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Polynomial Acceleration

3.1 INTRODUCTION

In this chapter we describe a general procedure for accelerating the rates
of convergence of basic iterative methods. This acceleration procedure, which
we call polynomial acceleration, involves the formation of a new vector
sequence from linear combinations of the iterates obtained from the basic
method. As noted by Varga [1962], such a procedure is suggested by the
theory of summability of sequences.

We define the general polynomial procedure, assuming only that the basic
method is completely consistent (see Section 2.2). However, later when we
consider Chebyshev and conjugate gradient polynomial methods, we
generally assume that the basic method is also symmetrizable.

The polynomial procedure we present is but one of many approaches that
may be used to accelerate the convergence of basic iterative methods. Some
nonpolynomial acceleration methods are discussed briefly in Section 3.3.

3.2 POLYNOMIAL ACCELERATION OF BASIC
ITERATIVE METHODS

Suppose the completely consistent basic method (2-1.2) is used to obtain
approximations for the solution & of the nonsingular matrix problem Au = b.
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40 3  POLYNOMIAL ACCELERATION

Let the sequence of iterates generated by the basic method be given by
{w"™, i.e., given w®, the sequence {w™} is formed by

wi = Gw D 4k n=12.... (3-2.1)

From (2-2.6), the error vector & = w™ — i associated with the nth iterate
of (3-2.1) satisfies

B = GO, (3-22)

As a means to enhance the convergence of the wi™ iterates,T we consider a
new vector sequence {u™} determined by the linear combination

um = Yo, W  n=01.... (3-23)

i=0

The only restriction we impose on the real numbers a, ; is that
Yo, =1, n=0,1,.... (3-2.4)

This condition is imposed in order to ensure that u™ =i for alln =0
whenever the initial guess vector w'® is equal to the solution u.

If we let &™ = u™ — i denote the error vector associated with the vectors
u™ of (3-2.3), we have from (3-2.3) and (3-2.4) that

n n
&= Yo, wh—a= Y o, (W — @) = N
i=0 i=0 i=0

Using (3-2.2), we then may express ¢™ in the form

n
en — ( Z ct,,_fG‘)E‘o’_
i=0

It follows from (3-2.3)-(3-2.4) that & = ¢©. Thus, we may express g™ in the
form

g™ = 0,(G)e?, (3-2.5)

where Q,(G) is the matrix polynomial Q(G) = 0y of + %,1G + -+ + o, ,G".
If 0(x)=0,0+ dp X+ "+ a, ,X" is the associated algebraic poly-
nomial (see Section 1.3), then condition (3-2.4) requires that Q,(1) = 1. This
condition is the only restriction imposed thus far on Q,(x).

Because of the form (3-2.5) for the associated error vector, we call the
combined procedure of (3-2.1) and (3-2.3) a polynomial acceleration method

+ Since we have assumed only that the basic method (3-2.1) 1s completely consistent, con-
vergence of the iterates w'™ to i is not guarantecd.
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applied to the basic method (3-2.1). Varga [1962] calls this procedure a
semi-iterative method with respect to the iterative method (3-2.1).

The high arithmetic cost and the large amount of storage required in using
(3-2.3) to obtain u™ make it necessary to seek alternative, less costly ways to
compute u™. We now show that a simpler computational form for u™ is
possible whenever the polynomials Q,(x) satisfy the recurrence relation

QO(X)= 15
0ix)=px =y + 1,
Qn+](x) = pn+1(?n+ 1% o l - }Jn+1JQn(x) g (I - pn+1)Qn—l(x) fOl’ n= is
(3-2.6)

where 9,, 02,72, . . . are real numbers. Note that the Q,(x), defined by (3-2.6),
satisfy Q,(1) = 1foralln > 0. Weremark that the set of polynomial sequences
{Q,(x)} satisfying (3-2.6) is large. For example, any properly normalized real
orthogonal polynomial sequence is in such a set (see, e.g., Davis [1963]).

Theorem 3-2.1. Let the basic method (3-2.1) be completely consistent.
If the polynomial sequence {Q,(x)} is given by (3-2.6), then the iterates u™
of (3-2.3) may be obtained using the three-term relation

u = y,(Gu® + k) + (1 — y u'”,
U = o Ye 1 (GU™ + k) + (1= pp Ju™} + (1 = pppu®
for n>1
(3-2.7)

Conversely, any iterative procedure with iterates u'™ defined by (3-2.7) is
equivalent to the polynomial procedures (3-2.1) and (3-2.3), with the poly-
nomials {Q,(x)} given by (3-2.6).

Proof. Let the polynomials {Q,(x)} be given by (3-2.6) and let & be the
error vector associated with the vector u™ of (3-2.3). For n > 1, we have from
(3-2.5) and (3-2.6) that

gD = {p 1 [Yae1G + (1 = 740 DIQWG) + (1 = Py 1)Q0—1(G)}E,
(3-2.8)
and thus, again using (3-2.5), that
g0 = g [Pa41G + (1 = 70 )1E™ + (1 = ppy)e® ™1 (3-2.9)
By adding # to both sides of (3-2.9), we then obtain
u"* ) = po 1 1G + (L= 70 ™ + (1 = pyy Ju™ 0
= Pa+ 1},n+l(G = ‘r)a‘ {3'2'10)
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Now, using the fact that @ also is a solution to the related system (2-2.2), we
obtain the three-term form (3-2.7). The special case for &'’ follows similarly.
Conversely, let & = u™ — i be the error vector associated with the vectors
u™ of (3-2.7). By reversing the above steps using &"* ! in place of gl we
get 87D = Q,, (G)E® with Q,. ,(x) defined by (3-2.6). From this, it follows
that the iterative procedure (3-2.7) is equivalent to a polynomial acceleration
method, with the polynomials given by (3-2.6). W

As noted previously, there are many polynomial sequences {0,(x)} that
satisfy (3-2.6). In this book, we consider only those polynomial sequences
that are associated with the Chebyshev and conjugate gradient acceleration
methods. We discuss below the general basis on which the polynomials
{Q,(x)} are chosen for these methods.

We now assume that the basic method (3-2.1) is also symmetrizable with a
symmetrization matrix W. From (3-2.5), we have for any vector norm |||
that

le™ll, = 10.(G)ellL. (3-2.11)

For the conjugate gradient method, the polynomial sequence {Q.(x)} is
chosen to minimize |Q,(G)e®|., or equivalently [e™], for a particular
choice of the vector norm | -|| .. The conjugate gradient method is discussed
in Chapter 7.

Since WGW ~! is symmetric, it follows that the matrix WQ,(G)W ! is also
symmetric. Thus from (1-4.7) and (1-4.11), we have that

1™y < 10Oy = SQ@uONIEV .  (3-212)

For the Chebyshev acceleration procedure, the error norm [&™||y is made
small by picking the polynomials {Q,(x)} such that the spectral radius
$(Q,(G)) is small. More precisely, let {u;}_ , be the set of eigenvalues for the
N x N matrix G. Then {Q,(u;)}}-, is the set of eigenvalues for the matrix
0,(G). (See Section 1.3.) Thus we have

$(0,(G)) = max |Q,(u)l. (3-2.13)

1=isN
Since the complete eigenvalue spectrum of G is seldom known, it is more
convenient to consider the virtual spectral radius of Q,(G) in place of $(Q,(G)).
If M(G) and m(G) denote, respectively, the algebraically largest and smallest
eigenvalues of G, then the virtual spectral radius of 0,(G) is defined by
S(@(G) = max |Q,(x)] (3-2.14)

m{G) < x<M(G)

Since the set of eigenvalues {u;}\-, is in the interval [m(G), M(G)], we have
that

S(2.(G)) < $(2,(G)). (3-2.15)
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For the Chebyshev method, the polynomial sequence {Q,{(x)} is chosen such
that $(Q,(G)) is minimized. The Chebyshev method is described in Chapter 4.

Analogous to the definitions given in Section 2.2, the virtual average rate
of convergence for a polynomial method is defined by

R(0.G) = —(1/n)log $(Q,(G)), (3-2.16)

and provided the limit exists, the virtual asymptotic rate of convergence is
given by

R.(0.(G)) = lim R(Q,(G)). (3-2.17)

n—+o

3.3 EXAMPLES OF NONPOLYNOMIAL ACCELERATION
METHODS

In this section we describe briefly several alternatives to the polynomial
approach for accelerating the convergence of basic iterative methods. The
classes of general acceleration procedures we present are called acceleration
by additive correction and acceleration by multiplicative correction.

Suppose the basic iterative process

U = GunY 4+ k (3-3.1)

15 used to obtain approximations for the solution # of the matrix problem
Au = b. It easily follows that the error vector £ = u'"™ — i and the residual
vector '™ = Au'™ — b satisfy the residual equation

A = g, (3-3.2)

I Eq. (3-3.2) can be solved for &™, then we immediately have the solution
o= u™ — g™ However, it is as difficult to solve (3-3.2) for &™ as it is to solve
A = b for @. On the other hand, it is not always necessary to determine &
with great precision to improve the accuracy of u™. Thus the basic method
{1 3.1) can often be accelerated by using the following procedure:

(1) Do L iterations of the basic method (3-3.1), using u'® as the initial
eSS,

(2) Compute &2, where &' is some approximation to & of (3-3.2), and
wt " = B — BB Then go to step (1) again.

I'here are many ways to obtain the approximation &', For example, if A
cortesponds to the discretization with a mesh n, of a continuous operator,
then "' may be taken to satisfy A& = #1) where A corresponds to a dis-
crctization over a coarser mesh, say 7,,. Some methods that utilize this
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general approach are “the synthetic method™ (e.g., see Kopp [1963] and
Gelbard and Hageman [1969]), “multilevel methods” (e.g., see Brandt
[1977]), and “multigrid methods” (e.g., see Nicolaides [1975, 1977] and
Hackbusch [1977]). Another approach is to obtain the approximation g
using the method of weighted residuals. To do this, let &~ be written as

M

g = Zcﬂh (3-3.3)
i=1
where the o; are some known vectors.t The unknown constants c; are
determined from the M equations

wiABD = w,"rb), i=1,....,M, (3-34)

where the w; are known weighting vectors. See, for example, de la Vallee
Poussin [1968] and Setturi and Aziz [1973].

The methods discussed above are called additive correction acceleration
methods. However, multiplicative correction methods have also been used.
Multiplicative correction methods attempt to improve the accuracy of u't
by multiplying u'*) by some matrix E instead of adding a vector &% as in step
(2) above. Usually, E is a diagonal matrix whose diagonal entries are deter-
mined by some weighted residual or variational method. Descriptions of
methods based on the multiplicative correction approach are given, for
example, by Kellogg and Noderer [1960] (scaled iterations), Nakamura
[1974] (coarse mesh rebalancing techniques), and Wachspress [1966]
(coarse mesh variational techniques). Wachspress [1977] considers an
acceleration procedure based on combined additive and multiplicative
correction.

+ Often. the elements of ; are chosen to be either 0 or 1.
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Chebyshev Acceleration

4.1 INTRODUCTION

In this chapter we consider Chebyshev polynomial acceleration applied
to basic iterative methods of the form

u"":Gu‘"_”—i—k, n=1:2:::0 (4-1.1)

We assume throughout this chapter that the iterative method (4-1.1) is symmetriz-
able. '

Recall from Chapter 3 that the error vector associated with a general
polynomial acceleration procedure applied to (4-1.1) can be expressed as

El"] = Qn(G)E'O}! (4'1‘2)

where 0,(G) = o, oI + 2, ;G + -+ + =, ,G" is a matrix polynomial subject
only to the condition that Z}':‘. o, ; = 1. Using the algebraic polynomial
0,(x) associated with Q,(G), we defined

$(0.(G) = max [Q,(x)] (4-1.3)

m(G) < x < M(G)

as the virtual spectral radius of the matrix Q,(G). As before, M(G) and m(G)
denote, respectively, the algebraically largest and smallest eigenvalues of G.
That particular polynomial method which is obtained by choosing the

45



46 4 CHEBYSHEV ACCELERATION

polynomial sequence {Q,(G)} such that $(0,(G)), n = 1,2,...,is minimized
is called the Chebyshev polynomial acceleration method.

In Section 4.2, we show that, indeed, the matrix polynomial 0,(G) that
minimizes $(Q,(G)) can be defined in terms of Chebyshev polynomials. The
basic Chebyshev computational procedure is also derived in Section 4.2. It
turns out that the proper application of Chebyshev acceleration requires the
use of “iteration parameters” whose optimum values are functions of the
extreme eigenvalues M(G) and m(G) of G. When optimum iteration param-
eters are used, we show that Chebyshev acceleration can significantly
improve the convergence rate. For most practical applications, however, the
optimum parameters will not be known a priori and must be approximated
by some means. In Sections4.3and 4.4, we study the behavior of the Chebyshev
method when iteration parameters which are not optimum are used. Compu-
tational algorithms which generate the necessary Chebyshev iteration
parameters adaptively during the iterat ion process are presented in Chapters
5 and 6.

42 OPTIMAL CHEBYSHEV ACCELERATION

We first show that the matrix polynomial Q,(G) which minimizes $(Q,(G))
is unique and can be defined in terms of Chebyshev polynomials. For any
nonnegative integer n, the Chebyshev polynomialt of degree n in w may be
defined by the recurrence relation

To(w) = 1, Ty(w) = w,
T, 1(w) = 2wT(w) — T,— (W), nizk

(4-2.1)

It can be shown by mathematical induction (see, €.g., Young [1971]) that
the T,(w) may also be expressed by

—

Tw) = 3w + /W2 = 1) + w+ /W =11
= 4w — W = IP o+ (v = WP = D)7
= cosh(ncosh™'w)  when w>1, _
= cos(n cos” ' w) when —-1<w<lL (4-2.2)

We note that T,(w) is an even function of w for n even and an odd function
of w for n odd.

The fundamental properties of Chebyshev polynomials that we shall use
are given in the following theorem.

 The Chebyshev polynomials utilized in this book are the so-called Chebyshev polynomials
of the first kind.
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Theorem 4-2.1. Let n be a fixed integer and let d be any fixed real number
such that d > 1. If we let

H,(w) = T,(w)/T(d), (4-2.3)
where T(w) is the Chebyshev polynomial (4-2.1), then
H,(d) =1 (4-2.4)
and
max 1IH..(w)I = 1/T(d). (4-2.5)
=l=ws=<

Moreover, if Q(w) is any polynomial of degree n or less such that Q(d) = 1
and

max [Q(w)| < max |[H,(w),

—1sw=l -l=w<l
then
Q(w) = H,(w). (4-2.6)
Proof. See,for example, Young [1971] or Flanders and Shortly [1950]. W

Returning now to the problem of minimizing $(Q,(G)), we seek that poly-
nomial P,(x) such that P,(1) = 1 and such that

max |P(x)| < max [Q,(x)] (4-2.7)

m{G)=x<M(() miG) = x = M(G)

where Q,(x) is any polynomial of degree n or less satisfying Q,(1) = 1. The
existence and definition of such a polynomial follows from Theorem 4-2.1.
Specifically, let

w(x) = (2x — M(G) — m(G))/(M(G) — m(G)) (4-2.8)

be the linear transformation which maps the interval m(G) < x < M(G)
onto the interval —1 < w < 1 and let

H,(w) = T, (w(x))/T,(w(1)).

Since the basic method (4-1.1) is symmetrizable, it follows from Theorem
220 that M(G) < 1. Thus w(l) > 1. If we now define P,(x) as

2x — M(G) — m(G)) - (2 — M(G) — m(G)
M(G) — m(G) / "\ M(G) - m(G)

P(x) = T;,( ), (4-2.9)

then obviously

max |P,(x)]= max |H,(w)| (4-2.10)

mG) < x < M(G) -1=w=1
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It now follows from Theorem 4-2.1 that the P,(x) of (4-2.9) is the unique
polynomial satisfying (4-2.7). Thus we have

Theorem 4-2.2. Let &, be the set of polynomials {Q,(x)} of degree n or
less satisfying Q,(1) = 1. Then, the polynomial P,(x) of (4-2.9) is the unique
polynomial in the set &, which satisfies

max |[P(x)| < max  |Q.(x)|
miG)=x=M(G) m(G]SxSM(G}

for any Q,(x) € L.

We now consider computational and convergence aspects of polynomial
acceleration using P,(x) when applied to the basic method (4-1.1). Using
(4-2.1), it is easy to show that the polynomials P,(x) satisfy the recurrence
relation

Po(x) = 1, P1(x)=)_’x_?+lg
P, (x) = Ppsi(Gx + 1 = DPx) + (1 — Po+ 1)Pn-1(x) for n>1,

(4-2.11)

where
5 = 2/(2 = M(G) — m(G)), (4-2.12)
Bos1 = 2W(DT(W(D))/ T, 1 (WD), (4-2.13)

and where w(x) is defined by (4-2.8). It now follows from Theorem 3-2.1 that
the iterates for the polynomial procedure based on P,(x) may be obtained by
using the three-term recurrence relation

WD = 5 G + k) + (1= D)+ (L= pe TV (42.14)

We refer to the method defined by (4-2.14) with § and p, . given by (4-2.12)
and (4-2.13) as' the optimal Chebyshev acceleration procedure. The term
“optimal” is used to distinguish the method from other (nonoptimal)
procedures in which estimates mg and Mg are used for m(G) and M(G),
respectively. Such procedures are described in Section 4.3.

Again making use of the Chebyshev polynomial recurrence relation
(4-2.1), we can write the parameters Pn+y Of (4-2.13) in the more computa-
tionally convenient form

=l

pal=1y

= (1 — 1=2 —1’
: )(.1 it (4-2.15)

ﬁﬂ"’l =(1 _%5—2,5" U n = 23
where

&= 1/w(l) = (M(G) — m(G))/(2 — M(G) — m(G)). (4-2.16)
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It can also be shown (Varga, 1962) that
limp, = p, = 2/1 + /1 — &*). (4-2.17)

o

We now examine the convergence rate of the optimal Chebyshev procedure.
From (4-1.3), (4-2.5), and (4-2.10), the virtual spectral radius of P,(G) is

S(P,(G)) = [T(w(1)]™' = [T,(1/6)]~". (4-2.18)

Using (4-2.2), and after a small amount of algebra, we can write T,(1/5) in the

form
1 1+
LORE=S
where
F=(1-1-)01+1-3. (4-2.19)
I'hus we obtain
S(P.(G)) = 2”21 + 7). (4-2.20)

Thus from (3-2.16) and (4-2.20), the average virtual rate of convergence for
the optimal Chebyshev method is

it 1 | 2
R(PAG) = —yloar — log( 2 ?,). 4-221)

It s casy to see from (4-2.21) that the asymptotic rate of convergence defined
by (3-2.17) can be expressed in the form

R_m(Pn(G)} = - i lOg r. {4'2-22)
Note from (4-2.17) and (4-2.19) that ¥ = p_ — 1. Thus we also have that

hin [S(P(G)]'" = (p, — 1)''* and that R_(P(G)) = —Llog(p, — 1).

Irom (4-2.21) and (4-2.22), it easily follows that R,(P(G)) < R_(P.(G))
(o all inite . In fact, it can be shown that R,(P,(G)) is an increasing function
of i We omit the proof. However, the data given in Table 4-2.1 show that
fmany aterations often are required before the asymptotic convergence is
achieved. In Table 4-2.1, we tabulate the values of the ratio

PLCT UL

R(P(G)) _ —log/(1 + ) _ |
R . (P;:(_(’})“ it lOg sz - i()g f.u-"!

in o lunction of F. Thus we see that if, after n iterations, /" = 0.1, then the
sverape virtual convergence rate for these n iterations is only about one-half
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TABLE 4-2.1
Values of R(P{G)/R (P(G)) as a Function of "

" R(P(G)R (P(G)) " R(P(G)/R (PG
107" 0.481 10-¢ 0.900
1072 0.703 1012 0.948
10-? 0.800 1024 0.975
10°4 0.850 0 1.000
10°° 0.880

of its value for later iterations when the asymptotic convergence rate is
achieved.

We now compare the optimum Chebyshev acceleration procedure with
the optimum extrapolated procedure defined in Section 2.2. For the optimum
extrapolated method applied to the basic method (4-1.1), we have by (2-2.16)
and (4-2.16) that S(G;) = ¢ and hence that

Ro(Gg) = —log é. (4-2.24)

For the optimal Chebyshev procedure applied to (4-1.1), we have from
(4-2.22) that R (P,(G)) = — 4 log 7, where F is given by (4-2.19). It is easy to
show that

—logd ~1-4, G—1-

and that

—dlogi~JT-6*~ 2 /1 -G, &-1-.

Combining this with (4-2.22) and (4-2.24), we have

R, (P(G) ~ /2 /Ru(Gy), G—1-. (4-2.25)

Thus for & close to unity, the optimum Chebyshev procedure is an order of
magnitude faster than the optimum extrapolated procedure.

As an example, consider the case in which M(G) = —m(G) = 0.99. In this
case we have & = 0.99 and 7 = 0.753. Thus each iteration of the optimum
extrapolated method reduces the error by approximately a factor of 0.99,
while each iteration of the optimum Chebyshev method reduces the error by
approximately a factor of 0.868. The number of iterations needed to reduce
the norm of the error vector by a factor of 10~ %, as compared with the norm of
the initial error vector, would be approximately 1375 for the extrapolated
method and 98 for the optimum Chebyshev method. The factor of improve-
ment would be greater for a larger value of 4.
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4.3 CHEBYSHEV ACCELERATION WITH ESTIMATED
EIGENVALUE BOUNDS

We now study the behavior of the Chebyshev acceleration process when
estimates mg and My are used for m(G) and M(G), respectively. When these
estimates are used. the normalized Chebyshev polynomial of (4-2.9) is written

ds
2x — Mg — mg\ [ (2 — Mg — mg T (we(x))
Ax) = S .- 2 =1 S e e el i) %
St ( ) T“( Mg — m. Tty 43D

where wi(x) = (2x — Mg — mg)/(Mg — mg). If we let

Y =202 — Mg — mg), (4-3.2)
o = (Mg — mp)/(2 — Mg — mg) = 1/wi(1), (4-3.3)

and
P+ = 2we( D T(we(1))/ T, 4+ ((we( 1)), (4-34)

then it follows as before that the P, p(x) satisfy the recurrence relation
(4-2.11) with y and p,, , replacing the 7 and p,, ;. respectively. Thus from
Theorem 3-2.1, the iterates for the polynomial acceleration procedure based
on P, p(x) may be given by

WY = g GU + k) + (1= ™)+ (1= py ™ (4-3.5)

We remark that the error vector & = ¢ — i associated with (4-3.5) now
satisfies
#" = P (GO (4-3.6)

Relations analogous to (4-2.15) and (4-2.16) also are valid for p, , , : i.e.,

P =1, p.=(l _é“f‘;)"i.

(4-3.7)
Porr =l —daip)™l, nz=2
and
2
limp, = pgyp= ————or. (4-3.8)
P 1+ 1 -0t

In the above discussion, we have tacitly assumed that My # mg. If
Mg = mg,theny = 1/(1 — Mg),p, = p, = --- = land o = 0.Forthiscase,
the Chebyshev acceleration procedure (4-3.5) reduces to the (nonoptimum)
extrapolation procedure (2-2.13). We shall not consider this case separately
in the balance of this section. The correct formulas can be obtained by a
limiting process.
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It was shown in the previous section that the P,(x), defined by (4-2.9), is
the unique polynomial satisfying the inequality (4-2.7). Thus S(P, g(G)) is
minimized only when P, g(x) = P,(x); Le., when mg = m(G) and Mg =
M(G). We note that P, g(x) is that polynomial satisfying P, g(1) = 1 and
which has the minimum “maximum" magnitude over the interval mg <
X < M. Because of this,equations for §(P, ¢(G))and R (P, g(G))analogous
to (4-2.18) and (4-2.22) need not be valid when P, g(x) is used. In the re-
mainder of this section, we shall study the behavior of S(P, (G)) as a
function of mg and Mg in more detail.

In order to simplify the discussion while at the same time retaining ade-
quate generality, we will make one of the following two sets of assumptions:t

Case |
mg < m(G), (4-3.9)
M(G) < 1, (4-3.10)
meg < Mg < 1. (4-3.11)

Case I1
mg = — Mg, (4-3.12)
Im(G)| < M(G) < 1, (4-3.13)
0<Mg< 1. (4-3.14)

In later chapters, we shall strengthen the assumptions of each case by assum-
ing additionally that Mg < M(G).

We now graphically illustrate the behavior of P, g(x) for two cases, each
involving the assumptions of Case I. Figure 4-3.1 shows the behavior of
Pyo g(x) when Mg > M(G). Here r is defined in (4-3.21). For this case, it is
easy to see that

max  |Pg g(x)| < Pyo. e(Mpg). (4-3.19)

miG)<x < M(G)

The equality holds for the value of M(G) shown in the figure. However, if the
value of M(G) were equal to the M* shown, then strict inequality would hold.
Figure 4-3.2 shows the behavior of P, g(x) when Mg < M(G). Here it is
clear that

max  |Pyg e(x)| = Pyo e(M(G)). (4-3.16)

miG)=x = M(G)

T The practicalities of these assumptions are discussed in Section 5.3.
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Fig. 4-3.1. Bchavior of P, .(x) for Case I when Mg = M(G). Mg = 094737, my, = 0.00,
e = 090, r = 0.39.
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a, = 090, r = 0,39,
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The symbols B, z, and Mg shown in Fig. 4-3.2 are used later in Chapter 5
From the above discussion we have, for either Case I or Case I1,T that

S(P, «(G)) = P, g(M(G))  if Mg < M(G),

(4-3.17)
< P, ¢(Mg) if Mg > M(G).
It then follows from (4-3.1) that
S(P, £(G)) = T("—) / T(i) i Mg < M(G).
Jg f Og
(4-3.18)

< {Tn(_l_)]_l it Mg > M(G),
1

where o is given by (4-3.3) and
o* = 2M(G) — Mg — mg)/(2 — Mg — mg). (4-3.19)

Note that wg(M(G)) = 6*/og and that o*/og = 1 when Mg = M(G). We use
o*/og instead of wg(M(G)) merely for notation purposes in discussing
S(P, g(G)) and R (P, (G)). Using (4-2. 2) we can write the relations (4-3.18)
equivalently as

22 / 2pai2
S = i
Puel@) = {37/ 7 55 i Me< MG
. (4-3.20)
22 .
=L F if EWE = M(G),
where
— 1 —-g2 — /1 = (og/a*)?
rEl V1 - 0oi 1= /1 — (ag/c*)* 4-321)

_ f-

1+./1-o0t 1+ /1= (oglo*)?
From (4-3.20), it follows that for either Case 1 or Case Il we have
S(P, x(G)) < 1. (4-3.22)

From (3-2.17) and (4-3.20), the virtual asymptotic rate of convergence can
be given by

R, (P, g(G)) = —log /r/i if Mg < M(G),
> —log /7 if Mg > M(G).

We now show, under the assumptions of Case II, that the above bound on
R_(P, £(G))is an increasing function of Mg for Mg < M(G) and a decreasing

(4-3.23)

+ Note that 8(P, ,(G)) = S(P,,,(G)) whenever M < M(G).
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function of Mg for Mg > M(G). Indeed, by (4-3.12), (4-3.3), (4-3.19), and
(4-3.21) we have og = Mg, o* = M(G),

1 - J/T—ME
=———C (4-3.24)
1+ ./1 - M3
and
1 — /1 — (Mg/M(G))?
F= /1 — (M MG)y (4-3.25)

1 + /1 — (Mg/M(G))*

The fact that R (P, g(G)) is a decreasing function of Mg for My > M(G)
follows from (4-3.23) and (4-3.24). Tt also follows from (4-3.23) that
R (P, (G)) is an increasing function of M for My < M(G) if we can show
that —log(r/F) is an increasing function of Mg. But by (4-3.24) and (4-3.25)
we have

d [&;0 i’]__i{ b : }(4326)
aMe | T OB T T M\ 1o ST MgM@yE)

which is positive since M(G) < 1. Hence the desired result follows.
We remark that the above result can also be shown to be true for
ﬁﬂ(P,,_ £(G)) as well as for R (P, (G)), and for Case I as well as for Case II.

44 SENSITIVITY OF THE RATE OF CONVERGENCE TO
THE ESTIMATED EIGENVALUES

[n this section, we give quantitative results to illustrate the sensitivity of
the asymptotic virtual rate of convergence R_ (P, £(G)) to the estimates M
of M(G) and mg of m(G).

We first consider the behavior of R_(P, £(G)) as a function of Mg when
M(G) is close to one. For convenience of exposition, we shall assume here
that the assumptions of Case II hold with m(G) = — M(G). With these
assumptions, we shall show that if (1 — M(G))and (1 — M) are both small,
then approximately

[Ro(Pue(G)] " . { VO+0—1 if Mg < MG),

LR (P ()N P ! 4-4.1
< ]fr'l\f.-"U if JME = M(G). { )

[R.(P(G)] "

where

0 =(1 — M)/(1 — M(G)). (4-4.2)
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For the case Mg < M(G), we have by (4-3.23) that

R (P, §(G)) = —log /r — (—log \/7). (4-4.3)

But for small (1 — Mg) and small (1 — M(G)), by (4-3.24) and (4-3.25) we
have, approximately, that

r=1-2/2,/0/T=MG), #=1-2/2/0-1/1-M@G).
(4-4.4)

Thus both r and # are close to unity so that R_(P, g(G)) of (4-4.3) may be
approximated by R (P, &(G)) = 3[(1 — r) — (1 — 7)]. From this we obtain,

using (4-4.4),
= J =M
Rco(Pn,E(G)) ﬁ —‘—‘\/_—2'{——(”9.
JO+ /01
Moreover, from(4-2.22), R (P,(G)) = —log#'/?,where? = [1 — (1 — a2t/

[1 + (1 — ®)"?] and where § is given by (4-2.16). But & = M(G) here since
we have assumed that m(G) = — M(G). Combining these facts, we obtain

(4-4.5)

R (P(G)) = i1 — 7] = /2/1 — M(G). (4-4.6)

Thus the first part of (4-4.1) follows from (4-4.5) and (4-4.6). A similar argu-
ment can be used to show the second part of (4-4.1).

To illustrate these results, we consider the following examples. First,
consider the case M(G) = 099. If = 1.1, we have My = 0.989, which at
first sight would seem to be a very close estimate. However, we have F=
0.91400, r = 0.74229, and 7 = 0.75274, so that

[R (P, e(G)]™ " = 9.61120
as compared with
[R.(P(G))] ! = 7.04138.

Thus the actual ratio of convergence rates in (4-4.1) is 1.36496. This implies
that the expected number of iterations when using Mg = 0.989 is 36 7, more
than if Mg = M(G) were used. We note that

VO + /8 =1 = 1.3650.

Thus the approximation (4-4.1) is quite accurate.
Suppose, on the other hand, that § = 0.9. In this case, Mg = 0.991. Here
r = 0.76388 and

[R (P, e(G)] ™" = (—4logr)™! = 742544,
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The left ratio in (4-4.1) is 1.05455. Thus the expected number of iterations,
using Mg = 0.991, is only about 5.5°% more than if Mg = M(G) were used.
We note that

(/0! = 1.054.

Again, the approximation (4-4.1) is quite accurate.

Let us now consider the case ) = 2, in which again M(G) = 0.99. In this
case, Mg = 0.98, r = 0.66806, i = 0.75167, and [R_(P, «(G))]~! = 16.961.
Thus the left ratio in (4-4.1) is 2.408. This should be compared with the
approximation (4-4.1); i.e.,

VO+J0—1=2414

If I — M(G) is very small, the approximation (4-4.1) is accurate even for
quite large 0. Suppose M(G) = 0.9999. If 0 = 100, then My = 099, r =
0.75274, and # = 0.75383. Moreover, [R_ (P, ((G))] ™' = 1382.17 as com-
pared with[R (P,(G))] ™! = (—4log#) ™' = 70.706. (Note that 7 = 0.97211.)
Thus the left ratio in (4-4.1) is 19.548. This should be compared with the
approximation

VO + /0 =1 =19950.
We remark that the behavior of R (P, (G)) as a function of M for Case 1
conditions is similar to that given above for Case II.

From the above discussion, it is clear that if we underestimate M(G), we
increase the expected number of iterations much more than if we over-
estimate M(G) by an equivalent amount. However, upper bounds for M(G)
which are nontrivial in the sense that they are less than unity and yet close to
M(G) are very difficult to obtain. Moreover, it is very difficult to improve an
overestimated value even if one is available. On the other hand. if My is an
underestimate for M(G), then improved estimates for M(G) can be obtained
by using the adaptive procedures given in Chapters 5 and 6. In addition, as
we shall see later, very accurate estimates of the iteration error may be
obtained when My < M(G). For these reasons, the adaptive procedures
described in subsequent chapters are designed so that the estimates Mg
converge to M(G) from below.

Turning our attention now to the estimate mg, we first note that
R (P, £(G)) does not depend on mg when Case I conditions hold. For Case I
conditions, we shall show that R_ (P, £(G)) is relatively insensitive to the
choice of mg as long as mg < m(G).T Specifically, if (1 — M(G)) is small, if

F The case in which my s greater than m(G) s considered later in Chapter 6.
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Mg = M(G), and if mg < m(G) < 0, we show that, approximately,

[ﬁi(P’]E(_G)]]:l = 1_+_5 ___mE_ - < _I ;ml:_ 2
[R.PG)] "~ ~ L1 +6-mG] ~ LI —-mG)

1 12
< [1 + 1—_—(—6)] , (4-4.7)

where
6 =1— M(G), A = m(G) — mg. (4-4.8)

Since Mg = M(G), we have from (4-3.23) that R (P, g(G)) = —log r'/3,
where r = [1 — (1 —ep)'? Y1 + (1 - g2)1/2] and where o is given by
(4-3.3). Using (4-4.8) with Mg = M(G), we obtain

(1 — ag) = 20(1 + & — m(G))™".
Since & is small, it follows that r may be approximated by
pi] 2251 ~op =l - 32 J2[1 + 6 — mp).  (4-49)
Thus we have approximately that
R (P, e(G) =31 -1 = J2Y20/(1+ 86— mp).  (4-410)

From (4-2.22) together with (4-2.16) and (4-2.19), it follows similarly that
R_(P,(G)) may be approximated by

R_(P(G)) = /2/25/(1 + & — m(G)). (4-4.11)
Thus

[Ru(Pr @I . \/‘ +0 — me (4-4.12)

[RL(PAGN]™ L+ — m(G)
and (4-4.7) follows.

Thus it is clear from (4-4.7) that Chebyshev acceleration is relatively
insensitive to the estimate mg as long as mg < m(G). For example, if
A(=m(G) — mg) is equal to 0.1, then the expected number of iterations using
my is only about 49, more than if mg = m(G) were used. Further, if m(G) <
— 1.0, then mg need satisfy only

(m(G) — mp)/|m(G)| < 0.1 (4-4.13)

in order that the increase in the number of iterations using mg be less than4” ..



