
300 Chapter IX3.1. From Quadratic to Generalized ProblemsThe most common way of dealing with the above problem is totransform it into a (linear) generalized eigenvalue problem. Forexample, de�ning v =  �uu !we can rewrite (9.27) as��C �KI 0 � v = ��M 00 I � v : (9.28)It is clear that there is a large number of di�erent ways of rewrit-ing (9.27), the one above being one of the simplest. One advantageof (9.27) is that when M is Hermitian positive de�nite, as is oftenthe case, then so also is the second matrix of the resulting gener-alized problem (9.28). If all matrices involved, namely K, C, andM , are Hermitian it might be desirable to obtain a generalizedproblem with Hermitian matrices, even though this does not inany way guarantee that the eigenvalues will be real. We can writeinstead of (9.28)� C KK 0 � v = ���M OO K � v : (9.29)An alternative to the above equation is� C MM 0 � v = ���K OO M � v (9.30)where we have set � = 1=�. By comparing (9.29) and (9.30)we note the interesting fact that M and K have simply been in-terchanged. This could also have been observed directly from theoriginal equation (9.27) by making the change of variable � = 1=�.For practical purposes, we may therefore select between (9.30) and(9.29) the formulation that leads to the more economical compu-tations. We will select (9.29) in the rest of this chapter.



Non Standard Eigenvalue Problems 301While the di�erence between (9.30) and (9.29) may be in-signi�cant, there are important practical implications in chosingbetween (9.28) and (9.29). Basically, the decision comes down tochoosing an intrinsically non-Hermitian generalized eigen-problemwith a Hermitian positive de�nite B matrix, versus a generalizedeigen-problem where both matrices in the pair are Hermitian in-de�nite. In the case whereM is a (positive) diagonal matrix, thenthe �rst approach is not only perfectly acceptable, but may evenbe the method of choice in case Arnoldi's method using a poly-nomial preconditioning is to be attempted. In case all matricesinvolved are Hermitian positive de�nite, there are strong reasonswhy the second approach is to be preferred. These are explainedby Parlett and Chen [120]. Essentially, one can use a Lanczostype algorithm, similar to one of versions described in subsection2.6, in spite of the fact that the B matrix that de�nes the innerproducts is inde�nite.ProblemsP-9.1 Examine how the eigenvalues and eigenvectors of a pair ofmatrices (A;B) change when both A and B are multiplied by thesame nonsingular matrix to the left or to the right.P-9.2 In section 2.4 and 2.3 the shifts �1; �2 were assumed to besuch that 1��1�2 6= 0. What happens if this were not to be the case?Consider both the linear shifts, Section 2.4 and Wielandt deation 2.3.P-9.3 Given the right and left eigenvectors u1, and w1 associatedwith an eigenvalue �1 of the pair A;B and such that (Bu1; Bw1) = 1,show that the matrix pairA1 = A� �1Bu1wH1 BH ; B1 = B � �2Au1wH1 BHhas the same left and right eigenvectors as A;B. The shifts �1; �2 areassumed to satisfy the condition 1� �1�2 6= 0.P-9.4 Show that when (A;B) are Hermitian andB is positive de�nitethen C = B�1A is self-adjoint with respect to the B-inner product,



302 Chapter IXi.e., that (9.22) holds.P-9.5 Redo the proof of Proposition 9.1 with the usual de�nitions ofeigenvalues (Au = �Bu). What is gained? What is lost?P-9.6 Show that algorithm 9.3 is a reformulation of Algorithm 9.2,applied to the pair (A0; B0) where A0 = B and B0 = (A� �B).Notes and References. The reader is referred to Stewart and Sun [172]for more details and references on the theory of generalized eigenproblems.There does not seem to be any exhaustive coverage of the generalized eigen-value problems, theory and algorithms, in one book. In addition, there seemsto be a dichotomy between the need of users, mostly in �nite elements mod-eling, and the numerical methods that numerical analysts develop. One ofthe �rst papers on the numerical solution of quadratic eigenvalue problems isBorri and Mantegazza [9]. Quadratic eigenvalue problems are rarely solved instructural engineering. The models are simpli�ed �rst by neglecting damp-ing and the leading eigenvalues of the resulting generalized eigenproblem arecomputed. Then the eigenvalues of the whole problem are approximatedby performing a projection process onto the computed invariant subspace ofthe approximate problem [76]. This may very well change in the future, asmodels are improving and computer power is making rapid gains. �



Chapter X
Origins of MatrixEigenvalue ProblemsThis chapter gives a brief overview of some applications that giverise to matrix eigenvalue problems. There are two broad classes ofsuch applications. The �rst, and by far the largest currently, con-sists of problems related to the analysis of vibrations. These typ-ically generate symmetric generalized eigenvalue problems. Thesecond is the class of problems related to stability analysis, suchas for example the stability analysis of an electrical network. Ingeneral, this second class of problems generates nonsymmetricmatrices. The list of applications discussed in this chapter is byno means exhaustive. In fact the number of such applications isconstantly growing as the software to solve large eigenvalue prob-lems improves.



304 Chapter X1. IntroductionThe numerical computation of eigenvalues of large matrices is aproblem of major importance in many scienti�c and engineeringapplications. We list below just a few of the applications areaswhere eigenvalue calculations arise:� Structural dynamics � Quantum chemistry� Electrical Networks � Markov chain techniques� Combustion processes � Chemical reactions� Macro-economics � Magnetohydrodynamics� Normal mode techniques � Control theoryThis list is certainly not exhaustive. The most commonly solvedeigenvalue problems today are those issued from the �rst itemin the list, namely those problems associated with the vibrationanalysis of large structures. Complex structures such as those ofan aircraft or a turbine are represented by �nite element modelsinvolving a large number of degrees of freedom. To compute thenatural frequencies of the structure one usually solves a general-ized eigenvalue problem of the form Ku = �Mu where typically,but not always, the sti�ness and mass matrices K and M respec-tively, are both symmetric positive de�nite.In the past decade tremendous advances have been achievedin the solution methods for symmetric eigenvalue problems espe-cially those related to problems of structures. The well-knownstructural analysis package, NASTRAN, which was developed byengineers in the sixties and seventies now incorporates the stateof the art in numerical methods for eigenproblems such as blockLanczos techniques.Similar software for the nonsymmetric eigenvalue problem onthe other hand remains lacking. There seems to be two maincauses for this. First, in structural engineering where such prob-lems occur in models that include damping, and gyroscopic e�ects,it is a common practice to replace the resulting quadratic problemby a small dense problem much less di�cult to solve using heuris-tic arguments. A second and more general reason is due to a pre-



Origins of Eigenvalue Problems 305vailing view among applied scientists that the large nonsymmetriceigenvalue problems arising from their more accurate models arejust intractable or di�cult to solve numerically. This often resultsin simpli�ed models to yield smaller matrices that can be handledby standard methods. For example, one-dimensional models maybe used instead of two-dimensional or three-dimensional models.This line of reasoning is not totally unjusti�ed since nonsymmet-ric eigenvalue problems can be hopelessly di�cult to solve in somesituations due for example, to poor conditioning. Good numeri-cal algorithms for non-Hermitian eigenvalue problems tend also tobe far more complex that their Hermitian counterparts. Finally,as was reected in earlier chapters, the theoretical results thatjustify their use are scarcer.The goal of this chapter is mainly to provide motivation and itis independent of the rest of the book. We will illustrate the mainideas that lead to the various eigenvalue problems in some of theapplications mentioned above. The presentation is simpli�ed inorder to convey the overall principles.2. Mechanical VibrationsConsider a small object of mass m attached to an elastic springsuspended from the lid of a rigid box, see Figure 10.1. Whenstretched by a distance �l the spring will exert a force of mag-nitude k�l whose direction is opposite to the direction of thedisplacement. Moreover, if there is a uid in the box, such asoil, a displacement will cause a damping, or drag force to themovement, which is usually proportional to the velocity of themovement. Let us call l the distance of the center of the objectfrom the top of the box when the mass is at equilibrium anddenote by y the position of the mass at time t, with the initialposition y = 0 being that of equilibrium. Then at any given timethere are four forces acting on m:1. The gravity force mg pulling downward;



306 Chapter X2. The spring force �k(l + y);3. The damping force �cdydt ;4. The external force F (t).By Newton's law of motion,md2ydt2 = mg � k(l + y)� cdydt + F (t) :
ml

Figure 10.1 Model problem in mechanical vibrationsIf we write the equation at steady state, i.e., setting y � 0 andF (t) � 0, we get mg = kl. As a result the equation simpli�es intomd2ydt2 + cdydt + ky = F (t) : (10.1)Free vibrations occur when there are no external forces andwhen the damping e�ects are negligible. Then (10.1) becomesmd2ydt2 + ky = 0 (10.2)



Origins of Eigenvalue Problems 307the general solution of which is of the formy(t) = R cos kmt� �!which means that the mass will oscillate about its equilibriumposition with a period of 2�=!0, with !0 � k=m.Damped free vibrations include the e�ect of damping but ex-clude any e�ects from external forces. They lead to the homoge-neous equation: md2ydt2 + cdydt + ky = 0whose characteristic equation is mr2 + cr + k = 0:When c2 � 4km > 0 then both solutions r1; r2 of the charac-teristic equation are negative and the general solution is of theform y(t) = aer1t + ber2twhich means that the object will return very rapidly to its equi-librium position. A system with this characteristic is said to beoverdamped .When c2 � 4km = 0 then the general solution is of the formy(t) = (a+ bt)e�ct=2mwhich corresponds to critical damping. Again the solution willreturn to its equilibrium but in a di�erent type of movement fromthe previous case. The system is said to be critically damped .Finally, the case of underdamping corresponds to the situationwhen c2 � 4km < 0 and the solution is of the formy(t) = e�ct=2m [a cos�t+ b sin�t]with � = p4km� c22m :This time the object will oscillate around its equilibrium but themovement will die out quickly.



308 Chapter XIn practice the most interesting case is that of forced vibra-tions, in which the exterior force F has the form F (t) = F0 cos!t.The corresponding equation is no longer a homogeneous equation,so we need to seek a particular solution to the equation (10.1) inthe form of a multiple of cos(!t � �). Doing so, we arrive aftersome calculation at the solution�(t) = F0 cos(!t� �)q(k �m!2)2 + c2!2 (10.3)where tan � = c!k �m!2 :See Exercise P-10.3 for a derivation. The general solution to theequations with forcing is obtained by adding this particular so-lution to the general solution of the homogeneous equation seenearlier.The above solution is only valid when c 6= 0. When c = 0, i.e.,when there are no damping e�ects, we have what is referred to asfree forced vibrations . In this case, letting !20 = km , a particularsolution of the nonhomogeneous equation isF0m(!20 � !2) cos!twhen ! 6= !0 and F0t2m!0 sin!0t (10.4)otherwise. Now every solution is of the formy(t) = a cos!t+ b sin!t+ F02m!0 t sin!0t:The �rst two terms in the above solution constitute a periodicfunction but the last term represents an oscillation with a dan-gerously increasing amplitude.This is referred to as a resonance phenomenon and has beenthe cause of several famous disasters in the past, one of the most



Origins of Eigenvalue Problems 309recent ones being the Tacoma bridge disaster (Nov. 7, 1940).Another famous such catastrophe, is that of the Broughton sus-pension bridge near Manchester England. In 1831 a column ofsoldiers marched on it in step causing the bridge to enter into res-onance and collapse. It has since become customary for soldiersto break step when entering a bridge.Note that in reality the case c = 0 is fallacious since somedamping e�ects always exist. However, in practice when c is verysmall the particular solution (10.3) can become very large when!2 = k=m. Thus, whether c is zero or simply very small, danger-ous oscillations can occur whenever the forcing function F has aperiod equal to that of the free vibration case.We can complicate matters a little in order to introduce matrixeigenvalue problems by taking the same example as before andadd another mass suspended to the �rst one, as is shown in Figure10.2.
m1
m2

l1
l2

k1
k2

Figure 10.2 A spring system with two masses.Assume that at equilibrium, the center of gravity of the �rstmass is at distance l1 from the top and that of the second is atdistance l2 from the �rst one. There are now two unknowns, the



310 Chapter Xdisplacement y1 from the equilibrium of the �rst mass and thedisplacement y2 from its equilibrium position of the second mass.In addition to the same forces as those for the single mass case,we must now include the e�ect of the spring force pulling fromthe other spring. For the �rst mass this is equal tok2[l2 � y1 + y2];which clearly corresponds to a displacement of the second massrelative to the �rst one. A force equal to this one in magnitudebut opposite in sign acts on the second mass in addition to theother forces. Newton's law now yieldsm1d2y1dt2 = m1g � k1(l1 + y1)� c1dy1dt + k2(l2 + y2 � y1) + F1(t) ;m2d2y2dt2 = m2g � k2(l2 + y1)� cdy2dt � k2(l2 + y2 � y1) + F2(t) :At equilibrium the displacements as well as their derivatives, andthe external forces are zero. As a result we must have 0 = m1g�k1l1 + k2l2, and 0 = m2g � 2k2l2. Hence the simpli�cationm1d2y1dt2 + c1dy1dt + (k1 + k2)y1 � k2y2 = F1(t) ; (10.5)m2d2y2dt2 + c2dy2dt � k2y1 + 2k2y2 = F2(t) : (10.6)Using the usual notation of mechanics for derivatives, equations(10.5) and (10.6) can be written in condensed form as�m1 00 m2 � � �y1�y2 � + � c1 00 c2 � � _y1_y2 �+� k1 + k2 �k2�k2 2k2 � � y1y2 � = �F1F2 � (10.7)or, M �y + C _y +Ky = F (10.8)



Origins of Eigenvalue Problems 311in which M;C and K are 2 � 2 matrices. More generally, onecan think of a very large structure, for example a high rise build-ing, as a big collection of masses and springs that are interactingwith each other just as in the previous example. In fact equation(10.8) is the typical equation considered in structural dynamicsbut the matricesM;K; and C can be very large. One of the majorproblems in structural engineering it to attempt to avoid vibra-tions, i.e., the resonance regime explained earlier for the simpleone mass case. According to our previous discussion this involvesavoiding the eigenfrequencies, !0 in the previous example, of thesystem. More exactly, an analysis is made before the structureis build and the proper frequencies are computed. There is usu-ally a band of frequencies that must be avoided. For example, anearthquake history of the area may suggest avoiding speci�c fre-quencies. Here, the proper modes of the system are determined bysimply computing oscillatory solutions of the form y(t) = y0ei!tthat satis�es the free undamped vibration equationM �y +Ky = 0or �!2My0 +Ky0 = 0 :3. Electrical Networks.Consider a simple electrical circuit consisting of a resistance or ROhms, an inductance of L Henrys and a capacitor of C Faradsconnected in series with a generator of E volts. In a closed cir-cuit, the sum of the voltage drops is equal to the input voltageE(t). The voltage drop across the resistance is RI where I isthe intensity while it is L _I across the inductance and Q=C acrossthe capacitor where Q is the electric charge whose derivative is I.Therefore the governing equations can be written in terms of Qas follows, L �Q +R _Q +Q=C = E(t) ;



312 Chapter Xwhich resembles that of mechanical vibrations.

C
L

R
E +��+ S

Figure 10.3 A simple series electric circuit.Realistic electric networks can be modeled by a large numberof circuits interconnected to each other. Resonance here mightbe sought rather than avoided, as occurs when tuning a radio toa given electromagnetic wave which is achieved by varying thecapacity C.The problem of power system networks is di�erent in thatthere are instabilities of exponential type that occur in these sys-tems under small disturbances. The problem there is to controlthese instabilities. Although very complex in nature, the problemof power systems instability can be pictured from the above simplecircuit in which the resistance R is made negative, i.e., we assumethat the resistance is an active device rather than a passive one.Then it can be seen that the circuit may become unstable becausethe solution takes the form aes1t + bes2t in which s1; s2 may havepositive real parts, which leads to unstable solutions.4. Quantum ChemistryIn quantum theory the properties of elementary particles such aselectrons, are described by their wave function 	 which is solution



Origins of Eigenvalue Problems 313of the Schr�odinger equationĤ	 = E	 (10.9)in which Ĥ is the energy operator, and E is the energy of theparticle. The operator Ĥ is called the Hamiltonian and is de�nedby Ĥ = � h22m�+ q (10.10)where h is the Plank constant, m is the mass of the particle andq is the potential energy. The equation (10.9) is an eigenvalueproblem involving an unbounded operator. The way in which itis typically handled is by starting from an initial con�guration	 = NXi=1 ci�iand then solve the problem in the subspace spanned by (�i)i=1;:::;N .This amounts to solving the generalized matrix eigenvalue prob-lem Hc = ESc where the matrices H and S are de�ned byH = (Ĥ�j; �i)i;j=1:::N , S = (�j; �i)i;j=1:::N . A better approxi-mation to the sought eigenfunctions are then obtained and usedas new �i's. This is referred to as the con�guration interactionmethod a variation of which is Davidson's method.5. Stability of Dynamical SystemsConsider a dynamical system governed by the di�erential equationdydt = F (y) (10.11)where y 2 Rn is some vector-valued function of t and F is afunction from Rn to itself. We will assume that the system istime autonomous in that the variable t does not appear in theright hand side of (10.11). Note that F can be a complicatedpartial di�erential operator and is usually nonlinear.



314 Chapter XThe stability of a nonlinear system that satis�es the equation_y = F (y) is usually studied in terms of its steady state solution.The steady state solution �y is, by de�nition, the limit of y(t) ast tends to in�nity. This limit, when it exists, will clearly dependon the initial conditions of the di�erential equation. The solution�y can be found by solving the steady-state equation F (y) = 0because the variation of y with respect to time will tend to zeroat in�nity. A system governed by equation (10.11) is said to belocally stable if there exists an � such thatky(t)� �yk ! 0 ; as t!1whenever ky(0)� �yk � �. For obvious reasons, it is said that thesteady state solution is attracting. The important result on thestability of dynamical systems, is that in most cases the stabilityof the dynamical system can be determined by its linear stabil-ity, i.e., by the stability of the linear approximation of F at �y.In other words the system is stable if all the eigenvalues of theJacobian matrix J = (@fi(�y)@xj )i;j=1;:::;nhave negative real parts and unstable if at least one eigenvalue hasa positive real part. If some eigenvalues of J lie on the imaginaryaxis, then the stability of the system cannot be determined by itslinear stability, see [66]. In this case the system may or may notbe stable depending on the initial condition among other things.It is often the case that Jacobian matrices are very large non-symmetric and sparse such as for example when F originates fromthe discretization of a partial di�erential operator. This is alsothe case when simulating electrical power systems, since the di-mension of the Jacobian matrices will be equal to the number ofnodes in the network multiplied by the number of unknowns ateach node, which is usually four.



Origins of Eigenvalue Problems 3156. Bifurcation AnalysisThe behavior of phenomena arising in many applications can bemodeled by a parameter dependent di�erential equation of theform dydt = F (y; �) (10.12)where y is a vector valued function and � is typically a real pa-rameter. There are several problems of interest when dealingwith an equation of the form (10.12). A primary concern in someapplications is to determine how stability properties of the sys-tem will change as the parameter � varies. For example � mightrepresent a mass that is put on top of a structure to study itsresistance to stress. When this mass increases to reach a criticalvalue the structure will collapse. Another important applicationis when controlling the so-called panel utter that causes wings ofairplanes to disrupt after strong vibrations. Here the bifurcationparameter is the magnitude of the velocity of air. Christodoulouand Scriven have recently solved a rather challenging problem in-volving bifurcation and stability analysis in uid ow [17]. Inwhat is referred to as bifurcation theory a set of analytical andnumerical tools that are used to analyze the change of solution be-havior as � varies and part of the spectrum of the Jacobian movesfrom the left half plane (stable plane) to the right half (unstable)plane.A typical situation is when one real eigenvalue passes fromthe left plane to the right half plane. Thus, the Jacobian becomessingular in between. This could correspond to either a `turning'point or a `real bifurcation 'point. The change of behavior of thesolution can happen in several di�erent ways as is illustrated inFigure 4. Often bifurcation analysis amounts to the detection ofall such points. This is done by a marching procedure along onebranch until crossing the primary bifurcation point and takingall possible paths from there to detect the secondary bifurcationpoints etc..
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(d) (f)(e)
(c)(b)(a)

Figure 10.4 Bifurcation patterns. Stable branchessolid lines, unstable branches dashed lines.An interesting case is when a pair of complex imaginary eigen-values cross the imaginary axis. This is referred to as Hopf bifur-cation. Then at the critical value of � where the crossing occurs,the system admits a periodic solution. Also, the trajectory of y,sometimes referred to as the phase curve in mechanics, forms aclosed curve in the y plane referred to as the phase plane (thiscan be easily seen for the case n = 2 by using the parameter t torepresent the curve).7. Chemical ReactionsAn increasing number of matrix eigenvalue problems arise fromthe numerical simulation of chemical reactions. An interestingclass of such reactions are those where periodic reactions occur`spontaneously 'and trigger a wave like regime. A well-known



Origins of Eigenvalue Problems 317such example is the Belousov-Zhabotinski reaction which is mod-eled by what is referred to as the Brusselator model. The modelassumes that the reaction takes place in a tube of length one. Thespace variable is denoted by r, and the time variable by t. Thereare two chemical components reacting with one another. Theirconcentrations which are denoted by x(t; r) and y(t; r) satisfy thecoupled partial di�erential equations@x@t = D1L @2x@r2 + A�B � (B + 1)x + x2y@y@t = D2L @2y@r2 +Bx� x2ywith the initial conditions,x(0; r) = x0(r); y(0; r) = y0(r); 0 � r � 1and the boundary conditionsx(t; 0) = x(t; 1) = A; y(t; 0) = y(t; 1) = BA :A trivial stationary solution to the above system is �x = A; �y =B=A. The linear stability of the above system at the stationarysolution can be studied by examining the eigenvalues of the Ja-cobian of the transformation on the right-hand-side of the aboveequations. This Jacobian can be represented in the formJ =  D1L @2@2r � (B + 1) + 2xy x2B � 2xy D2L @2@2r � x2 ! :This leads to a sparse eigenvalue problem after discretization. Infact the problem addressed by chemists is a bifurcation problem,in that they are interested in the critical value of L at which theonset of periodic behavior is triggered. This corresponds to apair of purely imaginary eigenvalues of the Jacobian crossing theimaginary axis.



318 Chapter X8. Macro-economicsWe consider an economy which consists of n di�erent sectors eachproducing one good and each good produced by one sector. Wedenote by aij the quantity of good number i that is necessary toproduce one unit of good number j. This de�nes the coe�cientmatrixA known as the matrix of technical coe�cients. For a givenproduction (x)i=1;:::;n, the vector Ax will represent the quantitiesneeded for this production , and therefore x�Ax will be the netproduction. This is roughly Leontiev's linear model of production.Next, we would like to take into account labor and salary in themodel. In order to produce a unit quantity of good j, the sectorj employs wj workers and we de�ne the vector of workers w =[w1; w2; : : : ; wn]T . Let us assume that the salaries are the same inall sectors and that they are entirely used for consumption, eachworker consuming the quantity di of good number i. We de�neagain the vector d = [d1; d2; : : : ; dn]T . The total consumption ofitem i needed to produce one unit of item j becomesaij + wjdi :This de�nes the so-called socio-technical matrix B = A + wTd.The additional assumptions on the model are that the needs ofthe workers are independent of their sector, and that there existsa pricing system that makes every sector pro�table. By pricingsystem or strategy, we mean a vector p = (pi)i=1;:::;n of the pricespi of all the goods. The questions are1) Does there exist a pricing strategy that will ensure a pro�t rateequal for all sectors? (balanced pro�tability)2) Does there exist a production structure x that ensures the samegrowth rate � to each sector? (balanced growth).The answer is provided by the following theorem.



Origins of Eigenvalue Problems 319Theorem 10.1 If the matrix B is irreducible there esists a pric-ing strategy p, a production structure x and a growth rate r = �that ensure balanced pro�tability and balanced growth and suchthat BTp = 11 + rp ; Bx = 11 + � x:In other words the desired pricing system and productionstructure are left and right eigenvectors of the matrix B respec-tively. The proof is a simple exercise that uses the Perron-Frobeniustheorem. Notice that the pro�t rate r is equal to the growth rate� ; this is referred to as the golden rule of growth.9. Markov Chain ModelsA discrete state, discrete time Markov chain is a random processwith a �nite (or countable) number of possible states taking placeat countable times t1; t2; : : : ; tk : : :, and such that the probabilityof an event depends only on the state of the system at the previoustime. In what follows, both times and states will be numberedby natural integers. Thus, the conditional probability that thesystem be in state j at time k, knowing that it was under statej1 at time 1, state j2, at state 2 etc.., state jk � 1 at time k � 1only depends on its state jk � 1 at the time k � 1, orP (Xk = j j X1 = j1; X2 = j2; : : : ; Xk�1 = jk�1)= P (Xk = j j Xk�1 = jk�1)where P (E) is the probability of the event E and X is a randomvariable.A system can evolve from a state to another by passing throughdi�erent transitions. For example, if we record at every minutethe number of people waiting for the 7am bus at a given bus-stop,this number will pass from 0 at, say, instant 0 corresponding to



320 Chapter X6 : 45 am to say 10 at instant 15 corresponding to 7 am. More-over, at any given time between instant 0 and 15, the probabilityof another passenger coming, i.e., of the number of passengersincreasing by one at that instant, only depends on the number ofpersons already waiting at the bus-stop.If we assume that there are N possible states, we can de�ne ateach instant k, an N �N matrix P (k), called transition probabil-ity matrix, whose entries p(k)ij are the probabilities that a systempasses from state i to state j at time k, i.e.,p(k)ij = P (Xk = jjXk�1 = i)The matrix P (k) is such that its entries are nonnegative, and therow sums are equal to one. Such matrices are called stochastic.One of the main problems associated with Markov chains is todetermine the probabilities of every possible state of the systemafter a very long period of time.The most elementary question that one faces when studyingsuch models is: how is the system likely to evolve given that ithas an initial probability distribution q(0) = (q(0)1 ; q(0)2 ; : : : ; q(0)N )?It is easy to see that at the �rst time q(1) = q(0)P (0), and moregenerally q(k) = q(k�1)P (k�1):Therefore, q(k) = q(0)P (0)P (1) : : : P (k�1)P (k):A homogeneous systems is one whose transition probabilitymatrix P (k) is independent of time. If we assume that the systemis homogeneous then we haveq(k) = q(k�1)P (10.13)and as a result if there is a stationary distribution � = lim q(k)it must satisfy the equality � = �P . In other words � is a lefteigenvector of P associated with the eigenvalue unity. Conversely,one might ask what are the conditions under which there is astationary distribution.



Origins of Eigenvalue Problems 321All the eigenvalues of P do not exceed its 1-norm which isone because P is nonnegative. Therefore if we assume that Pis irreducible then by the Perron-Frobenius theorem, one is theeigenvalue of largest modulus, and there is a corresponding lefteigenvector � with positive entries. If we scale this eigenvector sothat k�k1 = 1 then this eigenvector will be a stationary probabil-ity distribution. Unless there is only one eigenvalue with modulusone, it is not true that a limit of qk de�ned by (10.13) always ex-ists. In case there is only eigenvalue of P of modulus one, then qkwill converge to � under mild conditions on the initial probabilitydistributions q0.Markov chain techniques are very often used to analyze queu-ing networks and to study the performance of computer systems.ProblemsP-10.1 Generalize the model problems of Section 2 involving massesand springs to an arbitrary number of masses.P-10.2 Compute the exact eigenvalues (analytically) of the matrixobtained from discretizing the Chemical reaction model problem inSection 7. Use the parameters listed in Chapter II for the example.P-10.3 Show that when F (t) = F0 cos!t then a particular solutionto (10.1) is given byF0(k �m!2)2 + c2!2 h(k �m!2) cos!t+ c! sin!ti :Show that (10.3) is an alternative expression of this solution.Notes and References. Many of the emerging applications of eigenvaluetechniques are related to uid dynamics and bifurcation theory [12, 70, 79,101, 103, 80, 157, 176] aero-elasticity [33, 34, 51, 102, 67, 68, 156], chemicalengineering [18, 17, 130, 71, 131] and economics [28]. An interesting accountof the Tocoma bridge disaster mentioned in Section 1, and other similarphenomena can be found in Brauns's book [10]. �



322 References



Bibliography[1] F. L. Alvarado. Manipulation and visualization of sparse matri-ces. ORSA Journal on Computing, 2:186{206, 1990.[2] W. E. Arnoldi. The principle of minimized iteration in the so-lution of the matrix eigenvalue problem. Quart. Appl. Math.,9:17{29, 1951.[3] O. Axelsson and V. A. Barker. Finite Element Solution ofBoundary Value Problems. Academic Press, Orlando, FL, 1984.[4] K. J. Bath�e and E. L. Wilson. Numerical Methods in FiniteElements Analysis. Prentice Hall, Englewood Cli�s, New Jersey,1976.[5] F. L. Bauer. Das verfahren der treppeniteration und verwandteverfahren zur losung algebraischer eigenwertprobleme. ZAMP,8:214{235, 1957.[6] D. Boley and G. H. Golub. The Lanczos-Arnoldi algorithm andcontrollability. Systems and Control Letters, 4:317{324, 1987.[7] D. Boley, R. Maier, and J. Kim. A parallel QR algorithm forthe nonsymmetric eigenvalue problem. Computer Physics Com-munications, 53:61{70, 1989.[8] D. L. Boley, D. G. Truhlar, R. E. Wyatt, and L. E. Collins.Practical Iterative Methods for Large Scale Computations. NorthHolland, Amsterdam, 1989. Proceedings of Minnesota Super-computer Institute Workshop.



324 References[9] M. Borri and P. Mantegazza. E�cient solution of quadraticeigenproblems arising in dynamic analysis of structures. Comp.Meth. Appl. Mech. and Engng, 12:19{31, 1977.[10] M. Braun. Di�erential equations and their applications.Springer-Verlag, New York, 1983. Applied mathematical sci-ences series, Number 15.[11] C. Brezinski. Pad�e Type Approximation and General OrthogonalPolynomials. Birkhauser-Verlag, Basel-Boston-Stuttgart, 1980.[12] E. Carnoy and M. Geradin. On the practical use of the Lanczosalgorithm in �nite element applications to vibration and bifur-cation problems. In Axel Ruhe, editor, Proceedings of the Con-ference on Matrix Pencils, Lulea, Sweden, March 1982, pages156{176, New York, 1982. University of Umea, Springer Verlag.[13] T. F. Chan and H. B. Keller. Arclength continuation and multi-grid techniques for nonlinear eigenvalue problems. SIAM Journalon Scienti�c and Statistical Computing, 3:173{194, 1982.[14] F. Chatelin. Spectral Approximation of Linear Operators. Aca-demic Press, New York, 1984.[15] F. Chatelin. Valeurs propres de matrices. Masson, Paris, 1988.[16] C. C. Cheney. Introduction to Approximation Theory. McGrawHill, NY, 1966.[17] K. N. Christodoulou and L. E. Scriven. Finding leading modesof a viscous free surface ow: An asymmetric generalized eigen-problem. J. Scient. Comput., 3:355{406, 1988.[18] K. N. Christodoulou and L. E. Scriven. Operability limits offree surface ow systems by solving nonlinear eigenvalue prob-lems. Technical report, University of Minnesota SupercomputerInstitute, Minneapolis, MN, 1988.[19] A. Clayton. Further results on polynomials having least maxi-mum modulus over an ellipse in the complex plane. TechnicalReport AEEW-7348, UKAEA, Harewell-UK, 1963.



References 325[20] A. K. Cline, G. H. Golub, and G. W. Platzman. Calculationof normal modes of oceans using a Lanczos method. In J. R.Bunch and D. C. Rose, editors, Sparse Matrix Computations,pages 409{426. Academic Press, 1976.[21] M. Clint and A. Jennings. The evaluation of eigenvalues andeigenvectors of real symmetric matrices by simultaneous itera-tion method. Journal of the Institute of Mathematics and itsApplications, 8:111{121, 1971.[22] J. Cullum, W. Kerner, and R. Willoughby. A generalized non-symmetric Lanczos procedure. Computer Physics Communica-tions, 53, 1989.[23] J. Cullum and R. Willoughby. Computing eigenvectors andeigenvalues of large sparse symmetric matrices using Lanczostridiagonalization. In G. A. Watson, editor, Numerical AnalysisProceedings, Dundee 1979, Berlin, 1980. University of Dundee,Springer Verlag.[24] J. Cullum and R. Willoughby. A Lanczos procedure for themodal analysis of very large nonsymmetric matrices. In Pro-ceedings of the 23rd Conference on Decision and Control, LasVegas, 1984.[25] J. Cullum and R. Willoughby. Lanczos Algorithms for LargeSymmetric Eigenvalue Computations. Birkhauser, Basel, 1985.[26] J. Cullum and R. Willoughby. A practical procedure for comput-ing eigenvalues of large sparse nonsymmetric matrices. TechnicalReport RC 10988 (49366), IBM, T. J. Watson Research center,Yorktown heights, NY, 1985.[27] J. Cullum and R. A. Willoughby. Large Scale Eigenvalue Prob-lems. North-Holland, 1986. Mathematics Studies series, Number127.[28] F. d' Almeida. Numerical study of dynamic stability of macroe-conomical models- software for MODULECO. Technical report,INPG- University of Grenoble, Grenoble-France, 1980. Disser-tation (French).



326 References[29] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Re-orthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput, 30:772{795, 1976.[30] E. R. Davidson. The iterative calculation of a few of the lowesteigenvalues and corresponding eigenvectors of large real sym-metric matrices. Journal of Computational Physics, 17:87{94,1975.[31] P. J. Davis. Interpolation and Approximation. Blaisdell,Waltham, MA, 1963.[32] J. J. Dongarra, I. S. Du�, D. Sorensen, and H. A. van der Vorst.Solving Linear Systems on Vector and Shared Memory Comput-ers. SIAM, Philadelphia, PA, 1991.[33] E. H. Dowell. Nonlinear oscillations of a uttering plate, II.AIAA, 5:1856{1862, 1967.[34] E. H. Dowell. Aeroelasticity of Plates of Shells. Nordho� Inter-nat., Leyden, 1975.[35] I. S. Du�. A survey of sparse matrix research. In Proceedings ofthe IEEE, 65, pages 500{535, New York, 1977. Prentice Hall.[36] I. S. Du�. Ma28 { a set of FORTRAN subroutines for sparseunsymmetric matrices. Technical Report R8730, A. E. R. E.,Harewell, England, 1978.[37] I. S. Du�. A survey of sparse matrix software. In W. R. Cow-ell, editor, Sources and development of Mathematical software.Prentice Hall, New York, 1982.[38] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods forSparse Matrices. Clarendon Press, Oxford, 1986.[39] I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix testproblems. ACM Transactions on Mathematical Software, 15:1{14, 1989.



References 327[40] I. S. Du� and J. A. Scott. Computing selected eigenvalues ofsparse matrices using subspace iteration. Technical Report RAL-91-056, Rutherford Aplleton Lab, Didcot, Oxon, England, 1991.[41] H. C. Elman, Y. Saad, and P. Saylor. A hybrid ChebyshevKrylov subspace algorithm for solving nonsymmetric systemsof linear equations. SIAM Journal on Scienti�c and StatisticalComputing, 7:840{855, 1986.[42] I. Erdelyi. An iterative least squares algorithm suitable for com-puting partial eigensystems. SIAM J. on Numer. Anal, B 3. 2,1965.[43] T. Ericsson and A. Ruhe. The spectral transformation Lanc-zos method in the numerical solution of large sparse generalizedsymmetric eigenvalue problems. Mathematics of Computations,35:1251{1268, 1980.[44] L. E. Eriksson and A. Rizzi. Analysis by computer of the con-vergence of discrete approximations to the euler equations. InProceedings of the 1983 AIAA conference, Denver 1983, pages407{442, Denver, 1983. AIAA.[45] B. Fischer and R. W. Freund. On the constrained Chebyshevapproximation problem on ellipses. Journal of ApproximationTheory, 62:297{315, 1990.[46] B. Fischer and R. W. Freund. Chebyshev polynomials are notalways optimal. Journal of Approximation Theory, 65:261{272,1991.[47] D. A. Flanders and G. Shortley. Numerical determination offundamental modes. J. Appl. Phy., 21:1328{1322, 1950.[48] J. G. F. Francis. The QR transformations, parts i and ii. Com-puter J., 4:362{363, and 332{345, 1961-1962.[49] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. Animplementation of the Look-Ahead Lanczos algorithm for non-Hermitian matrices, Part I. Technical Report 90-11, Mas-sachusetts Institute of Technology, Cambridge, Massachusetts,1990.



328 References[50] R. W. Freund and N. M. Nachtigal. An implementation of thelook-ahead Lanczos algorithm for non-Hermitian matrices, PartII. Technical Report 90-11, Massachusetts Institute of Technol-ogy, Cambridge, Massachusetts, 1990.[51] Y. C. Fung. Introdiction to the Theory of Aeroelasticity. JohnWiley, New York, 1955.[52] E. Gallopoulos and Y. Saad. On the parallel solution of parabolicequations. In R. De Groot, editor, Proceedings of the Interna-tional Conference on Supercomputing 1989, Heraklion, Crete,June 5-9, 1989. ACM press, 1989.[53] E. Gallopoulos and Y. Saad. E�cient solution of parabolic equa-tions by polynomial approximation methods. SIAM Journal onScienti�c and Statistical Computing, 13:1236{1264, 1992.[54] F. R. Gantmacher. The Theory of Matrices. Chelsea, New York,1959.[55] W. Gautschi. On generating orthogonal polynomials. SIAMJournal on Scienti�c and Statistical Computing, 3:289{317,1982.[56] J. A. George and J. W. Liu. Computer Solution of Large SparsePositive De�nite Systems. Prentice-Hall, Englewood Cli�s, NJ,1981.[57] M. Geradin. On the Lanczos method for solving large structuraleigenvalue problems. Z. Angew. Math. Mech., 59:T127{T129,1979.[58] S. Gerschgorin. On bounding the eigenvalues of a matrix (ingerman). Izv. Akad. Nauk. SSSR Otd Mat. Estest., 1:749{754,1931.[59] S. K. Godunov and G. P. Propkopov. A method of minimaliteration for evaluating the eigenvalues of an elliptic operator.Zh. Vichsl. Mat. Mat. Fiz., 10:1180{1190, 1970.



References 329[60] G. H. Golub and D. P. O'Leary. Some history of the conju-gate gradient and Lanczos algorithms: 1948-1976. SIAM review,31:50{102, 1989.[61] G. H. Golub and R. Underwood. The block Lanczos methodfor computing eigenvalues. In J. R. Rice, editor, MathematicalSoftware III, pages 361{377. Academic press, New York, 1977.[62] G. H. Golub, R. Underwood, and J. H. Wilkinson. The Lanc-zos algorithm for the symmetric Ax = �Bx problem. TechnicalReport STAN-CS-72-720, Stanford University, Stanford, Cali-fornia, 1972.[63] G. H. Golub and C. Van Loan. Matrix Computations. The JohnHopkins University Press, Baltimore, 1989.[64] G. H. Golub and J. H. Wilkinson. Ill-conditioned eigensystemsand the computation of the Jordan canonical form. SIAM review,18:578{619, 1976.[65] W. B. Gragg. Matrix interpretation and applications of contin-ued fraction algorithm. Rocky Mountain J. of Math., 4:213{225,1974.[66] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dy-namical Systems, and Bifurcation of Vector Fields. SpringerVerlag, New York, 1983.[67] K. K. Gupta. Eigensolution of damped structural systems. In-ternat. J. Num. Meth. Engng., 8:877{911, 1974.[68] K. K. Gupta. On a numerical solution of the supersonic panelutter eigenproblem. Internat. J. Num. Meth. Engng., 10:637{645, 1976.[69] P. R. Halmos. Finite-Dimensional Vector Spaces. Springer Ver-lag, New York, 1958.[70] J. Heyvaerts, J. M. Lasry, M. Schatzman, and P. Witomski.Solar ares: A nonlinear problem in an unbounded domain. InC. Bardos, J. M. Lasry, and M. Schatzman, editors, Bifurcation



330 Referencesand nonlinear eigenvalue problems, Proceedings, pages 160{192,New York, 1978. Springer Verlag. Lecture notes in MathematicsSeries.[71] H. Hlavacek and H. Hofmann. Modeling of chemical reactorsXVI. Chemical Eng. Sci., 25:1517{1526, 1970.[72] D. H. Hodges. Aeromechanical stability of analysis for bearing-less rotor helicopters. J. Amer. Helicopter Soc., 24:2{9, 1979.[73] A. S. Householder. Theory of Matrices in Numerical Analysis.Blaisdell Pub. Co., Johnson, CO, 1964.[74] I. Ipsen and Y. Saad. The impact of parallel architectures onthe solution of eigenvalue problems. In J. Cullum and R. A.Willoughby, editors, Large Scale Eigenvalue Problems, Amster-dam, The Netherlands, 1986. North-Holland, Vol. 127 Mathe-matics Studies Series.[75] A. Jennings. Matrix Computations for Engineers and Scientists.Wiley, New York, 1977.[76] A. Jennings. Eigenvalue methods and the analysis of structuralvibrations. In I. S. Du�, editor, Sparse Matrices and their Uses,pages 109{138. Academic Press, New York, 1981.[77] A. Jennings and W. J. Stewart. Simultaneous iteration for par-tial eigensolution of real matrices. J. Math. Inst. Appl., 15:351{361, 1980.[78] A. Jennings and W. J. Stewart. A simultaneous iteration algo-rithm for real matrices. ACM, Trans. of Math. Software, 7:184{198, 1981.[79] A. Jepson. Numerical Hopf Bifurcation. PhD thesis, Cal. Inst.Tech., Pasadena, CA., 1982.[80] D. D. Joseph and D. H. Sattinger. Bifurcating time periodicsolutions and their stability. Arch. Rat. Mech. Anal,, 45:79{109,1972.



References 331[81] W. Kahan and B. N. Parlett. How far should you go with theLanczos process? In J. R. Bunch and D. C. Rose, editors, SparseMatrix Computations, pages 131{144. Academic Press, 1976.[82] W. Kahan, B. N. Parlett, and E. Jiang. Residual bounds onapproximate eigensystems of nonnormal matrices. SIAM Journalon Numerical Analysis, 19:470{484, 1982.[83] S. Kaniel. Estimates for some computational techniques in linearalgebra. Mathematics of Computations, 20:369{378, 1966.[84] T. Kato. On the upper and lower bounds of eigenvalues. J. Phys.Soc. Japan, 4:334{339, 1949.[85] T. Kato. Perturbation Theory for Linear Operators. SpringerVerlag, New York, 1965.[86] L. Kleinrock. Queueing Systems, vol. 2: Computer Applications.John Wiley and Sons, New York, London, 1976.[87] M. A. Krasnoselskii et al. Approximate Solutions of OperatorEquations. Wolters-Nordho�, Groningen, 1972.[88] A. N. Krylov. On the numerical solution of equations whosesolution determine the frequency of small vibrations of materialsystems (in russian). Izv. Akad. Nauk. SSSR Otd Mat. Estest.,1:491{539, 1931.[89] C. Lanczos. An iteration method for the solution of the eigen-value problem of linear di�erential and integral operators. Jour-nal of Research of the National Bureau of Standards, 45:255{282,1950.[90] C. Lanczos. Chebyshev polynomials in the solution of large-scalelinear systems. In Proceedings of the ACM, pages 124{133, 1952.[91] C. Lanczos. Solution of systems of linear equations by mini-mized iterations. Journal of Research of the National Bureau ofStandards, 49:33{53, 1952.



332 References[92] C. Lanczos. Applied Analysis. Prentice Hall, Englewood Cli�s,New Jersey, 1956. Also available from Dover Publications, NewYork, (1988).[93] C. Lanczos. Iterative solution of large-scale linear systems. J.Soc. Indust. Appl. Math, 6:91{109, 1958.[94] J. G. Lewis and H. D. Simon. Numerical experience with thespectral transformation Lanczos. Technical Report MM-TR-16,Boeing Computer Services, Seattle, WA, 1984.[95] S. S. Lo, B. Philippe, and A. Sameh. A multiprocessor algorithmfor symmetric tridiagonal eigenvaluie problem. SIAM J. Stat.Sci. Comput., 8:s155{s165, 1987.[96] D. E. Longsine and S. F. Mc Cormick. Simultaneous Rayleighquotient minimization methods for Ax = �Bx. Linear Algebraand its Applications, 34:195{234, 1980.[97] G. G. Lorentz. Approximation of functions. Holt, Rinehart -Winston, New York, 1966.[98] T. A. Manteu�el. An iterative method for solving nonsymmetriclinear systems with dynamic estimation of parameters. Techni-cal Report UIUCDCS-75-758, University of Illinois at Urbana-Champaign, Urbana, Ill., 1975. Ph. D. dissertation.[99] T. A. Manteu�el. The Tchebychev iteration for nonsymmetriclinear systems. Numerische Mathematik, 28:307{327, 1977.[100] T. A. Manteu�el. Adaptive procedure for estimation of param-eter for the nonsymmetric Tchebychev iteration. NumerischeMathematik, 28:187{208, 1978.[101] J. E. Marsden and M. Mc Cracken. The Hopf Bifurcation andits Applications. Springer Verlag, New York, 1976.[102] Y. Matsuzaki and Y. C. Fung. Unsteady uid dynamic forceson a simply supported circular cylinder of �nite length convey-ing a ow, with applications to stability. Journal of Sound andVibrations, 54:317{330, 1977.



References 333[103] R. K. Mehra and J. V. Caroll. Bifurcation analysis of aircrafthigh angle-of-attack ight dynamics. In P. J. Holmes, editor,New Approaches to Nonlinear Problems in Dynamics - Proceed-ings of the Asilomar Conference Ground, Paci�c Grove, Califor-nia 1979, pages 127{146. The Engineering Foundation, SIAM,1980.[104] R. B. Morgan and D. S. Scott. Generalizations of davidson'smethod for computing eigenvalues of sparse symmetric matrices.SIAM Journal on Scienti�c and Statistical Computing, 7:817{825, 1986.[105] R. Natarajan. An Arnoldi-based iterative scheme for nonsym-metric matrix pencils arising in �nite element stability problems.Journal of Computational Physics, 100:128{142, 1992.[106] R. Natarajan and A. Acrivos. The instability of the steady owpast spheres and disks. Technical Report RC 18235, IBM Res.div., T. J. Watson Res. ctr, Yorktown Heights, 1992.[107] R. K. Nesbet. Algorithm for diagonalization of large matrices.J. Chem. Phys., 42:311{312, 1965.[108] B. Nour-Omid. Applications of the Lanczos algorithm. Com-puter Physics Communications, 53, 1989.[109] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen.How to implement the spectral transformation. Math. Comput.,48:663{673, 1987.[110] B. Nour-Omid, B. N. Parlett, and R. Taylor. Lanczos versus sub-space iteration for the solution of eigenvalue problems. TechnicalReport UCB/SESM-81/04, University of California at Berkeley,Dept. of Civil Engineering, Berkeley, California, 1980.[111] O. Osterby and Z. Zlatev. Direct Methods for Sparse Matrices.Springer Verlag, New York, 1983.[112] C. C. Paige. The computation of eigenvalues and eigenvectorsof very large sparse matrices. PhD thesis, London University,Institute of Computer Science, London, England, 1971.



334 References[113] C. C. Paige. Practical use of the symmetric Lanczos process withreorthogonalization. BIT, 10:183{195, 1971.[114] C. C. Paige. Computational variants of the Lanczos method forthe eigenproblem. Journal of the Institute of Mathematics andits Applications, 10:373{381, 1972.[115] P. C. Papanastasiou. Numerical analysis of localization phenom-ena with application to deep boreholes. PhD thesis, University ofMinnesota, Dept. Civil and Mineral Engineering, Minneapolis,MN, 1990.[116] B. N. Parlett. The Rayleigh quotient iteration and some gener-alizations for nonnormal matrices. Math. Comput., 28:679{693,1974.[117] B. N. Parlett. How to solve (K ��M)z = 0 for large K and M .In E. Asbi et al., editor, Proceedings of the 2nd InternationalCongress on Numerical Methods for Engineering (GAMNI 2),pages 97{106, Paris, 1980. Dunod.[118] B. N. Parlett. The Symmetric Eigenvalue Problem. PrenticeHall, Englewood Cli�s, 1980.[119] B. N. Parlett. The software scene in the extraction of eigenvaluesfrom sparse matrices. SIAM J. of Sci. Stat. Comput., 5(3):590{604, 1984.[120] B. N. Parlett and H. C. Chen. Use of an inde�nite inner productfor computing damped natural modes. Technical Report PAM-435, Center for Pure and Applied Mathematics, University ofCalifornia at Berkeley, Berkeley, CA, 1988.[121] B. N. Parlett and B. Nour-Omid. The use of re�ned error boundswhen updating eigenvalues of tridiagonals. Linear Algebra andits Applications, 68:179{219, 1985.[122] B. N. Parlett and J. K. Reid. Tracking the progress of the Lanc-zos algorithm for large symmetric eigenproblems. IMA J. Num.Anal., 1:135{155, 1981.



References 335[123] B. N. Parlett and Y. Saad. Complex shift and invert strate-gies for real matrices. Linear Algebra and its Applications,88/89:575{595, 1987.[124] B. N. Parlett and D. Scott. The Lanczos algorithm with selectiveorthogonalization. Mathematics of Computations, 33:217{238,1979.[125] B. N. Parlett, D. R. Taylor, and Z. S. Liu. A look-ahead Lanczosalgorithm for nonsymmetric matrices. Mathematics of Compu-tation, 44:105{124, 1985.[126] S. Petiton. Parallel subspace method for non-Hermitian eigen-problems on the connection machine (CM-2). Technical Re-port YALEU/DCS/RR-859, Yale University, Computer Sciencedept., New Haven, CT, 1991.[127] B. Philippe and Y. Saad. Solving large sparse eigenvalue prob-lems on supercomputers. In Proceedings of International Work-shop on Parallel Algorithms and Architectures, Bonas, FranceOct. 3-6 1988, Amsterdam, 1989. North-Holland.[128] B. Philippe, Y. Saad, and W. J. Stewart. Numerical meth-ods in Markov chain modeling. Journal of Operations Research,40(6):1156{1179, 1992.[129] S. Pissanetzky. Sparse Matrix Technology. Academic Press, NewYork, 1984.[130] A. B. Poore. A model equation arising in chemical reactor theory.Arch. Rat. Mech. Anal., 52:358{388, 1973.[131] P. Raschman, M. Kubicek, and M. Maros. Waves in distributedchemical systems: experiments and computations. In P. J.Holmes, editor, New Approaches to Nonlinear Problems in Dy-namics - Proceedings of the Asilomar Conference Ground, Pa-ci�c Grove, California 1979, pages 271{288. The EngineeringFoundation, SIAM, 1980.[132] T. J. Rivlin. The Chebyshev Polynomials: from ApproximationTheory to Algebra and Number Theory. J. Wiley and Sons, NewYork, 1990.



336 References[133] A. Ruhe. Numerical methods for the solution of large sparseeigenvalue problems. In V. A. Barker, editor, Sparse Ma-trix Techniques, Lect. Notes Math. 572, pages 130{184, Berlin-Heidelberg-New York, 1976. Springer Verlag.[134] A. Ruhe. Implementation aspects of band Lanczos algorithms forcomputation of eigenvalues of large sparse symmetric matrices.Mathematics of Computations, 33:680{687, 1979.[135] A. Ruhe. Rational Krylov sequence methods for eigenvaluecomputations. Linear Algebra and its Applications, 58:391{405,1984.[136] H. Rutishauser. Theory of gradient methods. In Re�ned Iter-ative Methods for Computation of the Solution and the Eigen-values of Self-Adjoint Boundary Value Problems, pages 24{49,Basel-Stuttgart, 1959. Institute of Applied Mathematics, Zurich,Birkhauser Verlag.[137] H. Rutishauser. Computational aspects of f. l. bauer's simulta-neous iteration method. Numerische Mathematik, 13:4{13, 1969.[138] Y. Saad. On the rates of convergence of the Lanczos and theblock Lanczos methods. SIAM J. Numer. Anal., 17:687{706,1980.[139] Y. Saad. Variations on Arnoldi's method for computing eigenele-ments of large unsymmetric matrices. Linear Algebra and itsApplications, 34:269{295, 1980.[140] Y. Saad. Krylov subspace methods for solving large unsymmetriclinear systems. Mathematics of Computation, 37:105{126, 1981.[141] Y. Saad. Projection methods for solving large sparse eigenvalueproblems. In B. Kagstrom and A. Ruhe, editors, Matrix Pencils,proceedings, Pitea Havsbad, pages 121{144, Berlin, 1982. Univer-sity of Umea, Sweden, Springer Verlag. Lecture notes in Math.Series, Number 973.[142] Y. Saad. Least-squares polynomials in the complex plane withapplications to solving sparse nonsymmetric matrix problems.



References 337Technical Report 276, Yale University, Computer Science Dept.,New Haven, Connecticut, 1983.[143] Y. Saad. Chebyshev acceleration techniques for solving non-symmetric eigenvalue problems. Mathematics of Computation,42:567{588, 1984.[144] Y. Saad. Least squares polynomials in the complex plane andtheir use for solving sparse nonsymmetric linear systems. SIAMJournal on Numerical Analysis, 24:155{169, 1987.[145] Y. Saad. Projection and deation methods for partial pole as-signment in linear state feedback. IEEE Trans. Aut. Cont.,33:290{297, 1988.[146] Y. Saad. Krylov subspace methods on supercomputers. SIAMJournal on Scienti�c and Statistical Computing, 10:1200{1232,1989.[147] Y. Saad. Numerical solution of large nonsymmetric eigenvalueproblems. Computer Physics Communications, 53:71{90, 1989.[148] Y. Saad. Numerical solution of large nonsymmetric eigenvalueproblems. Computer Physics Communications, 53:71{90, 1989.[149] Y. Saad. Numerical solution of large Lyapunov equations. InM. A. Kaashoek, J. H. van Schuppen, and A. C. Ran, editors,Signal Processing, Scattering, Operator Theory, and NumericalMethods. Proceedings of the international symposium MTNS-89,vol III, pages 503{511, Boston, 1990. Birkhauser.[150] Y. Saad. An overview of Krylov subspace methods with ap-plications to control problems. In M. A. Kaashoek, J. H. vanSchuppen, and A. C. Ran, editors, Signal Processing, Scatter-ing, Operator Theory, and Numerical Methods. Proceedings ofthe international symposium MTNS-89, vol III, pages 401{410,Boston, 1990. Birkhauser.[151] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computa-tions. Technical Report 90-20, Research Institute for AdvancedComputer Science, NASA Ames Research Center, Mo�et Field,CA, 1990.



338 References[152] Y. Saad. Analysis of some Krylov subspace approximations tothe matrix exponential operator. SIAM Journal on NumericalAnalysis, 29:209{228, 1992.[153] M. Sadkane. Analyse Num�erique de la M�ethode de Davidson.PhD thesis, Universit�e de Rennes, UER mathematiques et In-formatique, Rennes, France, 1989.[154] M. Said, M. A. Kanesha, M. Balkanski, and Y. Saad. Higherexcited states of acceptors in cubic semiconductors. PhysicalReview B, 35(2):687{695, 1988.[155] A. H. Sameh and J. A. Wisniewski. A trace minimization algo-rithm for the generalized eigenvalue problem. SIAM Journal onNumerical Analysis, 19:1243{1259, 1982.[156] G. Sander, C. Bon, and M. Geradin. Finite element analysisof supersonic panel utter. Internat. J. Num. Meth. Engng.,7:379{394, 1973.[157] D. H. Sattinger. Bifurcation of periodic solutions of the navierstokes equations. Arch. Rat. Mech. Anal,, 41:68{80, 1971.[158] D. S. Scott. Analysis of the symmetric Lanczos process. PhDthesis, University of California at Berkeley, Berkeley, CA., 1978.[159] D. S. Scott. Solving sparse symmetric generalized eigenvalueproblems without factorization. SIAM J. Num. Anal., 18:102{110, 1981.[160] D. S. Scott. The advantages of inverted operators in Rayleigh-Ritz approximations. SIAM J. on Sci. and Statist. Comput.,3:68{75, 1982.[161] D. S. Scott. Implementing Lanczos-like algorithms on Hypercubearchitectures. Computer Physics Communications, 53:271{282,1989.[162] E. Seneta. Computing the stationary distribution for in�niteMarkov chains. In H. Schneider A. Bjorck, R. J. Plemmons,editor, Large Scale Matrix Problems, pages 259{267. ElsevierNorth Holland, New York, 1981.



References 339[163] A. H. Sherman. Yale Sparse Matrix Package { user's guide. Tech-nical Report UCID-30114, Lawrence Livermore National Lab.,Livermore, CA, 1975.[164] H. D. Simon. The Lanczos Algorithm for Solving SymmetricLinear Systems. PhD thesis, University of California at Berkeley,Berkeley, CA., 1982.[165] H. D. Simon. The Lanczos algorithm with partial reorthogonal-ization. Mathematics of Computations, 42:115{142, 1984.[166] D. C. Sorensen. Implicit application of polynomial �lters in ak-step Arnoldi method. Technical Report TR90-27, Rice Uni-versity, Department of Math. Sci., Houston, TX, 1990.[167] G. W. Stewart. Introduction to Matrix Computations. AcademicPress, New York, 1973.[168] G. W. Stewart. A bibliographical tour of the large, sparse, gen-eralized eigenvalue problem. In J. R. Bunch and D. C. Rose,editors, Sparse Matrix Computations, pages 113{130, New York,1976. Academic Press.[169] G. W. Stewart. Simultaneous iteration for computing invariantsubspaces of non-Hermitian matrices. Numerische Mathematik,25:123{136, 1976.[170] G. W. Stewart. SRRIT - a FORTRAN subroutine to calculatethe dominant invariant subspaces of a real matrix. Technical Re-port TR-514, University of Maryland, College Park, MD, 1978.[171] G. W. Stewart. Perturbation bounds for the de�nite generalizedeigenvalue problem. Linear Algebra and its Applications, 23:69{85, 1979.[172] G. W. Stewart and J. G. Sun. Matrix Perturbation Theory.Academic Press, New York, 1990.[173] E. L. Stiefel. Kernel polynomials in linear algebra and their ap-plications. U. S. National Bureau of Standards, Applied Mathe-matics Series, 49:1{24, 1958.



340 References[174] D. Taylor. Analysis of the look-ahead Lanczos algorithm. PhDthesis, Department of Computer Science, Berkeley, CA, 1983.[175] G. Temple. The accuracy of Rayleigh's method of calculatingthe natural frequencies of vibrating systems. Proc. Roy. Soc.London Ser. A, 211:204{224, 1958.[176] H. Troger. Application of bifurcation theory to the solution ofnonlinear stability problems in mechanical engineering. In Nu-merical methods for bifurcation problems, pages 525{546, Basel,1984. SIAM, Birkhauser Verlag, ISNM 70.[177] J. S. Vandergraft. Generalized Rayleigh methods with applica-tions to �nding eigenvalues of large matrices. Linear Algebra andits Applications, 4:353{368, 1971.[178] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, EnglewoodCli�s, NJ, 1962.[179] Y. V. Vorobyev. Method of Moments in Applied Mathematics.Gordon and Breach, New York, 1965.[180] E. L. Wachspress. Iterative Solution of Elliptic Systems and Ap-plications to the Neutron Equations of Reactor Physics. PrenticeHall, Englewood Cli�s, NJ, 1966.[181] H. F. Walker. Implementation of the GMRES method usingHouseholder transformations. SIAM Journal on Scienti�c Com-puting, 9:152{163, 1988.[182] O. Widlund. A Lanczos method for a class of non-symmetric sys-tems of linear equations. SIAM Journal on Numerical Analysis,15:801{812, 1978.[183] J. H. Wilkinson. The Algebraic Eigenvalue Problem. ClarendonPress, Oxford, 1965.[184] J. H. Wilkinson and C. Reinsch. Handbook for automatic com-putation, Vol. II, Linear Algebra. Springer Verlag, New York,1971.



References 341[185] J. A. Wisniewski. A Parallel Algorithm for Solving Ax = �Bx.PhD thesis, University of Illinois at Urbana Champaign, 1980.[186] H. E. Wrigley. Accelerating the jacobi method for solving simul-taneous equations by Chebyshev extrapolation when the eigen-values of the iteration matrix are complex. Computer Journal,6:169{176, 1963.[187] Z. Zlatev, K. Schaumburg, and J. Wasniewski. A testing schemefor subroutines solving large linear problems. Computers andChemistry, 5:91{100, 1981.



Index
Aa-posteriori error bounds, 76addition of matrices, 3algebraic multiplicity, 14angle between a vector and a sub-space, 62, 130angle between vectors, 62approximate problem, 127, 170ARNINV, 263ARNIT, 271ARNLS, 270Arnoldi's method, 172, 263as a puri�cation process, 226breakdown of, 174convergence, 204-213with implicit deation, 179with modi�ed Gram-Schmidt,176iterative version, 179practical implementations, 176Arnoldi-Chebyshev iteration, 226Bbanded matrices, 6bandwidth of a matrix, 6basis of a subspace, 11Bauer-Fike theorem, 77best uniform approximation in C,205

bidiagonal matrices, 6bifurcation analysis, 315bifurcation, 315bifurcation, Hopf, 316real bifurcation point, 315turning point, 315biorthogonal vectors, 64, 188block Arnoldi algorithm, 196Ruhe's variant, 197block diagonal matrices, 7block Gram-Schmidt, 197block Krylov Methods, 168, 195block Lanczos, 304block-tridiagonal matrices, 7breakdown in the Lanczos algorithm,192-194incurable, 193serious, 193`lucky', 192Brusselator model, 317Ccancellations, 177canonical forms of matrices, 14-25diagonal, 15Jordan, 15Schur, 23triangular, 16Cauchy-Schwartz inequality, 8342



Index 343characteristic polynomial, 4,170in Krylov methods, 170Chebsyshev-Subspace iteration, 237Chebyshev bases, 243Chebyshev iteration, 220algorithm, 223basic scheme, 220convergence ratio, 224convergence, 224damping coe�cients, 224optimal ellipse in, 228with Arnodi's method, 226Chebyshev polynomials, 141-148optimality, 146asymptotic optimality, 148complex, 143-144real, 142-143relation with ellipses, 144chemical reaction example, 50, 267chemical reactions, 316condition number, 93of an eigenvalue, 93of an eigenvector, 96of an invariant subspace, 100con�guration interaction method,313conjugate gradient method, 47consistent matrix norms, 9coordinate storage scheme, 40Courant characterization, 32, 132Cramer's rule, 66critical points, 206CSC storage format, 42CSR storage format, 42Ddamping, 305-307Davidson's method, 272-276, 313convergence, 275defective eigenvalue, 15deated Arnoldi-Chebyshev algo-rithm, 236deation techniques, 117, 235, 292

with several vectors, 122derogatory, 15determinant, 3diagonal form of matrices, 16diagonal matrices, 6diagonal storage format, 43diagonalizable matrices, 16direct sum of subspaces, 11, 60distances between subspaces, 63double orthogonalization, 177double shift approach, 261Dunford integral, 67dynamical systems, 313locally stable solutions, 314Eeigenspace, 12eigenvalue, 3index, 17averages, analyticity, 73branches, 74pair, 284eigenvector, 4left, 5right, 5electrical networks, 311ellipses for Chebyshev iteration, 222Ellpack-Itpack storage format, 43enhanced initial vector, 227equivalent pencils, 286error bounds, 76essential convergence, 153essential singularities, 66exponential propagation operator,277F�eld of values, 28�rst resolvent equality, 67Frobenius norm, 9GGalerkin condition, 127Galerkin process, 268



344 Indexgap between subspaces, 63generalized Arnoldi's method, 276generalized eigenvalue problem, 258,282, 300generalized eigenvalue, 283-284generalized eigenvector, 17geometric multiplicity, 15Gerschgorin discs, 103Gerschgorin's theorem, 102grade of a vector, 169, 226Gram matrices, 244Gram-Schmidt procedure, 12HHaar conditions, 205, 207HARWELL library, 47Harwell-Boeing collection, 47, 52Hausdor�'s convex hull theorem,28Hermitian de�nite matrix pairs, 295Hermitian matrices, 5, 29Hessenberg matrices, 6Holder norms, 8Hopf bifurcation, 316Hotelling's deation, 119Householder orthogonalization, 177Iidempotent, 11 , 60implicit deation, 179inde�nite inner product, 193index of an eigenvalue, 17indirect addressing, 40instability, in power systems, 312invariant subspace, 11, 128invariant subspace, 128inverse iteration, 114inverse power method, 114iterative Arnoldi method, 179example, 271JJacobian matrix, 314Jordan block, 18

Jordan box, 19Jordan canonical form, 17Jordan curve, 67Jordan submatrix, 19Joukowski mapping, 144KKahan, Jiang, Parlett theorem, 86-87Kahan, Parlett, Jiang error bound,79Kato-Temple's theorem, 81kernel polynomials, 248kernel, 11Krylov subspaces, 168Krylov Subspace Methods, 168-217characteristic property, 171LLanczos algorithm, 183-184, 198,296breakdown, 191Hermitian case, 183look-ahead version, 192practical implementation, 192and orthogonal polynomials, 185convergence, 198-204.for matrix pairs, 297incurable breakdown, 193loss of orthogonality, 185modi�ed Gram-Schmidt version,184non-Hermitian case, 186partial reorthogonalization, 185selective reorthogonalization, 185serious breakdown in, 193least squares Arnoldi algorithm, 239,251least squares polynomials, 240Gram matrices, 244least squares preconditioning, 268left eigenvector, 5, 286left subspace, 126, 138



Index 345Leontiev's model, 318linear mappings, 3linear perturbations of a matrix,71linear shifts for matrix pairs, 162,293linear span, 11linear stability, 314localization of eigenvalues, 101locking technique, 160locking vectors, 160look-ahead Lanczos algorithm, 192- 194lower triangular matrices, 6lucky breakdown, 192MMA28 package, 47macro-economics, 318Markov chain models, 319matrices, 3matrix exponentials, 277matrix pair, 283matrix pencil, 260, 283matrix reduction, 14mechanical vibrations, 305min-max problem, 221min-max theorem, 30modi�ed Gram-Schmidt, 176moment matrix, 243in Lanczos procedure, 193in least squares approach, 244MSR storage format, 42multiple eigenvalue, 15Multiplication of matrices, 3NNASTRAN, 304Neuman series expansion, 66Newton's law of motion, 306nilpotent matrix, 21-22nonnegative matrices, 5, 33normal matrices, 5, 26

norms of matrices, 9null space, 11, 60-61, 292OOblique projection method, 138oblique projection method, 186oblique projector, 63, 139optimal ellipse, 228optimal polynomial, 246orthogonal complement, 14, 60-61Orthogonal matrix, 6orthogonal projection methods, 127orthogonal projector, 14, 60, 129orthogonality, 12between vectors, 12of a vector to a subspace, 14orthogonalization, 12orthonormal, 12oscillatory solutions, 311outer product matrices, 6Ppartial reorthogonalization, 195partial Schur decomposition, 24, 123permutation matrices, 7Perron-Frobenius theorem, 319, 321Petrov-Galerkin condition, 138Petrov-Galerkin method, 126polynomial acceleration, 220polynomial iteration, 220polynomial preconditioning, 267positive de�nite matrix, 32positive real matrices, 47positive semi-de�nite, 32power method, 110, 152, 162, 178example, 112convergence, 112power systems, 312preconditioning, 163, 257, 272principal vector, 17projection method, 126, 170for matrix pairs, 294Hermitian case, 131



346 Indexoblique, 126orthogonal, 126projection operators, 129projector, 11, 60QQR decomposition, 13quadratic eigenvalue problem, 282,299quantum chemistry, 312quasi-Schur form, 24, 124Rrandom walk example, 48range, 11rank, 11Rayleigh Quotient Iteration, 116Rayleigh quotient, 28, 30Rayleigh-Ritz procedure, 128real Chebyshev polynomials, 142real Schur form, 24reduced resolvent, 95reducible, 33reduction of matrices, 14regular matrix pair, 285residual norm, 176resolvent, 66resolvent equalities, 67resolvent operator, 66resonance phenomena, 308right eigenvector, 286right subspace, 126, 138Ritz eigenvalues, 175Ritz values, 175, 187RQI (Rayleigh Quotient Iteration),116SSchr�odinger's equation, 313Schur form, 23-25example, 24non-uniqueness, 25partial, 24quasi, 24

real, 24Schur vectors, 24, 128, 181, 236in subspace iteration, 157under Wielandt deation, 121Schur-Wielandt deation, 123complex eigenvalues, 124second resolvent equality, 67selective reorthogonalization, 195self-adjoint, 296semi-simple, 15serious breakdown, 191-193shift-and-invert, 116, 258, 263-267real and complex arithmetic, 262complex arithmetic, 260for matrix pairs, 293with Arnoldi's method, 263shifted power method, 113, 178similarity transformation, 14simple eigenvalue, 15singular matrix pair, 285singularities of the resolvent, 66skew-Hermitian matrices, 5skew-symmetric matrices, 5socio-technical matrix, 318span of q vectors, 11sparse direct solvers, 46sparse matrices, 37-57basic operations, 44direct solvers, 46matrix-vector operation, 44storage schemes, 40triangular system solution, 46sparsity, 37SPARSKIT, 40, 53spectral decomposition, 22spectral projector, 22spectral radius, 4spectral Transformation Lanczos,298spectrum of a matrix, 4stability, 314linear, 314



Index 347of a nonlinear system, 313of dynamical systems, 313staircase iteration, 152stationary distribution, 320Stieljes algorithm, 186stochastic matrices, 320storage formats, 40-44coordinate, 40CSR, 42Ellpack-Itpack, 43storage of sparse matrices, 40structural engineering, 311structured sparse matrix, 39subspace iteration, 151-165convergence, 156multiple step version, 153practical implementation, 160simple version, 152with linear shifts, 162with projection, 156locking in, 160with preconditioning, 163subspace of approximants, 126subspace, 11sum of two subspaces, 11Sylvester's equation, 100symmetric matrices, 5Ttest problems, 47three-term recurrence, 222trace, 4transition probability matrix, 320transpose of a matrix, 3transpose conjugate, 3tridiagonal matrices, 6Uunitary matrices, 6unstructured sparse matrix, 39upper triangular matrix, 6Vvibrations, 305

critical damping, 307damped free vibrations, 307forced, 308free forced, 308free vibrations, 306overdamping, 307underdamping, 307WWeierstrass-Kronecker canonical form,289Wielandt deation, 117-122, 292optimality in, 119Wielandt's theorem, 118YYSMP, 47ZZarantonello's lemma, 145


