
Chapter 63
An Optimal Algorithm for Approximate Nearest Neighbor Searching

Sunil Arya* David M. Mount+ Nathan S. Net anyahut Ruth Silvermans

Angela Wun

Abstract
Let S denote a set of n points in d-dimensional space, Rd,
and let dist(p, g) denote the distance between two points in
any Minkowski metric. For any real E > 0 and q E Rd, a
point p E S is a (1 + c)-approximate nearest neighbor of q
if, for all p’ E S, we have dist(p, q)/dist(p’,q) 5 (1 + E).
We show how to preprocess a set of n points in Rd in
O(nlog n) time and O(n) space, so that given a query point
p E Rd, and e > 0, a (1 + c)-approximate nearest neighbor
of q can be computed in O(log n) time. Constant factors
depend on d and C. We show that given an integer k 1 1,
(1 + c)-approximations to the L-nearest neighbors of q can
be computed in O(k log n) time.

1 Introduction.
Let Rd denote real d-dimensional space, and let dist(., .)
denote any Minkowski L, distance metric.l Given a set
of n points 5’ in Rd, and given any point q E Rd, a near-
est neighbor to q in S is any point p E S that minimizes
dist(p, q). Answering nearest neighbor queries is among
the most important problems in computational geome-

T-Plan&Institut fiir Iuformatik, Im Stadtwald, D-66123
Saarbriicken, Germany.

tDepartment of Computer Science end Institute for Advanced
Computer Studies, University of Maryland, College Park, Mary-
land. The support of the National ScienceFoundationunder grant
CCR-9310705 is gratefully acknowledged.

iSpace Data and Computing Division, NASA Goddard Space
and Flight Center, Greenbelt, Maryland, and Center for Automa-
tion Research, University of Maryland, College Park, Maryland.
This research was carried out while the author held a National
Research Council NASA Goddard Associateship.

PDepartment of Computer Science, University of the District
of Columbia, Washington, DC, and Center for Automation Re-
search, University of Maryland, College Park, Maryland.

(IDepartment of Computer Science and Information Systems,
The American University, Washington, DC.

lFor any integer m 1 1, the L,,,-mekic is defined by the
fOuOWhIg distance function on two pOintS p = (pi,. . . , pd) and
4’= (‘Jl,...,qd):

/- \
llm

disWp,q) = [): Ipi - qilm]
\I<i<d /

The L1, Lz, and L, metrics are the well-known Manhattan-,
Euclidean- and max-metrics.

try because of its numerous applications to areas such
as data compression, pattern recognition, statistics, and
learning theory.

The problem of preprocessing a set of n points S so
that nearest neighbor queries can be answered efficiently
has been extensively studied [2, 3, 4,7,8, 14, 17, 18, 201.
Nearest neighbor searching can be performed quite
efficiently in relatively low dimensions. However, as
the dimension d increases, either the space or time
complexities increase dramatically. We take d to be a
constant, independent of n. (For example, our interest
has been to provide reasonably efficient algorithms for
values of d ranging up to about 20.) For d > 3, there is
no known algorithm for nearest neighbor searching that
achieves both nearly linear space and polylogarithmic
query time in the worst case.

The difficulty of finding an algorithm with the above
performance characteristics for nearest neighbor queries
suggests seeking weakened formulations of the problem.
One formulationis that of computing approximate near-
est neighbors. Given any 6 > 0, a (l+e)-nearest neighbor
of q is a point p E S such that, for all p’ E S

dist(p,q) < 1 + E
dist(p’, q) - *

Arya and Mount [2] showed that given a point set S
and any E > 0, the point set can be preprocessed
by a randomized algorithm running in O(n2) expected
time and O(n log n) space, so that approximate nearest
neighbor queries can be answered by a randomized
algorithm that runs in O(log3 n) expected time.

In this paper we improve this result in a number
of ways. We present an algorithm that preprocesses a
set of n points in Rd in O(n log n) time, and produces a
data structure of space O(n) such that for query point
q and any E > 0, approximate nearest neighbor queries
can be answered in O(logn) time. This improves the
results of Arya and Mount significantly in the following
respects.

l Space and query time are asymptotically optimal
(for fixed d and C) in the algebraic decision tree
model of computation.

573

574 ARVA ET AL.

l The preprocessing is independent of E, so that one
data structure can answer queries for all degrees of
precision.

l All algorithms are deterministic, rather than ran-
domized, but the code is still quite simple.

l Constant factors depending exponentially on di-
mension have been eliminated from the preprocess-
ing time and space. (Exponential constant factors
still remain in the query time.)
Because this problem is of considerable practical

interest, the importance of the last item cannot be
overstated. When dealing with large point sets (n 1
10,000) in moderately large dimensions (say d 1 12),
constant factors in space that are on the order of 2d or
(l/~)~ (even with O(n) space) are too large for practical
implementation. Of course, exponential factors in query
time are also undesirable, but we will see later that for
many point distributions it is possible to terminate the
search algorithm early and still produce results of good,
albeit unproven, quality.

We begin with an outline of our data structure
and search algorithm. Our methods are b&sed largely
on existing techniques with a number of straightfor-
ward adaptations for our particular problem. The pre-
processing is based on the standard technique of boz-
decomposition, which has been presented in a number
of roughly equivalent forms elsewhere [4, 5, 6, 191. In
this technique points are recursively subdivided into a
collection of d-dimensional rectangles with sides parallel
to the coordinate planes. These rectangles are used to
construct a subdivision of space into cells each of con-
stant complexity. We maintain the property that the
cells are “fat” in the sense that the ratio of the longest to
the shortest side is bounded above by a constant. Each
cell is associated with one data point that is “close” to
the cell, either contained within the cell or in a nearby
cell. Closeness is defined relative to the size of the cell.

Assume this structure has been built. We perform
approximate nearest neighbor queries by locating the
cell that contains the query point Q, and enumerating
cells of the subdivision in increasing order of distance
from the query point. Throughout we maintain the
closest data point encountered so far (see Fig. l(a)).
The hierarchical and rectangular nature of the box-
decomposition makes point location and enumeration
easy (although some care is needed since the decompo-
sition tree need not be balanced). Since cells are enu-
merated in order of increasing distance, whenever the
distance to the current cell times (1 + E) exceeds the
distance to the closest known point p, the search is ter-
minated, and p is reported as an approximate nearest
neighbor.

64

, Current Cell

P

(b>
Nearest Neighbor

Figure 1: Algorithm overview.

How many cells might be encountered before this
condition is met? We claim that the number of cells
may depend on d and c, but not on n. To see this,
we will show that if the search encounters a sufficiently
large number of cells, depending on c and d, then it
can be argued from the fatness of the cells that at least
one of these cells must be sufficiently small, and hence
there is a data point nearby (e.g., see Fig. l(b)). Since
no significantly closer point has been seen so far, this
nearby point is an approximate nearest neighbor.

It is an easy matter to extend the algorithm for
computing nearest neighbors to actually enumerating
points in approximately increasing distance from the
query point. In particular we show, that after the
same preprocessing, given any point q, 6 > 0, and
L, the (1 + e)-approximate Ic nearest neighbors can be
computed in O(k: log n) time.

Space and query time are asymptotically optimal
under the algebraic decision tree model. It is easy to see
that Q(n) space and R(log n) time are needed under this
model even in dimension one, since the data structure
must be able to support at least n possible outputs, one
for each query that is equal to a point of the set. It
should be pointed out that common techniques for the
closest pair problem (e.g. [ll, 131) violate this model

NEAREST NEIGHBOR SEARCHING

by making use of the floor function to achieve efficient
running times; however, it is not clear whether this
observation can be applied to the approximate nearest
neighbor problem.

2 The Data Structure.
Recall that we are given a set of n data points S in
Rd. We will use the term data point when referring
to points in S, and point for arbitrary points in space.
As mentioned earlier the data structure is a straight-
forward adaptation of the standard box-decomposition
construction (described below). This technique is the
basis of the data structures described by Callahan and
Kosaraju [5], Clarkson [6], Vaidya [19], Samet [15], Bern
[4], Feder and Greene [9], and others.

Before describing the specifics of our implementa-
tion, we present a list of properties which suffice to apply
our algorithms. Define a subdivision of Rd to be a fi-
nite collection of d-dimensional cells whose interiors are
pairwise disjoint, and whose closures cover the space.
The data structure consists principally of a subdivision
of Rd into O(n) ce 11 s, each of constant complexity. We
do not require that this subdivision satisfies any partic-
ular topological or geometric requirements other than
those listed below (e.g. it need not be a cell complex,
and
(4

(b)

cells need not be convex).
Bounded occupancy: Each cell contains from
zero up to some constant number of data points.
Points that lie on the boundary between two or
more cells are assumed to be assigned to one of the
cells by some tie-breaking rule.

Existence of a close data point: Each cell c is
associated with a given positive real she, denoted
size(c). Ifs is the size of a cell, then for any point
p within the cell, there exists a data point whose
distance from p is at most some constant factor cr
times s. The value of (Y will generally be a function
of the dimension. A pointer to such a data point
is associated with the cell. At most a constant
number of cells are associated with any one data
point.

(c) Packing constraint: The number of cells of size
at least s that intersect an open ball of radius T > 0
is bounded above by a function of r/s, independent
of n. (By ball we mean the locus of points that are
within distance r of some point in Rd according to
the distance metric.)

(d) Point location: Given a point q in Rd, the cell
containing q can be computed in O(logn) time.

(e) Distance enumeration of cells: Define the
distance between a point q and a cell c to be the

575

closest distance between the point and any part of
the cell. Given q, the cells of the subdivision can
be enumerated in order of increasing distance from
q. The time to enumerate the nearest m cells is
O(mlogn). Note that m may not be known when
the enumeration begins.

2.1 Box-decomposition tree. We now describe
how to adapt the box-decomposition method to satisfy
these properties. We call the resulting structure a
box-decomposition tree. Care has been taken in this
definition to avoid exponential factors in dimension from
entering preprocessing and space bounds. The specific
details of the construction are discussed in later sections.

The points of S are assumed to be represented in
the standard way as a d-tuple of floating point or integer
values. By a rectangle in Rd we mean the d-fold product
of closed intervals on the coordinate axes. We will limit
consideration to a restricted set of rectangles, which we
call boxes. A box is a rectangle such that the ratio of
its longest side to its shortest side is bounded above by
some constant p that is greater than or equal to 2. Let
us assume for simplicity that all the data points have
been scaled to lie within a d-dimensional unit hypercube
u.

For our purposes, a cell is either a box or the set
theoretic difference between two boxes, one enclosed
within the other. Cells of the former type are called
box cells and cells of the latter type are called doughnut
cells. Each doughnut cell is represented by its outer box
and inner box. It is important to note the difference
between boxes and cells. Boxes are used to define cells,
and cells are the basic elements that will make up the
subdivision.

Consider two boxes b and b’, where b’ is enclosed
within b. We say that b’ is sticky for b if for each of
the 2d sides of b’, the distance from this side to the
corresponding side b is either zero, or is greater than or
equal to the width of b’ along this dimension. Define
shrink(b) to be a minimal, sticky box b’ (different from
b) that is enclosed within b and contains the points
b n S. Stickiness is needed for technical reasons later
in Lemma 2.3.

Adapting the definitions given by Callahan and
Kosaraju [5], define a split of a rectangle to be a parti-
tion of the rectangle into two rectangles by a hyperplane
parallel to one of the coordinate axes. Define a fair-split
of box b, split(b), t o b e a split of b into two boxes, each of
which contains at least one point of S. The “fairness” of
the split refers to the fact that the resulting rectangles
cannot be arbitrarily thin, due to the ratio restriction
on box side lengths. Henceforth, assume that all splits
are fair-splits, unless stated otherwise.

576 ARYA ET AL.

LEMMA 2.1. Given any box b which contains two or
more points of S, at least one of the operations shrink
and split can be performed. Once a shrink operation has
been performed, a split is always possible on the resulting
shrunken box.

Box-decomposition works by starting with the unit
hypercube, U, and recursively applying the operation
shrink followed by split. These operations are repeated
as long as the number of data points in the current
box exceeds some threshold, BucketSize. The opera-
tion shrink is performed only if it is needed (since for
practical reasons its overhead is much greater). A pseu-
docode description is given in Fig. 2. Note that a direct
implementation of this procedure is not asymptotically
efficient. Details of the construction are given later.
The initial call is to BoxDecomp(S, U). A set of cells
will be created in the process. Each cell is represented
by the rectangle(s) that define it. We make the gen-
eral position assumption that data points do not lie on
boundaries of cells, but this restriction is easily removed
through the use of any rule for breaking ties.

BoxDecomp(T, b) {
if (12’1 5 BucketSize)

create box cell b;
else {

if (split(b) is not possible) {
b’ = shrink(b);
create doughnut cell b - b’;
b = b’;

1
(bl, bz) = split(b);
BoxDecomp(T n bi, bl);
BoxDecomp(T n bz, bz);

I
1

Figure 2: Box-decomposition algorithm.

The decomposition is illustrated in Fig. 3, where a
ratio of 2:l is maintained for all boxes. In (a) we show
the decomposition (line segments representing splits and
rectangles representing shrinks) and in (b) the cells of
the resulting subdivision are shown.

We can associate a binary tree with the box-
decomposition in a natural way. Following Vaidya’s
notation, when splitting is performed we call br and
b2 the successors of b. When shrinking is performed b’
and b - b’ are the successors of b. The successors define
a binary tree, whose root is the initial hypercube U,
and whose leaves are either boxes that contain a single
point, or doughnut cells that contain no point. Every
internal node of this tree is associated with a box, and

(4

Figure 3: Box-decomposition.

this box is the disjoint union of the cells of its descendent
leaves. An internal node is called a shrinking node if its
successors arise by shrinking, and it is called a splitting
node otherwise.

Along any path from the root to a leaf in this tree,
there can be no two consecutive shrinking nodes. Thus
the number of splitting nodes is at least half the total
number of internal nodes. Since each split gives rise
to a nontrivial partition of S, the number of splitting
nodes is O(n), and hence the total size of the tree
is O(n). Each node of the tree is associated with its
bounding box, or its two defining boxes in the case of
the doughnuts. In this way we do not require separate
storage for the cells of the subdivision since they are just
the set of leaves in the tree. Observe that it is possible
in principle to subdivide the hypercube using only split
operations (if we were willing to allow cells containing
no point of S). The purpose of shrinking is to guarantee
that the data structure will be of size O(n).

2.2 Decomposition properties. In this section
we will show that properties (a)-(e) hold, or will hold
after appropriate augmentation to the data structure
described previously. Clearly (a) holds since each cell
contains at most BucketSize points. To establish (b),
define the size of a cell to be the length of its longest
side. (For a doughnut cell we define its size to be the
size of the outer box.) Property (b) is established in
the following lemma. Proofs has been omitted from this
version of the paper. They appear in the full version of
the paper.

NEAREST NEIGHBOR SEARCHING 577

LEMMA 2.2. (Existence of a close point) Given a
box-decomposition tree for a set of data points S lying in
a unit d-dimensional hypercube U, and given any point
q E 17, let s be the size of the subdivision cell containing
q. Then there exists a point p E S whose distance from
q is at most s . d. Such points can be assigned to cells
so that no point is assigned to more than two cells.

The following lemma establishes property (c). Note
that there is some subtlety in proving this lemma, since
it does not generally hold for box-decompositions based
on arbitrary shrinking and splitting. This is the reason
we introduced the stickiness property when defining
shrinking. The proof has been omitted.

LEMMA 2.3. (Packing Constraint) Given a box-
decomposition tree for a set of data points S lying in
a unit d-dimensional hypercube U, and given any point
q E U, let s be any positive real. The number of
subdivision cells of size at least s that intersect a ball
of radius r centered at q is on the order of (r/s)d.

2.3 Point Location. In order to establish property
(d) we need to establish balance in the tree. Following
Bern [4] or Schwarz, Smid and Snoeyink [16], we do
this using the standard technique of centroid decompo-
sition. (See Clarkson [S] for an alternative randomized
approach.) Let us think of the box-decomposition tree
as an unrooted free-tree in which the degree of each node
is at most three. For our purposes define a centroid edge
in a binary tree of n nodes to be an edge whose removal
partitions the tree into two subtrees each with at most
[2n/3] leaves. Taking centroids, the nodes of the box-
decomposition tree can be recursively restructured into
a binary tree of O(logn) depth. The centroid decom-
position tree can be computed in O(n) time (see e.g.
[12]). We assume that the resulting centroid decompo-
sition tree is a second tree threaded through the same
set of nodes as the box-decomposition tree.

To perform point location, consider the removal of
a centroid edge (2, y), where x is a parent of y in the
box-decomposition tree. The node y is associated with
either a bounding box or is a leaf corresponding to a
doughnut cell in the box-decomposition tree. In the
latter case, on the order of d comparisons suffice to
determine whether q is contained within the doughnut.
In the former case, the cells associated with y’s subtree
lie within the bounding box associated with y. All
of the cells associated with x lie outside of this box.
Note that because of the removal of prior centroids,
the region associated with y’s remaining subtree or x’s
remaining subtree may be of unbounded complexity.
The important thing is that the box decomposition
tree gives us a separator of constant (O(d)) complexity.
Thus in constant time we can determine the subtree

within which to continue the search. It follows that
we can determine the cell containing an arbitrary query
point in O(logn) time (with a constant factor of d).

2.4 Distance Enumeration. The last remaining
property to consider, (e), is how to enumerate the
cells in increasing order of distance about some point
Q* The method we employ is called priority search
after a similar search technique used for k-d trees by
Arya and Mount [l]. The idea is to store a subset
of cells in a priority queue ordered by their distance
from q. Recall that the distance between q and a cell
is the closest distance between q and any point in the
cell. Whenever a cell is removed from the priority
queue we enqueue a constant number (O(d)) of its
neighboring cells. Although, in general, a cell in the
box-decomposition may have up to O(n) neighbors, we
will show that it suffices to consider only a constant
number of neighboring cells.

Every cell in the subdivision is bounded by at most
2d facets of dimension d - 1. The facets of rectangular
cells are just (d - I)-dimensional rectangles. The facets
of doughnut cells are in general the difference between
two (d - 1)-dimensional facets, in the special case where
the inner rectangle shares a boundary with its outer
rectangle. In either case, the complexity of a facet is at
most 2(d - 1).

We say that two cells are neighbors if they share a
common (d - 1)-dimensional boundary. Note that the
number of neighbors is not bounded by the number of
facets because the subdivision is not a cell complex. Let
c be the cell containing q, and let f be any facet of c.
Because of the simple structure of facets, in constant
(O(d)) time we can compute the nearest point q’ to
q on (the closure of) this facet. Using point location
we can determine the neighbor of c along this facet
that contains the point q’ and lies on the opposite side
of f from c. Assuming that q is in general position,
this neighboring cell is unique. (In fact it can be
shown that because facets are rectangles aligned with
the coordinate axes, the choice of q’ is independent
of which Minkowski metric is used.) Let neigh(c, f, q)
denote this closest of c’s neighboring cells to q along c’s
facet f. Note that this process need only be performed
for facets along which the interior of the cell is closer to
q than the exterior. Fig. 4 shows the neighboring cells
selected by this process.

To begin the enumeration, each cell is unmarked.
Begin by locating the cell that contains q in O(logn)
time using point location. Insert this cell into the
priority queue and mark it. Repeatedly remove the cell c
from the priority queue with the smallest distance from
q. For each of the facets f of c, neigh(c,f,q) can be

578 ARYA ET AL.

Figure 4: Distance enumeration.

computed in O(logn) time through point location. For
each such cell that is unmarked, compute its distance
from q and insert the cell into the priority queue. The
time needed to process a given cell is O(logn) (with
a constant factor on the order of d2, since each of at
most 2d facets generate a point location query taking
O(d log n) time.)

To establish the correctness of this algorithm, ob-
serve that had we enqueued all of the neighbors of a
given cell, the method would have certainly enumerated
all cells in order of increasing distance. The only issue is
whether by enqueuing only the closest neighboring cell
for each facet no cell is missed. The following lemma
establishes that for each cell c’ of the subdivision, there
is some cell c that lies closer to q, and some facet f of
c, such that c’ = neigh(c, f, q). From this it follows that
every cell will be enqueued eventually, and in proper
distance order. The proof has been omitted from this
version.

LEMMA 2.4. Priority search vi&s Ihe cells of the
subdivision in increasing order of distance from the
query point.

2.5 Construction. We show that the box-
decomposition tree can be constructed in O(n logn)
time. A naive implementation of the algorithm pre-
sented above leads to an O(n2) time algorithm, because
we have no guarantee that successive splits will be bal-
anced. Callahan and Kosaraju [5] offer a particularly
elegant solution to the problem of partitioning points,
which we outline here. When we are determining how to
partition the points within some box b, the data points
contained in b are stored in d separate lists, each sorted
by one of the coordinates, that are crossed referenced
with the set of points. Rather than updating these lists
after each split, a sequence of splits is performed, until
each of the resulting subsets contains fewer than half of
the initial number of points. In linear time it is pos-
sible to partition the initial set of points among these
subsets, form the resulting sorted lists in each case, and

then recurse on each subset. Because the subproblems
are all of less than half the original problem size, the
overall running time is O(n log n). The constant factors
are linear in d.

One other issue that needs to be considered is
whether to shrink or to split. Let b be the current box,
and let 5” denote the points of S lying within b. Let
r denote the smallest bounding rectangle for S’. It is
an easy matter to determine from T and b whether a
split is possible in constant (O(d)) time. If no split is
possible, then as we noted earlier, a shrink operation
is possible. Using the length of the longest side of T,

and given the ratio bound on side lengths of boxes,
determine the minimum lengths of the remaining sides
of any enclosing box. It is easy to see that these lengths
will be less than or equal to the corresponding lengths
of b (for otherwise, the ratio bound would have been
violated for b). For each dimension, enlarge the length
of bounding rectangle in this dimension, while staying
within b. If this is not possible for this side without
violating the stickiness property, then enlarge this side’s
length by pushing a side of r out to the corresponding
side of b. Now this side of P coincides with a side of
b. In the process of enlarging, new longest side may
be created, and hence side lengths that were already
adjusted may need to be reevaluated. However, once a
side is pushed to b’s boundary, it cannot be moved again,
so after O(d) iterations, this process will terminate. The
total time for this operation is O(d2), a constant in fixed
dimensions.

3 Approximate Nearest Neighbor Queries.
Given a set of n points S in Rd, and assuming a data
structure satisfying properties (a)-(e) of the previous
section has been computed, we show how to answer an
approximate nearest neighbor query in O(logn) time
(constants depending on d and E). Let q be the query
point in Rd. Recall that the output of our algorithm is
a data point p, such that, for all p’ E S,

dist (p, d
dis2(p’, q) ’ ’ + e*

We assume that q lies within the enclosing box for the
data set, but it is easy to modify the algorithm to handle
the general case.

We begin by applying the point location algorithm
to determine the cell containing the query point q.
Enumerate the cells of the subdivision in increasing
order of distance from q. Recall from (a) and (b) that
each cell is associated with one or more points, either
because the cell contains data points, or because it is
associated with a nearby point. As each cell is visited,
process it by computing the distances of these points

NEAREST NEIGHBOR SEARCHING 579

to q and recording the closest seen so far. The cell
enumeration terminates if the current cell’s distance to
q times (l+c) exceeds the nearest distance r to a known
data point p. We know that no subsequent point to be
encountered will be closer to q than r/(1 +c), and hence
p is an approximate nearest neighbor.

The processing time for each cell visited by the
algorithm is O(1) with a constant factor on the order
of d for distance computation. The time is dominated
by the O(logn) overhead needed at each step of the
cell enumeration. We can visit the k nearest cells to q
in O(k logn) time. To establish the O(logn) running
time, it suffices to prove that the number of cells visited
is O(1).

LEMMA 3.1. The approximate nearest neighbor al-
gorithm terminates after visiting at most O(1) cells
(with constant factors depending on d and e on the order
of O((dV + WNd)J

Proof. The proof is baaed on computing an upper
bound on the distance to the nearest neighbor and
showing that within this distance the presence of any
sufficiently small sized cell will cause the algorithm to
terminate. From this we can apply property (c) from the
previous section to infer that there are only a constant
number of cells of a given size. Details have been
omitted due to space limitations. Cl

4 Approximate k-Nearest Neighbors.
In this section we will describe a generalization of the
approximate nearest neighbor procedure to the problem
of computing approximations to the k nearest neighbors
of a query point. A point p is a (1 + c)-approximate k-th
nearest neighbor to a point q if the ratio of the distance
between q and p and the distance between q and its
true k-th nearest neighbor is at most (1 + E) (and in
fact, p may lie closer to q than the true k-th nearest
neighbor). By an answer to the approximate k-nearest
neighbor problem we mean a list of distinct data points
pl, ~2, . . . , pk, such that pj is a (1 + c)-approximation to
the j-th nearest neighbor of q, where 1 5 j 5 k.

The algorithm is a simple generalization of the near-
est neighbor algorithm. Iterate the nearest neighbor al-
gorithm k times, with the following modifications. First,
rather than maintaining the single closest data point to
q so far, maintain the k closest points seen so far in a
priority queue. Second, the termination condition pre-
sented in the previous algorithm does not cause termi-
nation, but results in the generation of a new approxi-
mate nearest neighbor taken from the top of the priority
queue. Finally, some care needs to be taken to be sure
that the same point is not reported twice. The total
running time is O(klogn). Details have been omitted

from this version.

5 Experimental Results.
In order to establish the practical value of our algo-
rithms, we implemented them and ran a number of ex-
periments. As is often the case with theoretical algo-
rithm design, many of the features of the data structures
and algorithms are included to handle certain worst-case
situations that rarely arise in practice. Unfortunately,
these features come at the expense of additional over-
head. In our case, the features which we have chosen
to omit affect the size and depth of the data structure,
which in turn affect the running time of the algorithm
but not its correctness. Furthermore, the effect of omis-
sion can be measured at the completion of preprocessing
time. In general, after preprocessing is complete, it is
easy to check the size and depth of the data structure,
to determine whether more sophisticated preprocessing
is warranted.

The first simplification is that no shrinking opera-
tions are performed (all decomposition is by splitting).
The second is that centroid decomposition is not used to
balance the resulting tree. The reason to avoid shrink-
ing is that to determine whether a point lies within a
shrunken box requires 2d comparisons, in contrast with
splitting in which a single comparison is needed. Con-
sequently, in dimension 16, nodes that involve shrink-
ing incur a constant factor of 32 times that needed for
splitting. In general, shrinking should be avoided ex-
cept in those situations where a very large number of
trivial splits would be generated otherwise. (We never
observed such situations in our experiments.) Centroid
decomposition is avoided for the same reason. The price
one pays for centroid decomposition is that each step
of the point location processing reduces to determining
whether a point lies within a given box. This requires
2d comparisons, in contrast with the naive search algo-
rithm that makes only one comparison for each corre-
sponding step. The benefit of centroid decomposition
is to guarantee that the tree is of logarithmic height.
However, in our experiments the height of our trees did
not exceed [log2 n] except by a small constant factor.

A further advantage of these simplifications is that
the resulting data structures have essentially the same
structure as a k-d tree. Arya and Mount [l] suggested
a nice trick for speeding up priority search in k-d
trees, which can be applied to the search structures
presented here. In particular, because the splitting
planes are orthogonal to the coordinate axes, and
Minkowski metrics are used, it is possible to update the
distance from each cell to the query point as we walk
around the box-decomposition tree in 0(1) time, rather
than the straightforward O(d) time.

580

Our description of the data structure omitted de-
tails in the choice of splitting planes. We experimented
with two schemes, which we describe below. Given a
subset of the data points, define the spread of these
points along some dimension to be the difference in the
maximum and minimum coordinates in this dimension.
Fair-split rule: Given a box, determine the sides that

can be split without violating a ratio of 3:l between
the longest and shortest sides of any box. Among
these dimensions select the dimension along which
the points have maximum spread, and split along
this dimension. The choice of splitting points is the
one that most evenly distributes points on either
side of the splitting hyperplane, subject to the
3:l ratio bound. (This rule was inspired by the
splitting rule given by Callahan and Kosaraju [5].)

Midpoint-split rule: Given a box, consider its
longest sides. Among these sides, select the one
along which the points have maximum spread.
Split this side at its midpoint. (This rule is an
adaptation of quadtree-like decomposition [15].)

‘We ran experiments on these two data structures,
and for additional comparison we also implemented an
optimized k-d tree [lo]. The cut planes were placed
at the median, orthogonal to the coordinate axis with
maximum spread. This data structure is quite similar
to simplifications described above except that there is
no ratio bound on the side lengths of the resulting
cells (and indeed ratios in the range from 1O:l to 2O:l
and even higher are quite common). Although the &
d tree is known to provide O(logn) query time in the
expected case for a special class of distributions, there
are no proven worst case bounds. We know of no other
work suggesting the use of a L-d tree for approximate
nearest neighbor queries, but the same termination
given in Section 3 can be applied here. Unlike the
box-decomposition tree, we cannot prove upper bounds
on the execution time of query processing. Given the
similarity to our own data structure, one would expect
that running times would be similar for typical point
distributions, and indeed our experiments bear this out.

Our experience shows that adjusting the bucket
size, that is, the maximum number of points allowed
before splitting, affects the running time. For the more
flexible k-d tree and the fair-split rule, we selected a
bucket size of 5, but found that for the more restricted
midpoint-split rule, a bucket size of 8 produced some-
what better results.

The following is a list of the distributions we
considered. To model the types of point distributions
seen in speech processing applications, the last two point

ARYA ET AL.

autoregressive sources into vectors of length d. An
autoregressive source uses the following recurrence to
generate successive outputs:

where W,, is a sequence of zero mean independent, iden-
tically distributed random variables. The correlation
coefficient p was taken as 0.9 for our experiments. Each
point was generated by selecting the first component
from the corresponding uncorrelated distribution (either
Gaussian or Laplacian) and the remaining components
were generated by the equation above. See Arya and
Mount [l] for more information.
Uniform: Each coordinate was chosen uniformly from

the interval [0, 11.

Gaussian: Each coordinate was chosen from the Gaus-
sian distribution with zero mean and unit variance.

ClusNorm: Ten points were chosen from the uniform
distribution and a Gaussian distribution with stan-
dard deviation 0.05 put at each.

Laplace: Each coordinate was chosen from the Lapla-
cian distribution with zero mean and unit variance.

Correlated Gaussian: W, was chosen so that the
marginal density of X, is Gaussian with variance
unity.

Correlated Laplacian: W, was chosen so that the
marginal density of X, is Laplacian with variance
unity.
Due to space limitations we only show results

for two extreme cases, the uniform and correlated
Laplacian. The results for other distributions are
comparable.

Each experiment consisted of 100,000 data points
in dimension 16 and the timing averages were computed
over 1,000 query points, generated from the same dis-
tribution. In each experiment we recorded a number of
statistics. In this section we present a number of statis-
tics, which we think are relevant. The first is the number
of floating point operations (i.e., any computation in-
volving the coordinates of the points) performed by the
algorithm. We feel this is a good machine-independent
measure of the algorithm’s running time, because it ac-
curately includes the overhead for distance calculations,
manipulation of the heap, and point location. We ran
experiments for values of c ranging from 0 (exact near-
est neighbor) up to 10. The results are shown in Figs.
5 and 6. Note that the scale is logarithmic.

To get a feel for the algorithm’s actual performance,
distributions were formed by grouping the output of we computed the true nearest neighbor off-line, and

NEAREST NEIGHBOR SEARCHING

0 2 4 6 8 10
Epsilon

Figure 5: Uniform: Average Floating Point Operations
vs. Epsilon.

d 0 IL
10000

1000
0 2 4 6 8 10

Epsilon

Figure 6: Correlated Laplacian: Average Floating Point
Operations vs. Epsilon.

computed the ratio between the distance to the point
reported by the algorithm and the true nearest neigh-
bor. The resulting quantity, averaged over all query
points is called the effective epsilon. These are shown
in Figs. 7 and 8 for the same distributions.

The algorithm manages to locate the true nearest
neighbor in a surprisingly large number of instances.
To show this, we plotted the probability that the
algorithm fails to return the true nearest neighbor for
these distributions. Results are shown in Figs. 9 and 10.

The following conclusions can be drawn from these
experiments.

l The algorithm’s actual performance was much bet-
ter than predicted by the value of c. Even for c as
high as 3 (implying that a relative error of 400% is
tolerated) the effective relative error was less than
l%, and the true nearest neighbor is found almost
half of the time.

l In moderately high dimensions, significant savings
in running time can be achieved by computing

kd -
0.2 - fair-split -.

midpoint-split ..-

0 2 4 6 8 10
Epeilon

s z
W

$
W

Figure 7: Uniform: Effective Epsilon vs. Epsilon.

0.25 ,
1

0.2

0.15

0.1

0.05

0

kd kd - -
fair-split fair-split -- --

midpoint-split midpoint-split-.-.

0 0 2 2 4 4 6 6 8 8 10. 10.
Epsilon Epsilon

Figure 8: Correlated Laplacian: Effective Epsilon vs.
Epsilon.

approximate nearest neighbors. For the c = 3 cases,
improvements in running time on the order of 10
to 50 were common over the exact case.

There was relatively little difference in running
time and effective performance between different
splitting rules, even for the k-d tree, for which
upper bounds on search time cannot be proved.

For well-behaved data distributions, shrinking and
centroid decomposition do not seem to be merited
given the relatively high overheads they incur in
running time.

6 Acknowledgements.
We would like to thank Michiel Smid for his helpful
comments.

References

[l] S. Arya and D. M. Mount. Algorithms for fast vector
quantization. In J. A. Storer and M. Cohn, editors,

582

‘3
0.6 -

0.6 -

kd -
fair-split ---.

midpoint-split ..-..... -

0 2 4 6 6 10
Epsilon

Figure 9: Uniform: Probability of Miss vs. Epsilon.

‘I
0.6 1 -I

I .- z ; 0.6 -

3 0.4 -
B

fair-split ---.
midpoint-split - ...-....

0 2 4 6 6 10
Epsilon

Figure 10: Correlated Laplacian: Probability of Miss
vs. Epsilon.

PI

[31

PI
[51

PI

VI

Proc. of DCC ‘93: Data Compression Conference,
pages 381-390. IEEE Press, 1993.
S. Arya and D. M. Mount. Approximate nearest
neighbor queries in fixed dimensions. In Proc. 4th
ACM-SIAM Sympos. Discrete Algorithms, pages 2’71-
280, 1993.
J. L. Bentley, B. W. Weide, and A. C. Yao. Opti-
mal expected-time algorithms for closest point prob-
lems. ACM Transactions on Mathematical Software,
6(4):563-580, 1980.
M. Bern. Approximate closest-point queries in high
dimensions. Inform. Process. Lett., 45:95-99, 1993.
P. B. Callahan and S. R. Kosaraju. A decomposition
of multi-dimensional point-sets with applications to k-
nearest-neighbors and n-body potential fields. In Proc.
24th Ann. ACM Sympos. Theory Comput., pages 546-
556, 1992.
K. L. Clarkson. Fast algorithms for the aII nearest
neighbors problem. In Proc. 24th Ann. IEEE Sympos.
on the Found. Comput. Sci., pages 226-232, 1983.
K. L. Clarkson. A randomized algorithm for
closest-point queries. SIAM Journal on Computing,
17(4):830-847, 1988.

181

PI

PO1

Pll

P4

P31

P41

P51

P61

P71

[I81
P91

PO1

ARYA ET AL.

J. G. Cleary. Analysis of an algorithm for finding near-
est neighbors in euclidean space. ACM Transactions on
Mathematical Software, 5(2):183-192, 1979.
T. Feder and D. H. Greene. Optimal algorithms for
clustering. In Proc. 20th Annu. ACM Sympos. Theory
Comput., pages 434-444, 1988.
J. H. Friedman, J. L. Bentley, and R.A. Finkel. An
algorithm for finding best matches in logarithmic ex-
pected time. A CM Transactions on Mathematical Soft-
ware, 3(3):209-226, 1977.
M. GoIin, R. Raman, C. Schwarz, and M. Smid. Ran-
domized data structures for the dynamic closest-pair
problem. In Proc. 4th ACM-SIAM Sympos. Discrete
Algorithms, pages 301-310, 1993.
L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear time algorithms for visibility and
shortest path problem s inside simple polygons. In
Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages
1-13, 1986.
H.-P. Lenhof and M. Smid. Enumerating the t closest
pairs optimally. In Proc. 33rd Ann. IEEE Sympos.
Found. Comput. Sci., pages 380-386, 1992.
R. L. Rivest. On the optimabty of Elias’s algorithm
for performing best-match searches. In Information
Processing, pages 678-681. North Holland Publishing
Company, 1974.
H. Samet. The Design and Analysis of Spatial Data
Structures. Addison Wesley, Reading, MA, 1990.
C. Schwarz, M. Smid, and J. Snoeyink. An optimal
algorithm for the on-line closest-pair problem. In Proc.
8th Annu. ACM Sympos. Comput. Geom., pages 330-
336, 1992.
M. R. Soleymani and S. D. Morgera. An efficient
nearest neighbor search method. IEEE Transactions
on Communications, 35(6):677-679, 1987.
R. L. SprouII. Refinements to nearest-neighbor search-
ing in Uimensional trees. Algorithmica, 6, 1991.
P. M. Vaidya. An O(nlogn) algorithm for the ah-
nearest-neighbors problem. Discrete Comput. Geom.,
4:101-115, 1989.
A.C. Yao and F.F. Yao. A general approach to d-
dimensional geometric queries. In Proc. 17th Ann.
ACM Sympos. Theory Comput., pages 163-168, 1985.

