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Abstract 
Let S denote a set of n points in d-dimensional space, Rd, 
and let dist(p, g) denote the distance between two points in 
any Minkowski metric. For any real E > 0 and q E Rd, a 
point p E S is a (1 + c)-approximate nearest neighbor of q 
if, for all p’ E S, we have dist(p, q)/dist(p’,q) 5 (1 + E). 
We show how to preprocess a set of n points in Rd in 
O(nlog n) time and O(n) space, so that given a query point 
p E Rd, and e > 0, a (1 + c)-approximate nearest neighbor 
of q can be computed in O(log n) time. Constant factors 
depend on d and C. We show that given an integer k 1 1, 
(1 + c)-approximations to the L-nearest neighbors of q can 
be computed in O(k log n) time. 

1 Introduction. 
Let Rd denote real d-dimensional space, and let dist(., .) 
denote any Minkowski L, distance metric.l Given a set 
of n points 5’ in Rd, and given any point q E Rd, a near- 
est neighbor to q in S is any point p E S that minimizes 
dist(p, q). Answering nearest neighbor queries is among 
the most important problems in computational geome- 
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The L1, Lz, and L, metrics are the well-known Manhattan-, 
Euclidean- and max-metrics. 

try because of its numerous applications to areas such 
as data compression, pattern recognition, statistics, and 
learning theory. 

The problem of preprocessing a set of n points S so 
that nearest neighbor queries can be answered efficiently 
has been extensively studied [2, 3, 4,7,8, 14, 17, 18, 201. 
Nearest neighbor searching can be performed quite 
efficiently in relatively low dimensions. However, as 
the dimension d increases, either the space or time 
complexities increase dramatically. We take d to be a 
constant, independent of n. (For example, our interest 
has been to provide reasonably efficient algorithms for 
values of d ranging up to about 20.) For d > 3, there is 
no known algorithm for nearest neighbor searching that 
achieves both nearly linear space and polylogarithmic 
query time in the worst case. 

The difficulty of finding an algorithm with the above 
performance characteristics for nearest neighbor queries 
suggests seeking weakened formulations of the problem. 
One formulationis that of computing approximate near- 
est neighbors. Given any 6 > 0, a (l+e)-nearest neighbor 
of q is a point p E S such that, for all p’ E S 

dist(p,q) < 1 + E 
dist(p’, q) - * 

Arya and Mount [2] showed that given a point set S 
and any E > 0, the point set can be preprocessed 
by a randomized algorithm running in O(n2) expected 
time and O(n log n) space, so that approximate nearest 
neighbor queries can be answered by a randomized 
algorithm that runs in O(log3 n) expected time. 

In this paper we improve this result in a number 
of ways. We present an algorithm that preprocesses a 
set of n points in Rd in O(n log n) time, and produces a 
data structure of space O(n) such that for query point 
q and any E > 0, approximate nearest neighbor queries 
can be answered in O(logn) time. This improves the 
results of Arya and Mount significantly in the following 
respects. 

l Space and query time are asymptotically optimal 
(for fixed d and C) in the algebraic decision tree 
model of computation. 
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l The preprocessing is independent of E, so that one 
data structure can answer queries for all degrees of 
precision. 

l All algorithms are deterministic, rather than ran- 
domized, but the code is still quite simple. 

l Constant factors depending exponentially on di- 
mension have been eliminated from the preprocess- 
ing time and space. (Exponential constant factors 
still remain in the query time.) 
Because this problem is of considerable practical 

interest, the importance of the last item cannot be 
overstated. When dealing with large point sets (n 1 
10,000) in moderately large dimensions (say d 1 12), 
constant factors in space that are on the order of 2d or 
(l/~)~ (even with O(n) space) are too large for practical 
implementation. Of course, exponential factors in query 
time are also undesirable, but we will see later that for 
many point distributions it is possible to terminate the 
search algorithm early and still produce results of good, 
albeit unproven, quality. 

We begin with an outline of our data structure 
and search algorithm. Our methods are b&sed largely 
on existing techniques with a number of straightfor- 
ward adaptations for our particular problem. The pre- 
processing is based on the standard technique of boz- 
decomposition, which has been presented in a number 
of roughly equivalent forms elsewhere [4, 5, 6, 191. In 
this technique points are recursively subdivided into a 
collection of d-dimensional rectangles with sides parallel 
to the coordinate planes. These rectangles are used to 
construct a subdivision of space into cells each of con- 
stant complexity. We maintain the property that the 
cells are “fat” in the sense that the ratio of the longest to 
the shortest side is bounded above by a constant. Each 
cell is associated with one data point that is “close” to 
the cell, either contained within the cell or in a nearby 
cell. Closeness is defined relative to the size of the cell. 

Assume this structure has been built. We perform 
approximate nearest neighbor queries by locating the 
cell that contains the query point Q, and enumerating 
cells of the subdivision in increasing order of distance 
from the query point. Throughout we maintain the 
closest data point encountered so far (see Fig. l(a)). 
The hierarchical and rectangular nature of the box- 
decomposition makes point location and enumeration 
easy (although some care is needed since the decompo- 
sition tree need not be balanced). Since cells are enu- 
merated in order of increasing distance, whenever the 
distance to the current cell times (1 + E) exceeds the 
distance to the closest known point p, the search is ter- 
minated, and p is reported as an approximate nearest 
neighbor. 
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Figure 1: Algorithm overview. 

How many cells might be encountered before this 
condition is met? We claim that the number of cells 
may depend on d and c, but not on n. To see this, 
we will show that if the search encounters a sufficiently 
large number of cells, depending on c and d, then it 
can be argued from the fatness of the cells that at least 
one of these cells must be sufficiently small, and hence 
there is a data point nearby (e.g., see Fig. l(b)). Since 
no significantly closer point has been seen so far, this 
nearby point is an approximate nearest neighbor. 

It is an easy matter to extend the algorithm for 
computing nearest neighbors to actually enumerating 
points in approximately increasing distance from the 
query point. In particular we show, that after the 
same preprocessing, given any point q, 6 > 0, and 
L, the (1 + e)-approximate Ic nearest neighbors can be 
computed in O(k: log n) time. 

Space and query time are asymptotically optimal 
under the algebraic decision tree model. It is easy to see 
that Q(n) space and R(log n) time are needed under this 
model even in dimension one, since the data structure 
must be able to support at least n possible outputs, one 
for each query that is equal to a point of the set. It 
should be pointed out that common techniques for the 
closest pair problem (e.g. [ll, 131) violate this model 
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by making use of the floor function to achieve efficient 
running times; however, it is not clear whether this 
observation can be applied to the approximate nearest 
neighbor problem. 

2 The Data Structure. 
Recall that we are given a set of n data points S in 
Rd. We will use the term data point when referring 
to points in S, and point for arbitrary points in space. 
As mentioned earlier the data structure is a straight- 
forward adaptation of the standard box-decomposition 
construction (described below). This technique is the 
basis of the data structures described by Callahan and 
Kosaraju [5], Clarkson [6], Vaidya [19], Samet [15], Bern 
[4], Feder and Greene [9], and others. 

Before describing the specifics of our implementa- 
tion, we present a list of properties which suffice to apply 
our algorithms. Define a subdivision of Rd to be a fi- 
nite collection of d-dimensional cells whose interiors are 
pairwise disjoint, and whose closures cover the space. 
The data structure consists principally of a subdivision 
of Rd into O(n) ce 11 s, each of constant complexity. We 
do not require that this subdivision satisfies any partic- 
ular topological or geometric requirements other than 
those listed below (e.g. it need not be a cell complex, 
and 
(4 

(b) 

cells need not be convex). 
Bounded occupancy: Each cell contains from 
zero up to some constant number of data points. 
Points that lie on the boundary between two or 
more cells are assumed to be assigned to one of the 
cells by some tie-breaking rule. 

Existence of a close data point: Each cell c is 
associated with a given positive real she, denoted 
size(c). Ifs is the size of a cell, then for any point 
p within the cell, there exists a data point whose 
distance from p is at most some constant factor cr 
times s. The value of (Y will generally be a function 
of the dimension. A pointer to such a data point 
is associated with the cell. At most a constant 
number of cells are associated with any one data 
point. 

(c) Packing constraint: The number of cells of size 
at least s that intersect an open ball of radius T > 0 
is bounded above by a function of r/s, independent 
of n. (By ball we mean the locus of points that are 
within distance r of some point in Rd according to 
the distance metric.) 

(d) Point location: Given a point q in Rd, the cell 
containing q can be computed in O(logn) time. 

(e) Distance enumeration of cells: Define the 
distance between a point q and a cell c to be the 
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closest distance between the point and any part of 
the cell. Given q, the cells of the subdivision can 
be enumerated in order of increasing distance from 
q. The time to enumerate the nearest m cells is 
O(mlogn). Note that m may not be known when 
the enumeration begins. 

2.1 Box-decomposition tree. We now describe 
how to adapt the box-decomposition method to satisfy 
these properties. We call the resulting structure a 
box-decomposition tree. Care has been taken in this 
definition to avoid exponential factors in dimension from 
entering preprocessing and space bounds. The specific 
details of the construction are discussed in later sections. 

The points of S are assumed to be represented in 
the standard way as a d-tuple of floating point or integer 
values. By a rectangle in Rd we mean the d-fold product 
of closed intervals on the coordinate axes. We will limit 
consideration to a restricted set of rectangles, which we 
call boxes. A box is a rectangle such that the ratio of 
its longest side to its shortest side is bounded above by 
some constant p that is greater than or equal to 2. Let 
us assume for simplicity that all the data points have 
been scaled to lie within a d-dimensional unit hypercube 
u. 

For our purposes, a cell is either a box or the set 
theoretic difference between two boxes, one enclosed 
within the other. Cells of the former type are called 
box cells and cells of the latter type are called doughnut 
cells. Each doughnut cell is represented by its outer box 
and inner box. It is important to note the difference 
between boxes and cells. Boxes are used to define cells, 
and cells are the basic elements that will make up the 
subdivision. 

Consider two boxes b and b’, where b’ is enclosed 
within b. We say that b’ is sticky for b if for each of 
the 2d sides of b’, the distance from this side to the 
corresponding side b is either zero, or is greater than or 
equal to the width of b’ along this dimension. Define 
shrink(b) to be a minimal, sticky box b’ (different from 
b) that is enclosed within b and contains the points 
b n S. Stickiness is needed for technical reasons later 
in Lemma 2.3. 

Adapting the definitions given by Callahan and 
Kosaraju [5], define a split of a rectangle to be a parti- 
tion of the rectangle into two rectangles by a hyperplane 
parallel to one of the coordinate axes. Define a fair-split 
of box b, split(b), t o b e a split of b into two boxes, each of 
which contains at least one point of S. The “fairness” of 
the split refers to the fact that the resulting rectangles 
cannot be arbitrarily thin, due to the ratio restriction 
on box side lengths. Henceforth, assume that all splits 
are fair-splits, unless stated otherwise. 
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LEMMA 2.1. Given any box b which contains two or 
more points of S, at least one of the operations shrink 
and split can be performed. Once a shrink operation has 
been performed, a split is always possible on the resulting 
shrunken box. 

Box-decomposition works by starting with the unit 
hypercube, U, and recursively applying the operation 
shrink followed by split. These operations are repeated 
as long as the number of data points in the current 
box exceeds some threshold, BucketSize. The opera- 
tion shrink is performed only if it is needed (since for 
practical reasons its overhead is much greater). A pseu- 
docode description is given in Fig. 2. Note that a direct 
implementation of this procedure is not asymptotically 
efficient. Details of the construction are given later. 
The initial call is to BoxDecomp(S, U). A set of cells 
will be created in the process. Each cell is represented 
by the rectangle(s) that define it. We make the gen- 
eral position assumption that data points do not lie on 
boundaries of cells, but this restriction is easily removed 
through the use of any rule for breaking ties. 

BoxDecomp(T, b) { 
if (12’1 5 BucketSize) 

create box cell b; 
else { 

if (split(b) is not possible) { 
b’ = shrink(b); 
create doughnut cell b - b’; 
b = b’; 

1 
(bl, bz) = split(b); 
BoxDecomp(T n bi, bl); 
BoxDecomp(T n bz, bz); 

I 
1 

Figure 2: Box-decomposition algorithm. 

The decomposition is illustrated in Fig. 3, where a 
ratio of 2:l is maintained for all boxes. In (a) we show 
the decomposition (line segments representing splits and 
rectangles representing shrinks) and in (b) the cells of 
the resulting subdivision are shown. 

We can associate a binary tree with the box- 
decomposition in a natural way. Following Vaidya’s 
notation, when splitting is performed we call br and 
b2 the successors of b. When shrinking is performed b’ 
and b - b’ are the successors of b. The successors define 
a binary tree, whose root is the initial hypercube U, 
and whose leaves are either boxes that contain a single 
point, or doughnut cells that contain no point. Every 
internal node of this tree is associated with a box, and 
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Figure 3: Box-decomposition. 

this box is the disjoint union of the cells of its descendent 
leaves. An internal node is called a shrinking node if its 
successors arise by shrinking, and it is called a splitting 
node otherwise. 

Along any path from the root to a leaf in this tree, 
there can be no two consecutive shrinking nodes. Thus 
the number of splitting nodes is at least half the total 
number of internal nodes. Since each split gives rise 
to a nontrivial partition of S, the number of splitting 
nodes is O(n), and hence the total size of the tree 
is O(n). Each node of the tree is associated with its 
bounding box, or its two defining boxes in the case of 
the doughnuts. In this way we do not require separate 
storage for the cells of the subdivision since they are just 
the set of leaves in the tree. Observe that it is possible 
in principle to subdivide the hypercube using only split 
operations (if we were willing to allow cells containing 
no point of S). The purpose of shrinking is to guarantee 
that the data structure will be of size O(n). 

2.2 Decomposition properties. In this section 
we will show that properties (a)-(e) hold, or will hold 
after appropriate augmentation to the data structure 
described previously. Clearly (a) holds since each cell 
contains at most BucketSize points. To establish (b), 
define the size of a cell to be the length of its longest 
side. (For a doughnut cell we define its size to be the 
size of the outer box.) Property (b) is established in 
the following lemma. Proofs has been omitted from this 
version of the paper. They appear in the full version of 
the paper. 
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LEMMA 2.2. (Existence of a close point) Given a 
box-decomposition tree for a set of data points S lying in 
a unit d-dimensional hypercube U, and given any point 
q E 17, let s be the size of the subdivision cell containing 
q. Then there exists a point p E S whose distance from 
q is at most s . d. Such points can be assigned to cells 
so that no point is assigned to more than two cells. 

The following lemma establishes property (c). Note 
that there is some subtlety in proving this lemma, since 
it does not generally hold for box-decompositions based 
on arbitrary shrinking and splitting. This is the reason 
we introduced the stickiness property when defining 
shrinking. The proof has been omitted. 

LEMMA 2.3. (Packing Constraint) Given a box- 
decomposition tree for a set of data points S lying in 
a unit d-dimensional hypercube U, and given any point 
q E U, let s be any positive real. The number of 
subdivision cells of size at least s that intersect a ball 
of radius r centered at q is on the order of (r/s)d. 

2.3 Point Location. In order to establish property 
(d) we need to establish balance in the tree. Following 
Bern [4] or Schwarz, Smid and Snoeyink [16], we do 
this using the standard technique of centroid decompo- 
sition. (See Clarkson [S] for an alternative randomized 
approach.) Let us think of the box-decomposition tree 
as an unrooted free-tree in which the degree of each node 
is at most three. For our purposes define a centroid edge 
in a binary tree of n nodes to be an edge whose removal 
partitions the tree into two subtrees each with at most 
[2n/3] leaves. Taking centroids, the nodes of the box- 
decomposition tree can be recursively restructured into 
a binary tree of O(logn) depth. The centroid decom- 
position tree can be computed in O(n) time (see e.g. 
[12]). We assume that the resulting centroid decompo- 
sition tree is a second tree threaded through the same 
set of nodes as the box-decomposition tree. 

To perform point location, consider the removal of 
a centroid edge (2, y), where x is a parent of y in the 
box-decomposition tree. The node y is associated with 
either a bounding box or is a leaf corresponding to a 
doughnut cell in the box-decomposition tree. In the 
latter case, on the order of d comparisons suffice to 
determine whether q is contained within the doughnut. 
In the former case, the cells associated with y’s subtree 
lie within the bounding box associated with y. All 
of the cells associated with x lie outside of this box. 
Note that because of the removal of prior centroids, 
the region associated with y’s remaining subtree or x’s 
remaining subtree may be of unbounded complexity. 
The important thing is that the box decomposition 
tree gives us a separator of constant (O(d)) complexity. 
Thus in constant time we can determine the subtree 

within which to continue the search. It follows that 
we can determine the cell containing an arbitrary query 
point in O(logn) time (with a constant factor of d). 

2.4 Distance Enumeration. The last remaining 
property to consider, (e), is how to enumerate the 
cells in increasing order of distance about some point 
Q* The method we employ is called priority search 
after a similar search technique used for k-d trees by 
Arya and Mount [l]. The idea is to store a subset 
of cells in a priority queue ordered by their distance 
from q. Recall that the distance between q and a cell 
is the closest distance between q and any point in the 
cell. Whenever a cell is removed from the priority 
queue we enqueue a constant number (O(d)) of its 
neighboring cells. Although, in general, a cell in the 
box-decomposition may have up to O(n) neighbors, we 
will show that it suffices to consider only a constant 
number of neighboring cells. 

Every cell in the subdivision is bounded by at most 
2d facets of dimension d - 1. The facets of rectangular 
cells are just (d - I)-dimensional rectangles. The facets 
of doughnut cells are in general the difference between 
two (d - 1)-dimensional facets, in the special case where 
the inner rectangle shares a boundary with its outer 
rectangle. In either case, the complexity of a facet is at 
most 2(d - 1). 

We say that two cells are neighbors if they share a 
common (d - 1)-dimensional boundary. Note that the 
number of neighbors is not bounded by the number of 
facets because the subdivision is not a cell complex. Let 
c be the cell containing q, and let f be any facet of c. 
Because of the simple structure of facets, in constant 
(O(d)) time we can compute the nearest point q’ to 
q on (the closure of) this facet. Using point location 
we can determine the neighbor of c along this facet 
that contains the point q’ and lies on the opposite side 
of f from c. Assuming that q is in general position, 
this neighboring cell is unique. (In fact it can be 
shown that because facets are rectangles aligned with 
the coordinate axes, the choice of q’ is independent 
of which Minkowski metric is used.) Let neigh(c, f, q) 
denote this closest of c’s neighboring cells to q along c’s 
facet f. Note that this process need only be performed 
for facets along which the interior of the cell is closer to 
q than the exterior. Fig. 4 shows the neighboring cells 
selected by this process. 

To begin the enumeration, each cell is unmarked. 
Begin by locating the cell that contains q in O(logn) 
time using point location. Insert this cell into the 
priority queue and mark it. Repeatedly remove the cell c 
from the priority queue with the smallest distance from 
q. For each of the facets f of c, neigh(c,f,q) can be 
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Figure 4: Distance enumeration. 

computed in O(logn) time through point location. For 
each such cell that is unmarked, compute its distance 
from q and insert the cell into the priority queue. The 
time needed to process a given cell is O(logn) (with 
a constant factor on the order of d2, since each of at 
most 2d facets generate a point location query taking 
O(d log n) time.) 

To establish the correctness of this algorithm, ob- 
serve that had we enqueued all of the neighbors of a 
given cell, the method would have certainly enumerated 
all cells in order of increasing distance. The only issue is 
whether by enqueuing only the closest neighboring cell 
for each facet no cell is missed. The following lemma 
establishes that for each cell c’ of the subdivision, there 
is some cell c that lies closer to q, and some facet f of 
c, such that c’ = neigh(c, f, q). From this it follows that 
every cell will be enqueued eventually, and in proper 
distance order. The proof has been omitted from this 
version. 

LEMMA 2.4. Priority search vi&s Ihe cells of the 
subdivision in increasing order of distance from the 
query point. 

2.5 Construction. We show that the box- 
decomposition tree can be constructed in O(n logn) 
time. A naive implementation of the algorithm pre- 
sented above leads to an O(n2) time algorithm, because 
we have no guarantee that successive splits will be bal- 
anced. Callahan and Kosaraju [5] offer a particularly 
elegant solution to the problem of partitioning points, 
which we outline here. When we are determining how to 
partition the points within some box b, the data points 
contained in b are stored in d separate lists, each sorted 
by one of the coordinates, that are crossed referenced 
with the set of points. Rather than updating these lists 
after each split, a sequence of splits is performed, until 
each of the resulting subsets contains fewer than half of 
the initial number of points. In linear time it is pos- 
sible to partition the initial set of points among these 
subsets, form the resulting sorted lists in each case, and 

then recurse on each subset. Because the subproblems 
are all of less than half the original problem size, the 
overall running time is O(n log n). The constant factors 
are linear in d. 

One other issue that needs to be considered is 
whether to shrink or to split. Let b be the current box, 
and let 5” denote the points of S lying within b. Let 
r denote the smallest bounding rectangle for S’. It is 
an easy matter to determine from T and b whether a 
split is possible in constant (O(d)) time. If no split is 
possible, then as we noted earlier, a shrink operation 
is possible. Using the length of the longest side of T, 

and given the ratio bound on side lengths of boxes, 
determine the minimum lengths of the remaining sides 
of any enclosing box. It is easy to see that these lengths 
will be less than or equal to the corresponding lengths 
of b (for otherwise, the ratio bound would have been 
violated for b). For each dimension, enlarge the length 
of bounding rectangle in this dimension, while staying 
within b. If this is not possible for this side without 
violating the stickiness property, then enlarge this side’s 
length by pushing a side of r out to the corresponding 
side of b. Now this side of P coincides with a side of 
b. In the process of enlarging, new longest side may 
be created, and hence side lengths that were already 
adjusted may need to be reevaluated. However, once a 
side is pushed to b’s boundary, it cannot be moved again, 
so after O(d) iterations, this process will terminate. The 
total time for this operation is O(d2), a constant in fixed 
dimensions. 

3 Approximate Nearest Neighbor Queries. 
Given a set of n points S in Rd, and assuming a data 
structure satisfying properties (a)-(e) of the previous 
section has been computed, we show how to answer an 
approximate nearest neighbor query in O(logn) time 
(constants depending on d and E). Let q be the query 
point in Rd. Recall that the output of our algorithm is 
a data point p, such that, for all p’ E S, 

dist (p, d 
dis2(p’, q) ’ ’ + e* 

We assume that q lies within the enclosing box for the 
data set, but it is easy to modify the algorithm to handle 
the general case. 

We begin by applying the point location algorithm 
to determine the cell containing the query point q. 
Enumerate the cells of the subdivision in increasing 
order of distance from q. Recall from (a) and (b) that 
each cell is associated with one or more points, either 
because the cell contains data points, or because it is 
associated with a nearby point. As each cell is visited, 
process it by computing the distances of these points 
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to q and recording the closest seen so far. The cell 
enumeration terminates if the current cell’s distance to 
q times (l+c) exceeds the nearest distance r to a known 
data point p. We know that no subsequent point to be 
encountered will be closer to q than r/(1 +c), and hence 
p is an approximate nearest neighbor. 

The processing time for each cell visited by the 
algorithm is O(1) with a constant factor on the order 
of d for distance computation. The time is dominated 
by the O(logn) overhead needed at each step of the 
cell enumeration. We can visit the k nearest cells to q 
in O(k logn) time. To establish the O(logn) running 
time, it suffices to prove that the number of cells visited 
is O(1). 

LEMMA 3.1. The approximate nearest neighbor al- 
gorithm terminates after visiting at most O(1) cells 
(with constant factors depending on d and e on the order 
of O((dV + WNd)J 

Proof. The proof is baaed on computing an upper 
bound on the distance to the nearest neighbor and 
showing that within this distance the presence of any 
sufficiently small sized cell will cause the algorithm to 
terminate. From this we can apply property (c) from the 
previous section to infer that there are only a constant 
number of cells of a given size. Details have been 
omitted due to space limitations. Cl 

4 Approximate k-Nearest Neighbors. 
In this section we will describe a generalization of the 
approximate nearest neighbor procedure to the problem 
of computing approximations to the k nearest neighbors 
of a query point. A point p is a (1 + c)-approximate k-th 
nearest neighbor to a point q if the ratio of the distance 
between q and p and the distance between q and its 
true k-th nearest neighbor is at most (1 + E) (and in 
fact, p may lie closer to q than the true k-th nearest 
neighbor). By an answer to the approximate k-nearest 
neighbor problem we mean a list of distinct data points 
pl, ~2, . . . , pk, such that pj is a (1 + c)-approximation to 
the j-th nearest neighbor of q, where 1 5 j 5 k. 

The algorithm is a simple generalization of the near- 
est neighbor algorithm. Iterate the nearest neighbor al- 
gorithm k times, with the following modifications. First, 
rather than maintaining the single closest data point to 
q so far, maintain the k closest points seen so far in a 
priority queue. Second, the termination condition pre- 
sented in the previous algorithm does not cause termi- 
nation, but results in the generation of a new approxi- 
mate nearest neighbor taken from the top of the priority 
queue. Finally, some care needs to be taken to be sure 
that the same point is not reported twice. The total 
running time is O(klogn). Details have been omitted 

from this version. 

5 Experimental Results. 
In order to establish the practical value of our algo- 
rithms, we implemented them and ran a number of ex- 
periments. As is often the case with theoretical algo- 
rithm design, many of the features of the data structures 
and algorithms are included to handle certain worst-case 
situations that rarely arise in practice. Unfortunately, 
these features come at the expense of additional over- 
head. In our case, the features which we have chosen 
to omit affect the size and depth of the data structure, 
which in turn affect the running time of the algorithm 
but not its correctness. Furthermore, the effect of omis- 
sion can be measured at the completion of preprocessing 
time. In general, after preprocessing is complete, it is 
easy to check the size and depth of the data structure, 
to determine whether more sophisticated preprocessing 
is warranted. 

The first simplification is that no shrinking opera- 
tions are performed (all decomposition is by splitting). 
The second is that centroid decomposition is not used to 
balance the resulting tree. The reason to avoid shrink- 
ing is that to determine whether a point lies within a 
shrunken box requires 2d comparisons, in contrast with 
splitting in which a single comparison is needed. Con- 
sequently, in dimension 16, nodes that involve shrink- 
ing incur a constant factor of 32 times that needed for 
splitting. In general, shrinking should be avoided ex- 
cept in those situations where a very large number of 
trivial splits would be generated otherwise. (We never 
observed such situations in our experiments.) Centroid 
decomposition is avoided for the same reason. The price 
one pays for centroid decomposition is that each step 
of the point location processing reduces to determining 
whether a point lies within a given box. This requires 
2d comparisons, in contrast with the naive search algo- 
rithm that makes only one comparison for each corre- 
sponding step. The benefit of centroid decomposition 
is to guarantee that the tree is of logarithmic height. 
However, in our experiments the height of our trees did 
not exceed [log2 n] except by a small constant factor. 

A further advantage of these simplifications is that 
the resulting data structures have essentially the same 
structure as a k-d tree. Arya and Mount [l] suggested 
a nice trick for speeding up priority search in k-d 
trees, which can be applied to the search structures 
presented here. In particular, because the splitting 
planes are orthogonal to the coordinate axes, and 
Minkowski metrics are used, it is possible to update the 
distance from each cell to the query point as we walk 
around the box-decomposition tree in 0( 1) time, rather 
than the straightforward O(d) time. 
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Our description of the data structure omitted de- 
tails in the choice of splitting planes. We experimented 
with two schemes, which we describe below. Given a 
subset of the data points, define the spread of these 
points along some dimension to be the difference in the 
maximum and minimum coordinates in this dimension. 
Fair-split rule: Given a box, determine the sides that 

can be split without violating a ratio of 3:l between 
the longest and shortest sides of any box. Among 
these dimensions select the dimension along which 
the points have maximum spread, and split along 
this dimension. The choice of splitting points is the 
one that most evenly distributes points on either 
side of the splitting hyperplane, subject to the 
3:l ratio bound. (This rule was inspired by the 
splitting rule given by Callahan and Kosaraju [5].) 

Midpoint-split rule: Given a box, consider its 
longest sides. Among these sides, select the one 
along which the points have maximum spread. 
Split this side at its midpoint. (This rule is an 
adaptation of quadtree-like decomposition [15].) 

‘We ran experiments on these two data structures, 
and for additional comparison we also implemented an 
optimized k-d tree [lo]. The cut planes were placed 
at the median, orthogonal to the coordinate axis with 
maximum spread. This data structure is quite similar 
to simplifications described above except that there is 
no ratio bound on the side lengths of the resulting 
cells (and indeed ratios in the range from 1O:l to 2O:l 
and even higher are quite common). Although the & 
d tree is known to provide O(logn) query time in the 
expected case for a special class of distributions, there 
are no proven worst case bounds. We know of no other 
work suggesting the use of a L-d tree for approximate 
nearest neighbor queries, but the same termination 
given in Section 3 can be applied here. Unlike the 
box-decomposition tree, we cannot prove upper bounds 
on the execution time of query processing. Given the 
similarity to our own data structure, one would expect 
that running times would be similar for typical point 
distributions, and indeed our experiments bear this out. 

Our experience shows that adjusting the bucket 
size, that is, the maximum number of points allowed 
before splitting, affects the running time. For the more 
flexible k-d tree and the fair-split rule, we selected a 
bucket size of 5, but found that for the more restricted 
midpoint-split rule, a bucket size of 8 produced some- 
what better results. 

The following is a list of the distributions we 
considered. To model the types of point distributions 
seen in speech processing applications, the last two point 
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autoregressive sources into vectors of length d. An 
autoregressive source uses the following recurrence to 
generate successive outputs: 

where W,, is a sequence of zero mean independent, iden- 
tically distributed random variables. The correlation 
coefficient p was taken as 0.9 for our experiments. Each 
point was generated by selecting the first component 
from the corresponding uncorrelated distribution (either 
Gaussian or Laplacian) and the remaining components 
were generated by the equation above. See Arya and 
Mount [l] for more information. 
Uniform: Each coordinate was chosen uniformly from 

the interval [0, 11. 

Gaussian: Each coordinate was chosen from the Gaus- 
sian distribution with zero mean and unit variance. 

ClusNorm: Ten points were chosen from the uniform 
distribution and a Gaussian distribution with stan- 
dard deviation 0.05 put at each. 

Laplace: Each coordinate was chosen from the Lapla- 
cian distribution with zero mean and unit variance. 

Correlated Gaussian: W, was chosen so that the 
marginal density of X, is Gaussian with variance 
unity. 

Correlated Laplacian: W, was chosen so that the 
marginal density of X, is Laplacian with variance 
unity. 
Due to space limitations we only show results 

for two extreme cases, the uniform and correlated 
Laplacian. The results for other distributions are 
comparable. 

Each experiment consisted of 100,000 data points 
in dimension 16 and the timing averages were computed 
over 1,000 query points, generated from the same dis- 
tribution. In each experiment we recorded a number of 
statistics. In this section we present a number of statis- 
tics, which we think are relevant. The first is the number 
of floating point operations (i.e., any computation in- 
volving the coordinates of the points) performed by the 
algorithm. We feel this is a good machine-independent 
measure of the algorithm’s running time, because it ac- 
curately includes the overhead for distance calculations, 
manipulation of the heap, and point location. We ran 
experiments for values of c ranging from 0 (exact near- 
est neighbor) up to 10. The results are shown in Figs. 
5 and 6. Note that the scale is logarithmic. 

To get a feel for the algorithm’s actual performance, 
distributions were formed by grouping the output of we computed the true nearest neighbor off-line, and 



NEAREST NEIGHBOR SEARCHING 

0 2 4 6 8 10 
Epsilon 

Figure 5: Uniform: Average Floating Point Operations 
vs. Epsilon. 
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Figure 6: Correlated Laplacian: Average Floating Point 
Operations vs. Epsilon. 

computed the ratio between the distance to the point 
reported by the algorithm and the true nearest neigh- 
bor. The resulting quantity, averaged over all query 
points is called the effective epsilon. These are shown 
in Figs. 7 and 8 for the same distributions. 

The algorithm manages to locate the true nearest 
neighbor in a surprisingly large number of instances. 
To show this, we plotted the probability that the 
algorithm fails to return the true nearest neighbor for 
these distributions. Results are shown in Figs. 9 and 10. 

The following conclusions can be drawn from these 
experiments. 

l The algorithm’s actual performance was much bet- 
ter than predicted by the value of c. Even for c as 
high as 3 (implying that a relative error of 400% is 
tolerated) the effective relative error was less than 
l%, and the true nearest neighbor is found almost 
half of the time. 

l In moderately high dimensions, significant savings 
in running time can be achieved by computing 
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Figure 7: Uniform: Effective Epsilon vs. Epsilon. 
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Figure 8: Correlated Laplacian: Effective Epsilon vs. 
Epsilon. 

approximate nearest neighbors. For the c = 3 cases, 
improvements in running time on the order of 10 
to 50 were common over the exact case. 

There was relatively little difference in running 
time and effective performance between different 
splitting rules, even for the k-d tree, for which 
upper bounds on search time cannot be proved. 

For well-behaved data distributions, shrinking and 
centroid decomposition do not seem to be merited 
given the relatively high overheads they incur in 
running time. 
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