues aredistinct. Finally, to show that (Aui; wj) = 0 we can redo theproof, this time multiplying both sides of (9.6) by �j instead of�j, or we can simply observe that we can interchange the roles ofA and B, and use the fact that (A;B) and (B;A) have the sameset of eigenvectors.The proposition suggests that when all eigenvalues are dis-tinct, we may be able to simultaneously diagonalize A and B. Infact if all eigenvalues are distinct then the proposition translatesinto WHAU = DA; WHBU = DBin which DA and DB are two diagonals, U is the matrix of theright eigenvectors and W the matrix of left eigenvectors (corre-sponding to eigenvalues listed in the same order as for U). Thereare two points that are still unclear. The �rst is that we do notknow how many distinct eigenvalues there can be. We would liketo show that when the pair is regular then there are n of themso that the matrices U and W in the above equality are n � nmatrices. The second point is that we do not know yet whether ornot the eigenvectors associated with these distinct eigenvalues arelinearly independent. When either A or B are nonsingular thenthe eigenvectors associated with distinct eigenvectors are linearlyindependent. This can be seen by observing that the eigenvectorsof the pair (A;B) are the same as those of (B�1A; I) in case Bis nonsingular or (I; A�1B) when A is nonsingular. As it turnsout this extends to the case when the pencil is regular. Whenthe pair (A;B) is a regular pair, then there are two scalars ��; ��such that the matrix ��A � ��B is nonsingular. We would liketo construct linearly transformed pairs that have the same eigen-vectors as (A;B) and such that one of the two matrices in the



288 Chapter IXpair is nonsingular. The following theorem will help establish thedesired result.Theorem 9.1 Let (A;B) any matrix pencil and consider the trans-formed pencil (A1; B1) de�ned byA1 = �1A� �1B ; B1 = �2B � �2A ; (9.7)for any four scalars �1; �2; �1; �2 such that the 2� 2 matrix
 =  �2 �1�2 �1 !is nonsingular. Then the pencil (A1; B1) has the same eigenvec-tors as the pencil (A;B). An associated eigenvalue (�(1); �(1)) ofthe transformed pencil (A1; B1) is related to an eigenvalue pair(�; �) of the original pencil (A;B) by ��! = 
 �(1)�(1)! : (9.8)Proof. Writing that (�(1); �(1)) is an eigenvalue pair of (A1; B1)with associated eigenvector u we get�(1)(�1A� �1B)u = �(1)(�2B � �2A)uwhich after grouping the Au and Bu terms together yields,(�1�(1) + �2�(1))Au = (�2�(1) + �1�(1))Bu : (9.9)The above equation shows that u is an eigenvector for the originalpair (A;B) associated with the eigenvalue (�; �) with� = �1�(1) + �2�(1); � = �2�(1) + �1�(1): (9.10)Note that (�; �) is related by (9.8) to (�(1); �(1)) and as a result� and � cannot both vanish because of the nonsingularity of 
.



Non Standard Eigenvalue Problems 289Conversely, to show that any eigenvector of (A;B) is an eigen-vector of (A1; B1) we can show that A and B can be expressedby relations similar to those in (9.7) in terms of A1 and B1. Thiscomes from the fact that 
 is nonsingular.A result of the above theorem is that we can basically identifya regular problem with one for which one of the matrices in thepair is nonsingular. Thus, the choice �1 = ��; �1 = �� and �2 =�1; �2 = ��1 makes the matrix A1 nonsingular with a non-singular
 transformation. In fact once �1; �1 are selected any choice of �2and �2 that makes 
 nonsingular will be acceptable.Another immediate consequence of the theorem is that when(A;B) is regular then there are n eigenvalues (counted with theirmultiplicities).Corollary 9.1 Assume that the pair (A;B) has n distinct eigen-values. Then the matrices U and W of the n associated rightand left eigenvectors respectively, are nonsingular and diagonalizethe matrices A and B simultaneously, i.e., there are two diagonalmatrices DA; DB such that,WHAU = DA ; WHBU = DB :The equivalent of the Jordan canonical form is the Weierstrass-Kronecker form. In the following we denote by diag (X; Y ) a blockdiagonal matrix withX in the (1,1) block and Y in the (2,2) block.Theorem 9.2 A regular matrix pencil (A;B) is equivalent to amatrix pencil of the form(diag (J; I) ; diag (I; N)) ; (9.11)in which the matrices are partitioned in the same manner, andwhere J and N are in Jordan canonical form and N is nilpotent.



290 Chapter IXThe equivalent of the Schur canonical form would be to simul-taneously reduce the two matrices A and B to upper triangularform. This is indeed possible and can be shown by a simple gen-eralization of the proof of Schur's theorem seen in Chapter I.Theorem 9.3 For any regular matrix pair (A;B) there are twounitary matrices Q1 and Q2 such thatQH1 AQ2 = RA and QH1 BQ2 = RBare two upper triangular matrices.2.2. Reduction to Standard FormWhen one of the components of the pair (A;B) is nonsingular,there are simple ways to get a standard problem from a general-ized one. For example, when B is nonsingular, we can transformthe original system �Au = �Buinto B�1Au = �utaking � = 1. This simply amounts to multiplying both matricesin the pair by B�1, thus transforming (A;B) into the equivalentpencil (B�1A; I). Other transformations are also possible. Forexample, we can multiply on the right by B�1 transforming (A;B)into the equivalent pair (AB�1; I). This leads to the problemAB�1y = �y with u = B�1y:Similarly, when A is nonsingular, we can solve the problemA�1Bu = �usetting � = 1 or, again using the variable y = A�1u,BA�1y = �y:



Non Standard Eigenvalue Problems 291Note that all the above problems are non Hermitian in general.When A and B are both Hermitian and, in addition, B is posi-tive de�nite, a better alternative may be to exploit the Choleskifactorization of B. If B = LLT , we get after multiplying from theleft by L�1 and from the right by L�T , the standard problemL�1AL�Ty = �y: (9.12)None of the above transformations can be used when both Aand B are singular. In this particular situation, one can shiftthe matrices, i.e., use a transformation of the form described intheorem (9.1). If the pencil is regular then there will be a matrix
 that will achieve the appropriate transformation. In practicethese transformations are not easy to perform since we need toverify whether or not a transformed matrix is singular. If a pencilis regular but both A and B are singular, then chances are thata slight linear transformation will yield a pair with one or bothof the matrices nonsingular. However this is not easy to checkin practice. First, there is the di�culty of determining whetheror not a matrix is deemed nonsingular. Second, in case the twomatrices have a nontrivial common null space, then this trial-and-error approach cannot work since any pair �; � will yield asingular �A � �B, and this information will not be enough toassert that the pair (A;B) is singular.The particular case where both components A and B are sin-gular and their null spaces have a nontrivial intersection, i.e.,Ker(A) \ Ker(B) 6= f0gdeserves a few more words. This is a special singular problem. Inpractice, it may sometimes be desirable to `remove' the singular-ity, and compute the eigenvalues associated with the restrictionof the pencil to the complement of the null space. This can beachieved provided we can compute a basis of the common nullspace, a task that is not an easy one for large sparse matrices,especially if the dimension of the null space is not small.



292 Chapter IX2.3. DeationFor practical purposes, it is important to de�ne deation pro-cesses for the generalized eigenvalue problem. In particular wewould like to see how we can extend, in the most general setting,the Wielandt deation procedure seen in Chapter IV. Assumingwe have computed an eigenvector u1 associated with some eigen-value �1 =< �; � >, of (A;B) the most general way of de�ninganalogues of the deated matrix A1 of Chapter IV is to deatethe matrices A and B as follows:A1 = A� �1Bu1vH ; (9.13)B1 = B � �2Au1vH : (9.14)We assume, as in the standard case, that vHu1 = 1. We caneasily verify that the eigenvector u1 is still an eigenvector of thepair (A1; B1). The corresponding eigenvalue pair (�0; � 0) mustsatisfy � 0A1u1 = �0B1u1from which we get the relation(� 0 + �2�0)Au1 = (�0 + �1� 0)Bu1 :Thus we can identify �0 + �1� 0 with � and � 0 + �2�0 with �, toget � = �0 + �1� 0; � = � 0 + �2�0 : (9.15)Inverting the relations, we get�0 = �� �1�1� �1�2 ; � 0 = � � �2�1� �1�2 (9.16)assuming that 1 � �1�2 6= 0. The scaling by 1 � �1�2 can beignored to obtain the simpler relations,�0 = �� �2� ; � 0 = � � �1� (9.17)



Non Standard Eigenvalue Problems 293which can be rewritten as �0� 0! =  1 ��1��2 1 ! ��! : (9.18)In the standard case we have B = I, � = � 0 = 1 and �2 = 0, sothe standard eigenvalue is changed to �0 = �� �1 as was seen inChapter IV.Using Proposition 9.1, we can show that the left eigenvec-tors not associated with �1 are preserved. The particular choicev = Bw1, in which w1 is the left eigenvector associated with theeigenvalue �1 preserves both left and right eigenvectors and is ageneralization of Hotelling's deation, see Exercise P-9.3.2.4. Shift-and-InvertBefore de�ning the analogue of the standard shift-and-invert tech-nique we need to know how to incorporate linear shifts. FromTheorem 9.1 seen in Section 2.1, for any pair of scalars �1; �2, thepair (A��1B;B��2A) has the same eigenvectors as the originalpair (A;B). An eigenvalue (�0; � 0) of the transformed matrix pairis related to an eigenvalue pair (�; �) of the original matrix pairby � = �0 + �1� 0 ;� = � 0 + �2�0 :Computing (�0; � 0) from (�; �) we get, assuming 1� �1�2 6= 0,�0 = �� �1�1� �1�2 ; � 0 = � � �2�1� �1�2 :In fact, since the eigenvalues are de�ned up to a scaling factor,we can write �0 = �� �1� ; � 0 = � � �2� : (9.19)



294 Chapter IXIt is common to take one of the two shifts, typically �2, to bezero. In this special situation:�0 = �� �1� ; � 0 = �which gives the usual situation corresponding to � = 1.Shift-and-invert for the generalized problems corresponds tomultiplying through the two matrices of the shifted pair by theinverse of one of them, typically the �rst. Thus the shifted-and-inverted pair would be�I ; (A� �1B)�1(B � �2A) � :This is now a problem which has the same eigenvalues as thepair (A � �1B;B � �2A), i.e., its generic eigenvalue pair (�0; � 0)is related to the original pair (�; �) of (A;B) via (9.19). It seemsas if we have not gained anything as compared with the pair(A� �1B;B � �2A). However, the A -matrix for the new pair isthe identity matrix.The most common choice is �2 = 0 and �1� close to an eigen-value of the original matrix.2.5. Projection MethodsThe projection methods seen in Chapter IV are easy to extend togeneralized eigen-problems. In the general framework of obliqueprojection methods, we are given two subspaces K and L andseek an approximate eigenvector ~u in the subspace K and anapproximate eigenvalue (~�; ~�) such that( ~�A� ~�B)~u ? L: (9.20)Given two bases V = fv1; : : : ; vmg, and W = fw1; : : : ; wmg of Kand L, respectively, and writing ~u = V y, the above conditionstranslate into the generalized eigenvalue problem~�WHAV y = ~�WHBV y :



Non Standard Eigenvalue Problems 295Note that we can get a standard projected problem if we can�nd a pair W;V that is such that WHBV = I. For orthogonalprojection methods (K = L), this will be the case in particularwhen B is Hermitian positive de�nite, and the system of vectorsfvigi=1;:::m is B-orthonormal.When the original pencil is Hermitian de�nite, i.e., when Aand B are Hermitian positive de�nite and when B is positive def-inite, the projected problem will also be Hermitian de�nite. Theapproximate eigenvalues will also be real and all of the proper-ties seen for the Hermitian case in Chapter I will extend in astraight-forward way.2.6. The Hermitian De�nite CaseWe devote this section to the important particular case whereboth A and B are Hermitian and one of them, say B, is positivede�nite. This situation corresponds to the usual Hermitian eigen-problem in the standard case. For example the eigenvalues are realand the eigenvectors from an orthogonal set with respect to theB{inner product de�ned by(x; y)B = (Bx; y) : (9.21)That this represents a proper inner product is well-known. Thecorresponding norm termed the B-norm is given bykxkB = (Bx; x)1=2 :An important observation that is key to understanding this caseis that even though the matrix C = B�1A of one of the equivalentstandard eigenproblems is non-Hermitian with respect to the Eu-clidean inner product, it is self-adjoint with respect to the B-innerproduct in that (Cx; y)B = (x; Cy)B 8 x; y : (9.22)Therefore, one can expect that all the results seen for the stan-dard problem for Hermitian case will be valid provided we replace



296 Chapter IXEuclidean product by the B-inner product. For example, themin-max theorems will be valid provided we replace the Rayleighquotient (Ax; x)=(x; x) by�(x) = (Cx; x)B(x; x)B = (Ax; x)(Bx; x) :If we were to use the Lanczos algorithm we would have twooptions. The �rst is to factor the B matrix and use the equiva-lent standard formulation (9.12). This requires factoring the B-matrix and then solving a lower and an upper triangular systemat each step of the Lanczos algorithm. An interesting alternativewould be to simply employ the standard Lanczos algorithm forthe matrix C = B�1A replacing the usual Euclidean inner prod-uct by the B inner product at each time that an inner productis invoked. Because of the self-adjointness of C with respect tothe B inner product, we will obtain an algorithm similar to theone in the standard case, which is based on a simple three termrecurrence. A naive implementation of the main loop in exactarithmetic would consist of the following steps,w := B�1Avj ; (9.23)�j := (w; vj)B ; (9.24)w := w � �jvj � �jvj�1 ; (9.25)�j+1 := kwkB ; (9.26)vj+1 := w=�j+1 :We observe that �j in (9.24) is also equal to (Avj; vj) and thisgives an easy way of computing the �0s, using standard Euclideaninner products. Before multiplying Avj by B�1 in (9.23) �j iscomputed and saved. The computation on �j+1 is a little moretroublesome. The use of the de�nition of the B-inner productwould require a multiplication by the matrix B. This may beperfectly acceptable if B is diagonal but could be wasteful inother cases. One way to avoid this matrix product is to observe



Non Standard Eigenvalue Problems 297that, by construction, the vector w in (9.26) is B-orthogonal tothe vectors vj and vj�1. Therefore,(Bw;w) = (Avj; w)� �j(Bvj; w)� �j(Bvj�1; w) = (Avj; w):As a result, if we save the vector Avj computed in (9.23) untilthe end of the loop we can evaluate the B-norm of w with just anEuclidean inner product. Another alternative is to keep a three-term recurrence for the vectors zj = Bvj. Then Bw is availableas Bw = Avj � �jzj � �jzj�1and the inner product (Bw;w) can be evaluated. NormalizingBwby �j+1 yields zj+1. This route requires two additional vectors ofstorage and a little additional computation but is likely to be moreviable from the numerical point of view. Whichever approach istaken, a �rst algorithm will look as follows.Algorithm 9.1 First Lanczos algorithm for matrix pairs1. Start: Choose an initial vector v1 of B-Norm unity. Set�1 = 0, v0 = 0.2. Iterate: For j = 1; 2; : : : ; m; do:(a) v := Avj ,(b) �j := (v; vj) ,(c) w := B�1v � �jvj � �jvj�1 ,(d) Compute �j+1 = kwkB, using �j+1 := q(v; w) ,(e) vj+1 = w=�j+1.One di�culty in the above algorithm is the possible occurrenceof a negative B norm of w in the presence of rounding errors.A second algorithm which is based on keeping a three-termrecurrence for the zj's, implements a modi�ed Gram-Schmidt ver-sion of the Lanczos algorithm, i.e., it is analogous to Algorithm6.5 seen in Chapter VI.



298 Chapter IXAlgorithm 9.2 Second Lanczos algorithm for matrix pairs1. Start: Choose an initial vector v1 of B-Norm unity. Set�1 = 0, z0 = v0 = 0, z1 = Bv1.2. Iterate: For j = 1; 2; : : : ; m; do(a) v := Avj � �jzj�1 ,(b) �j = (v; vj) ,(c) v := v � �jzj ,(d) w := B�1v ,(e) �j+1 = q(w; v) ,(f) vj+1 = w=�j+1 and zj+1 = v=�j+1.Note that the B-norm in (d) is now of the form (B�1v; v) andsince B is Hermitian positive de�nite, this should not cause anynumerical problems if computed properly.In practice the above two algorithms will be unusable in thecommon situation when B is singular. This situation has beenstudied carefully in [109]. Without going into the geometric de-tails, we would like to stress that the main idea here is to shift theproblem so as to make (A � �B) nonsingular and then work inthe subspace Ran(A��B)�1B. A simpli�cation of the algorithmin [109] is given next. Here, � is the shift.Algorithm 9.3 Spectral Transformation Lanczos1. Start: Choose an initial vector w in Ran[ (A� �B)�1B ].Compute z1 = Bw and �1 := q(w; z1). Set v0 := 0.2. Iterate: For j = 1; 2; : : : ; m; do(a) vj = w=�j and zj := zj=�j ,(b) zj = (A� �B)�1w,



Non Standard Eigenvalue Problems 299(c) w := w � �jvj�1 ,(d) �j = (w; zj) ,(e) w := w � �jzj ,(f) zj+1 = Bw ,(g) �j+1 = q(zj+1; w).Note that the algorithm requires only multiplications with thematrix B. As in the previous algorithm, the two most recentzj's must be saved, possibly all of them if some form of B - re-orthogonalization is to be included. We should point out a simpleconnection between this algorithm and the previous one. Withthe exception of the precaution taken to choose the initial vector,algorithm 9.3 is a slight reformulation of Algorithm 9.2, appliedto the pair (A0; B0) where A0 = B and B0 = (A� �B).3. Quadratic ProblemsThe equation of motion for a structural system with viscous damp-ing and without external forces is governed by the equationM �q + C _q +Kq = 0 :In vibration analysis, the generic solution of this equation is as-sumed to take the form q = ue�t and this leads to the quadraticeigenvalue problem (�2M + �C +K)u = 0 : (9.27)These eigenvalue problems arise in dynamical systems where damp-ing and other e�ects, e.g., gyroscopic, are taken into account.Such e�ects will de�ne the C matrix. In the next subsections wewill see how to adapt some of the basic tools to solve quadraticproblems.


