
A Combinatorial Approah to Planar Non-olliding Robot ArmMotion PlanningIleana Streinu �Department of Computer SieneSmith CollegeNorthampton, MA 01063, USAstreinu�s.smith.eduhttp://s.smith.edu/ streinuAbstratWe propose a ombinatorial approah to plan non-olliding motions for a polygonal bar-and-joint frame-work. Our approah yields very eÆient deterministialgorithms for a ategory of robot arm motion plan-ning problems with many degrees of freedom, wherethe known general roadmap tehniques would give ex-ponential omplexity. It is based on a novel lass ofone-degree-of-freedom mehanisms indued by pseudotriangulations of planar point sets, for whih we pro-vide several equivalent haraterization and exhibitrih ombinatorial and rigidity theoreti properties.The main appliation is an eÆient algorithm forthe Carpenter's Rule Problem: onvexify a sim-ple bar-and-joint planar polygonal linkage using onlynon self-interseting planar motions. A step in theonvexi�ation motion onsists in moving a pseudo-triangulation-based mehanism along its unique tra-jetory in on�guration spae until two adjaent edgesalign. At that point, a loal alteration restores thepseudo triangulation. The motion ontinues for O(n2)steps until all the points are in onvex position.1 IntrodutionIn this paper we present a new approah to a ategoryof planar motion planning problems, inluding non-olliding unfoldings of open and losed hains (robotarms), even in the presene of ertain types of obsta-les (movable onvex polygons or exible polygonalhains). All of our onstrutions are elementary andare based on a novel lass of planar embedded graphsalled pseudo-triangulations whih possess rih om-binatorial properties. We use tehniques from Rigid-�Supported by NSF grant CCR-9731804.

ity Theory and Visibility graphs, together with in-sights gained from Oriented Matroid Theory. Themain ideas of our approah are best illustrated by thebasi problem of ontinuously reon�guring a simpleplanar polygon to any other planar on�guration withthe same edge-lengths, while remaining in the planeand without reating self-intersetions along the way,for whih we will desribe a simple and eÆient al-gorithm. This is done by �rst �nding motions thatonvexify both on�gurations with monotone motions(de�ned below), then taking one path in reverse.The paper is organized as follows. In the remain-ing of this introdution, we give an informal high-levelview of the result and its onnetion with previouswork. Preliminary onepts are de�ned in setion 2.Setion 3 ontains several ombinatorial harateri-zations of pseudo triangulations, as well as a skethof algorithms for omputing them. Setion 4 ontainsthe rigidity theoreti results on pseudo-triangulations.Setion 5 ontains the desription of the global on-vexi�ation motion and omplexity analysis. We on-lude with some suggestions for further researh.Frameworks and Robot arms. A bar-and-jointframework is a ombinatorial graph G = (V;E) em-bedded in the plane with rigid bars (�xed lengthstraight line segments) orresponding to the edges.Edges an move freely in the plane around adjaentjoints (verties). The motions preserve rigidly thelengths of the graph edges, but impose no restri-tion on the non-edges, whih may inrease or dereasefreely. In general, edges may ross and slide over eahother during the motion, but in this paper we are in-terested in avoiding ollisions and will not allow this.Of partiular interest are the monotone motions,where all the pairwise interdistanes between vertiesnever derease during the motion, thus guaranteeingnon-ollision.A linkage or robot arm is a planar framework whoseunderlying graph is a non-self-interseting path with nverties, and a losed hain is a simple planar polygonon n verties. Straightening a linkage means moving itontinuously until all its verties lie on one line withnon-overlapping edges. Convexifying a hain meansmoving it to a position where it forms a simple on-



vex polygon. Other types of frameworks of interest inthis paper inlude semi-simple polygons and pseudo-triangulations, de�ned below.The Carpenter's Rule Problem: Is it always pos-sible to straighten a planar linkage, or to onvexify aplanar hain? This question has been open sine the1970's. Reently, Connelly, Demaine and Rote [12℄have answered it in the aÆrmative. Their solutionstill left open the problem: Find, algorithmially, a�nite sequene of simple (�nitely desribed) motionsto straighten a linkage, or to onvexify a polygon.Previous Results on Reon�guring Linkages.The general tehniques for solving motion planningproblems based on roadmaps work well on problemswith bounded degrees of freedom, but yield exponen-tial algorithms for high degree of freedom problemssuh as the one we are interested in. See [32℄, [10℄,[4℄ and [5℄. In pratial appliations, probabilistiroadmap heuristis were used instead, see [24℄, [18℄.Under various onditions, problems about reon�gu-ration of linkages range in omplexity from polynomial([26℄) to NP- and even PSPACE-hard, see [19℄, [38℄,[21℄.The partiular problem of straightening bar-and-joint linkages and onvexifying polygons has aumu-lated a distinguished history, with some approahesgoing bak to a question of Erd�os [14℄. See Toussaint[34℄ for a fasinating aount. There are abundantonnetions with work done in the omputational bi-ology, hemistry and physis literature and motivatedby topis suh as protein folding or moleular model-ing. When rossings are allowed, Lenhart and White-sides [26℄ have shown that the on�guration spae hasat most two onneted omponents and gave a linearalgorithm for onvexi�ation based on simple motionsmoving only a onstant number of joints at a time. Re-ent results in the mathematis literature [22℄ aim atunderstanding the topology of the on�guration spaeof losed hains, but they allow rossings. The univer-sality result for mehanial linkages ([20℄, [23℄) holdsfor the general self-interseting ase.Studying reon�gurations of linkages with non ross-ing motions has reeived a reent impetus in [28℄,and results on planar linkages using spatial motions([7℄, [1℄), trees, 3 and higher-dimensional linkages ([6℄,[11℄) have followed. The Carpenter's Rule question,raised in the 1970's in the Topology ommunity by G.Bergman, U. Grenander, S. Shanuel (f. [25℄) andindependently in the early 1990's in the ComputerSiene ommunity by W. Lenhart, S. Whitesides, J.Mithell, seems to have �rst appeared in print in [26℄and [25℄. It was reently settled by Connelly, De-maine and Rote [12℄: all hains an be onvexi�ed,all linkages an be straightened. Their approah isto �rst prove (using linear programming duality andMaxwell's theorem, using a tehnique originating inCrapo andWhiteley [13℄ and Whiteley [35℄) that therealways exists a loal, in�nitesimal motion whih neverdereases any interdistanes. The atual veloities anbe found using linear programming. Then they pro-vide a global argument, showing the existene of a

ontinuous deformation obtained by integrating theresulting vetor �eld.Our Results. We strengthen and provide an al-gorithmi extension of the above mentioned result.While they have proven that the on�guration spae ofplanar non-rossing hains with the same orientationis onneted, we show how to algorithmially om-pute a path, onsisting of a �nite number of �nitely-desribed ars, between any two suh on�gurations.Along the way, we haraterize a family of planar rigidframeworks alled pseudo-triangulations, whih yield1DOF monotone mehanisms when a onvex hull edgeis removed, a result of independent interest in RigidityTheory. The rih ombinatorial and rigidity-theoretiproperties of pseudo-triangulations whih we presentin this paper are likely to add to the appliability ofthis versatile data struture, a slight generalizationof the one introdued by Pohiola and Vegter[29℄ intheir study of the visibility omplex and reently ap-plied to kineti geometri algorithms ([2℄, [3℄).Novelty. Our approah is based on the idea of ab-strating oriented-matroidal properties that holdthroughout a portion of a ontinuous motion. Therigidity theoreti properties of our generalized pseudotriangulations are novel, as is the pseudo-triangulationbased approah to 1DOF monotone mehanisms for�nding a path in on�guration spae. Along the way,we also give a generalization of a key lemma in [12℄by showing the non-existene of self-stress in bar-and-strut frameworks of a more omplex struture thanthose arising from polygons.Proof Tehniques and Overview of the Convex-i�ation Algorithm. The onvexifying path, seen inthe (2n�3)-dimensional on�guration spae (transla-tions and rotations of the original hain being fatoredout), is a �nite sequene of urve segments (ars) on-neting ontinuously at their endpoints.Eah ar orresponds to the unique free motion ofa monotone, one-degree-of-freeedom (1DOF) meha-nism indued by a planar pseudo-triangulation witha onvex hull edge removed. The mehanism is on-struted algorithmially by adding n � 4 bars to theoriginal polygon. It is set in motion by pinning downan edge and rotating another edge around one of itsjoints. We show that this indues the whole frame-work to move monotonially, i.e. with non-dereasinginterdistanes between all pairs of verties. One stepof the onvexi�ation algorithm onsists in movingthis mehanism until two adjaent edges align, at whihmoment it eases to be a pseudo-triangulation. We ei-ther freeze a joint (if the aligned edges belong to thepolygon) and loally path a pseudo-triangulation fora polygon with one less vertex, or otherwise performa loal ip of the added diagonals.There are many ways to onstrut the initial pseudo-triangulation (e.g. using an adaptation of the greedyip algorithm of Pohiloa and Vegter [29℄) or to pathit at the alignment points. For the sake of the analysis,we use a anonial way whih helps us to keep trakof a global integer valued weight funtion f(n). Eah



alignment step dereases f(n) by at least one unit.Hene the algorithm stops in at most f(n) suh steps.The analysis of one of the onvexi�ation shemeswould yield O(n2).Combinatorial Rigidity and Pseudo triangula-tions. A 1DOF monotone mehanism obtained froma pseudo-triangulation is an abstration and a anon-ial representation of one of the many basi solutions,induing monotone in�nitesimal motions, that the lin-ear programming approah of [12℄ would �nd for a er-tain position of the polygon in its on�guration spae.We haraterize pseudo-triangulations in severalequivalent ways, exhibiting their rih ombinatorialproperties. Some of these are speialized versions ofLaman's 2n � 3 ount and Henneberg onstrutionsfrom ombinatorial rigidity (see [36℄ or [17℄). Theproof of orretness of our approah derives from theseproperties, as well as from a generalization, from sim-ple polygons to the wider lass of pseudo-triangulationframeworks, of the approah used in [12℄ based on LPduality and Maxwell's theorem.2 De�nitions and PreliminariesReferenes. For rigidity theory terminology and ba-si results, we refer the reader to [30℄, [36℄, [37℄ and[17℄. In partiular, rigidity, �rst-order and generirigidity, as well as lassial results on 2-dimensionalrigidity suh as Laman's theorem, the Henneberg on-strutions, Lovasz and Yemini overing with two trees[27℄ and Maxwell's Theorem are to be found there.For oriented matroids, see [8℄, although we won't needmore than the irular hyperline (or loal) sequenesof [9℄ and [16℄ (see also [33℄).Notation and abbreviations. Our setting is theEulidian plane. All index arithmeti is done mod nin the set [n℄ := f1; � � � ; ng. We abbreviate \ounter-lokwise" as w and \one-degree-of-freedom meha-nism" as 1DOF mehanism.
(a) (b) (c)

(d) (e) (f)Figure 1: (a), (b) and () Ayli and (d), (e) and (f)yli sets of vetors.Ayli sets of vetors and edges. A set of vetorsin R2 (with a ommon origin) is ayli if it is stritlyontained in a half-plane, and yli otherwise. Theterminology omes from oriented matroid theory (see[8℄), an approah we won't explain in this abstrat,but whih provided the guiding line in our searh for

ombinatorial properties of rigid frameworks. Morepreisely, a set of ayli vetors has no linear om-bination with positive, not all zero oeÆients thatsums them to zero, while in the yli ase there is al-ways one. Collinearities may our, see the examplesin Fig. 1. The ayli ase of several ollinear ve-tors but in the same diretion, and the rest in aylirelation with them will our in our algorithm at thebeginning of eah step. A speial yli ase, whihwill our at the end of eah step of our onvexi�a-tion algorithm, will have some vetors ollinear and inopposite diretions, and all the others ontained in ahalf-plane.An ayli set of edges is a set of segments withendpoints in a �nite set of planar points suh thatthe vetors around eah vertex, taken in the diretionof the adjaent segments and direted away from thevertex, form an ayli set. See Fig. 2.
(a) (b)

1

Figure 2: (a) An ayli set of edges. Around eahvertex, the vetors in the diretions of the adjaentedges are depited. (b) A set of edges whih is yli,due to vertex 1.Polygons, pseudo-triangles and pseudo k-gons.A polygon on the ordered set of points P = fp1; � � � ; pngis obtained by joining pairs of onseutive points withline segments (edges of the polygon). It is simple ifnon-adjaent edges do not meet. In this ase, thereis a well-de�ned and onneted interior and exteriorof the polygon. We will assume that the verties arelabeled in w order, i.e. suh that the interior lies tothe left when the boundary of the polygon is traversedin that order.
(a) (b) (c)Figure 3: (a) A pseudo-triangle. (b) A semi-simplepseudo-triangle. () A pseudo 4-gon and its two pos-sible minimum pseudo-triangulations.A pseudo-triangle is a simple polygon with threeverties on its onvex hull, joined by three inward



onvex polygonal hains. In partiular, a triangle isa pseudo-triangle. We introdue semi-simple pseudo-triangles as a speial ase whih allows for some degen-eraies: some of the inner onvex angles may be zero,but none of the inner reex angles should be � or 2�.More generally, if we fous on the onvex verties ofa simple polygon and on the inner onvex hains be-tween them, we will refer to the polygon as being apseudo k-gon if it has exatly k onvex verties. SeeFig. 3() for an example. Semi-simple pseudo k-gonsallow simple types of degeneraies: some of the k on-vex angles may be zero, but none of the reex anglesis � or 2�.Note. A omplete treatment of the general oneptof semi-simple polygons as the limit ase for simplepolygons needs more tehnial apparatus and will notbe overed in this paper. See Fig. 4 for examples andhints to some of the omplexities involved in giving aomplete de�nition.
1

2 3

4

56

1

2 3

4

5 6

(a) (b)

1 25 3 6 4

1

1 1

1

5

5

5

5

3

3

3

3

6

6

6

6

4

4

4
4

2

2

2

2

(c)Figure 4: (a) A semi-simple and (b) a simple poly-gon on the same set of points, and () a semi-simpleollinear polygon and several possible interpretations(and perturbations) of it. The main question is: whihway ould an opening motion go?For the main problem treated in this paper, andif we start with a simple polygon, then the only nonsimple polygons appearing along the way and whihare needed to make our approah work will be semi-simple k-gons.
(a) (b) (c)Figure 5: (a) A minimum pseudo-triangulation. (b)A non-minimum pseudo-triangulation whih ontainsa minimum one. () A non-minimum pseudo trian-gulation whih does not ontain a minimum pseudotriangulation.Pseudo Triangulations. A pseudo-triangulation ofa point set P is a partitioning of the onvex hull ofP into pseudo triangles suh that every point appears

as the vertex of at least one pseudo triangular fae.We an view it as a olletion of edge segments withthis property. Equivalently, it is a speial embeddingof a speial planar graph suh that the outer fae isonvex and all internal faes are pseudo triangles. Aminimum pseudo triangulation is one whih has theleast number of edges among all pseudo triangulationsof the same point set. See Fig. 5.Pseudo k-gons an also be further subdivided intosmaller pseudo l-gons, l < k by the addition of innerdiagonals. Call that a pseudo subdivision. E.g. apseudo 4-gon an be partitioned into two (or more)pseudo triangles, see Fig.3().Frameworks. A framework (G;W ) is a graph G =(V;E), jV j = n, together with a set of positive weights(lengths) W = fleje 2 Eg. A realization of (G;W ) ona set pf points P = fp1; � � � ; png is a mapping of ver-ties to points and edges to line segments (i.e. anembedding of G) so that the length of the segmentorresponding to edge e is le. The set of all possiblerealizations of a framework is alled its on�gurationspae. As usual, we fator out translations and rota-tions. The on�guration spae may be empty, dison-neted and in general has a ompliated topologialstruture. The atual values of the edge lengths arenot relevant to our disussion, hene by abuse of ter-minology, from now on we will refer to a realization(G;P) as a framework. A motion or reon�guration ofthe framework is a urve (one dimensional trajetory)in on�guration spae going through the point givingthe framework realization.
(a) (b)Figure 6: The same graph embedded as two ombina-torially distint frameworks, whih are 1DOF meha-nisms: (a) is monotone, (b) is not.A ombinatorial framework (G;M) assoiated to aframework realization (G;P) is obtained by retaining(in M) only some ombinatorial information from theunderlying oriented matroid of the set of points P.Sine in this paper we work only with speial typesof frameworks, we do not give here the general def-inition. In our partiular ase, the information Mretained from the embedding will be, for eah ver-tex, the signed irular sequene in whih a diretedline rotating w enounters the adjaent edge vetors.An edge vetor is reorded positively or negatively de-pending on whether the rotating line enounters it inits diretion or in the opposite one. This onept is aspeialization of the loal sequenes of Goodman andPollak [16℄ (see also [9℄ and [33℄) and retains (partial)oriented matroid struture from the underlying set of



points P . In partiular, we an read o� from this in-formation the planar nature of an embedding of theframework and the yli or ayli nature of the edgevetors at eah vertex.A framework is planar if its underlying graph is aplane graph (i.e. a planar graph plus the informationabout its fae struture), and is embedded in a man-ner ompatible with the plane graph struture (i.e.all faes are embedded as simple polygons). It is apseudo-triangulation if all internal faes are pseudo-triangles and the outer fae is onvex. A frameworkis ayli if all the edge vetors around eah vertexare ayli. We also allow for the speial situation (tothe best of our knowledge, not dealt with in the lit-erature on planar graph embeddings) when the faesof the embedded framework are semi-simple pseudo k-gons (in partiular semi-simple pseudo-triangles). Forthe areful reader who already notied that some aremust be exerized with the de�nition of what it meansfor the outside fae to be a semi-simple pseudo k-gon,we rush to add that it an be done in a natural way.First we have to show that the outer fae is also somesort of pseudo k-gon. If the outer fae is the on-vex hull of the points, when we \look from the out-side" (i.e. from inside the outer fae) it has no onvexvertex, just a single reex hain, hene it is an outerpseudo 0-gon. If it has a onvex vertex (and hene onereex hain) it is an outer pseudo 1-gon, et. Notiethat the outer pseudo 3-gon looks quite di�erent fromthe usual pseudo triangle: its verties are outside, notinside the onvex hull of three onvex verties. For ex-ample, the outer fae of the framework in Fig. 6(a) isan outer pseudo 1-gon, and for (b) is an outer 2-gon.In general, the outer fae will be the only one withthis speial type of pseudo k-gon. One we �xed thisdetail, semi-simpliity is then extended in the obviousway.
(a) (b)Figure 7: (a) A generially rigid graph in an in�nitesi-mally exible embedding. (b) A rigid framework witha non-generially rigid underlying graph.Two frameworks are ombinatorially equivalent ifthere is a one-to-one orrespondene between theirverties preserving edges and faes, the outer fae andits orientation, and the underlying partial orientedmatroid, i.e. the irular w order of lines throughthe edges around eah vertex. This just means thatthey have the same underlying ombinatorial frame-work (and the embeddings have the same orientation,but we'll skip this detail here). In partiular, we de-�ne equivalent pseudo triangulations. The lass ofall ombinatorially equivalent pseudo triangulations

is alled a ombinatorial pseudo triangulation. Theunderlying ombinatorial framework aptures the in-formation (and an be used to represent) the ombi-natorial pseudo triangulation.A ruial idea in our onvexi�ation algorithm willbe to use mehanisms obtained from pseudo triangu-lations, and to reon�gure them ontinuously as longas the ombinatorial pseudo triangulation does nothange.Rigidity, Generi Rigidity, In�nitesimal Rigid-ity. A framework is (loally) rigid if its verties annotbe moved ontinuously while preserving the lengths ofthe edges, exept for translations and rotations. Oth-erwise it is exible. It is in�nitesimally exible if thereexists an assignment of veloity vetors vi to eah ver-tex pi so that hpi � pj ; vi � vji = 0, where h; i is thedot produt. Otherwise it is in�nitesimally (or �rst-order) rigid. A graph is generially rigid if it is rigidfor all embeddings on generi sets of points (see therigidity theory referenes for preise de�nitions). Cer-tain embeddings of generially rigid graphs may bein�nitesimally exible, or even exible. See Fig. 7.Notie that these frameworks are yli. A graph isminimally rigid if it is rigid and removing some edgereates a graph whih is no longer rigid.Laman's theorem provides a ombinatorial har-aterization for minimally rigid graphs on generi em-beddings: these are graphs on n verties with exatly2n� 3 edges, and suh that every subset of k vertiesspans no more than 2k�3 edges. Henneberg onstru-tions provide an indutive onstrution of generiallyrigid graphs via two types of loal additions. A stepof type 1 involves adding a vertex, joined by two newadjaent edges to two previously onstruted verties.A step of type 2 adds a new vertex and three adjaentegdes to three old verties suh that at least two arejoined by an edge, and then drops one of the exist-ing edges among these three old verties. The readerunfamiliar with these onstrutions may reognize, inthe simplest appliations of the type 1 steps whihpreserve planarity, basi ways of produing triangula-tions.
(a) (b)Figure 8: (a) A 1DOF mehanism (Peauellier's link-age). (b) A framework with an underlying generiallyminimally exible graph, and with a rigid (but notin�nitesimally rigid) embedding.One-degree-of-freedom mehanisms. A meha-nism is an embedded framework whih is exible. Itsdegree of freedom (DOF) is the dimension of its on�g-uration spae (after fatorization to translations androtations). A generi minimally exible graph is a



generially rigid graph with one edge removed (in par-tiular, it has exatly 2n� 4 edges). In a generi em-bedding, a minimally exible graph is a one degree offreedom (1DOF) mehanism, but in other embeddingsit may even be rigid, see Fig.8. Notie that these ex-amples are planar but not ayli.Monotone mehanisms. A 1DOF mehanism ismonotone if the non-rigid pairwise interdistanes ei-ther all inrease or all derease during the loal mo-tion. See Fig.6 for examples. E.g the Peauellier link-age in Fig.8 is not monotone, neither is it ayli.3 Rigidity of Pseudo-TriangulationsFrom now on we are interested only inminimum pseudotriangulations and show that they have a wealth ofombinatorial and rigidity theoretial properties.Theorem 3.1 (Charaterization of minimumpseudo triangulations) Let G = (V;E) be a graphembedded on the set P = fp1; � � � ; png of points. Thefollowing properties are equivalent.1. G is a minimum pseudo-triangulation.2. The edges E of G form an ayli and planar setof segments, and E is maximal with this property(of being both planar and ayli).3. G is an ayli pseudo triangulation of the on-vex hull of P.4. (pseudo triangle Laman ount) The faes of Gare pseudo-triangles and the number of edges is2n � 3.5. (planar ayli Laman ount) The set of edgesE is planar, ayli and has 2n � 3 elements.6. (planar ayli Henneberg onstrution) G anbe onstruted indutively as follows. Start witha triangle. At eah iteration, add a new ver-tex in one of the faes of the already onstrutedembedded graph (whih will be an ayli pseudotriangulation). Connet in one of the two ways(see Fig. 9):(a) Type 1: (degree 2) Join the vertex with twotangents to the already onstruted part. Ifthe new vertex is outside the onvex hull,the two tangents are uniquely de�ned. If itis inside an internal pseudo triangular fae,there are three di�erent ways of adding twotangents to the three inner onvex hains ofthe fae.(b) Type 2: (degree 3) Add two tangents as be-fore. Then hoose an edge on the onvexhain between the two tangent points, re-move it. This reates a pseudo 4-gon. Re-pseudo triangulate by adding the unique bi-tangent di�erent from the one just removed.

Moreover, if any of the above onditions is satis-�ed, then the subgraph indued on any subset set ofk verties has at most 2k � 3 edges (the hereditaryproperty).For the proofs, we will need a series of basi de�ni-tions and fats, whih we present in a skethy manner.Given a point outside a onvex hull, a tangent from thepoint to the hull is a line segment ontaining all thehull verties on one side and touhing it at a vertex.Given two onvex hulls, a bitangent is a line segmenttouhing eah hull in one point and whose supportingline does not separate the verties on the same hull.1. Given a onvex hull and an exterior vertex, thereexist exatly two tangents from the point to thehull.2. Given a pseudo triangle and a vertex interiorto it, there exist exatly 3 tangents, all interiorto the pseudo triangle, from the point to the(onvex hull of the) three inner onvex hains.3. Given a pseudo 4-gon, there exist exatly twoways of adding a bitangent between (the onvexhulls of) two inner onvex hains. Eah one in-dues a partitioning of the pseudo 4-gon into twopseudo triangles.4. (Flips in pseudo triangulations) Two adjaentpseudo triangles an be ipped: the unique om-mon edge is deleted and replaed with anotherone (for whih there is a unique hoie) to ob-tain again two adjaent pseudo triangles (seeFig.3()).
(a) (b)Figure 9: Henneberg steps. (a) type 1 and (b) type2. Top level, when the new vertex is added on theoutside fae, bottom level, when it is added inside apseudo triangular fae.Proof: 1 ! 2 This is the most tedious to prove,so we give only a short sketh here. The proof is byontradition. Assume G ontains an ayli vertexA. Then A is internal (not on the onvex hull). Usingthe above properties, we argue that there is a sequeneof deletions of edges, starting with an edge adjaentto A, and re-pseudo-triangulations of the larger faesthus obtained, whih ontains fewer edges.2 ! 1 Assume G is maximally planar and ayli.We prove by ontradition that if G is not a pseudotriangulation, then we an add edges in an ayli and



planar fashion, thus ontraditing maximality. If Gis not onneted, add bitangents between the onvexhulls of di�erent omponents. If it does not ontainits onvex hull edges, add them. These operationspreserve planarity and ayliity, hene by maximalitywe an assume G is both onneted and ontains theonvex hull edges. Similarly, we may argue that itsfaes are semi-simple polygons. If they are not pseudotriangles, we an always add internal bitangents.2 ! 3 follows immediately now, and the reversefrom an adaptation of the proof of the �rst implia-tion.3 ! 2 is straightforward.3 ! 5 This is one of the interesting parts. Wepresent here a proof based on a ontinuous motion ar-gument. Move the points ontinuously from the orig-inal position to onvex position. Changes happen atdisrete steps, when three points on the same faebeome ollinear. It is easy to show how to loallypath the pseudo triangulation at eah event withoutinreasing the number of edges. When all the pointsreah onvex position, the pseudo triangulation be-omes a triangulation of a onvex set, whih has ex-atly 2n � 3 edges.5 ! 4 follows from 1 and 2.The fat that any subset of k verties indues atmost 2k � 3 edges folllows easily, sine ayliity andplanarity are hereditary properties (hold on subsets).5 and 4 ! 6 We work out the onstrution inreverse. Beause of the edge ount, a simple ount-ing argument showss that there must exist at leastone vertex of degree stritly less than 4. If there ex-ists a vertex of degree 2, its two adjaent edges aretangent to the fae obtained by removing them, be-ause of ayliity. For a vertex of degree 3, the twoextreme edges adjaent to it must be tangents (be-ause of ayliity). The fae obtained by removingthe third edge is a pseudo 4 gon (follows from theother equivalenes), and the addition of the seondbitangent rereates a pseudo triangle. Removing thevertex, the remaining graph satis�es the same prop-erties (beause of the hereditary property). Hene theargument ontinues.6 ! 3, 5 and 4 are straightforward: at eah stepthe number of verties inreases by 1 and the numberof edges by 2. 2To simplify the terminology, in the rest of this paperwe will refer to a minimum or ayli pseudo triangu-lation as simply a pseudo-triangulation.Theorem 3.2 (Algorithms) Any ayli set of edgesan be extended to a pseudo-triangulation by arbitrar-ily adding edges while preserving ayliity. A anon-ial extension an be onstruted deterministially inO(n log n) time. If the set of points ontains repeti-tions or ollinearities, the resulting faes may be semi-simple pseudo triangles.Note that in this paper we have not aimed at propos-ing the best algorithmi solutions for onstrutingpseudo triangulations and onentrated instead on

their properties and relationship to the onvexi�a-tion problem. To illustrate that there is not a uniqueway for onstruting them (beause just simply addingedges at randomwhile preserving ayliity would work),we sketh here two possible onstrutions for pseudotriangulations of polygons whih run in O(n2) time.We will use the seond one in the omplexity analysis.More eÆient onstrutions (anonial greedy), run-ning in O(n log n) an be obtained via an adaptationof Pohiola and Vegter's greedy ip algorithm [29℄.We wish to thank Mihel Pohiola for pointing thisout.Inremental algorithm. The pseudo triangulationis onstruted inrementally, adding one edge of thepolygon at a time, in w order, starting at a vertexon the onvex hull. This insures that the last stepwill reuse a previously inserted edge and won't nees-sitate any additional deletions. At eah step of theinsertion we add a vertex, a polygon edge and one ad-ditional edge. However, we might have to displae ormodify several other edges, depending on whether theayliity ondition, the planarity ondition, or bothare violated by the insertion of the new polygon edge.We show how to modify some of the added pseudo-triangulation edges using an argument whih we allthe rubber band argument with snapping, whih loallymodi�es (in linear time) the edges adjaent to the newpolygon edge to preserve ayliity and planarity. Thedetails are deferred to the full paper.

Figure 10: A typial step of the inremental algorithmfor omputing the pseudo-triangulation of a polygon.Reursive algorithm. Compute the onvex hull ofthe polygon. The edges of the onvex hull whih arenot edges of the polygon are subdividing the polygoninto pokets. Imagine removing the pokets: what isleft is a onvex polygon. Triangulate it. Then put



bak the pokets and bend the diagonals of the tri-angulation along shortest (geodesi) paths inside thepolygon.The proess an now be repeated for eah poket.But the onvex hulls of poket subpolygons may in-terset (not along polygon edges, but along some ofthe added hull edges). Again, we will bend the addedonvex hull edges to get geodesi onvex hulls, thenreurse inside eah poket.The onstrution has the added advantage of be-ing able to ount the number n�3 of added edges viaa simple harging sheme, whereas an edge is hargedto either a geodesi hull of some subpolygon or to ashortest path between two verties of suh a subpoly-gon. We omit the details here.We assoiate a weight funtion to the pseudo trian-gulation onstruted by this algorithm: f(n) = num-ber of bends in all the shortest paths and geodesihulls of this onstrution. Sine there are linearlymany shortest paths and geodesis aounted for (weonsider maximal paths only, not subpaths), and eahan have at most linearly many bends, f(n) = O(n2).When the polygon is onvex f(n) = O(n). We willuse this funtion for the omplexity analysis.Theorem 3.3 (Rigidity property of pseudo tri-angulations) Pseudo-triangulations are in�nitesimallyrigid (and hene rigid), and minimally so (removingan edge the property no longer holds).The proof is an adaptation, using the propertiesof pseudo triangulations, of known proofs of Laman'stheorem for generi rigidity of graphs with the heredi-tary (2n�3)-property (every subset of k verties spansat most 2k � 3 edges, and there are 2n � 3 edges intotal).4 Monotone 1DOF mehanisms from pseudo trian-gulationsTheorem 4.1 (Main property of ayli pla-nar pseudo-triangulations) A rigid bar-and-jointframework whose underlying graph is obtained by re-moving a onvex hull edge from a pseudo-triangulationis a 1DOF monotone mehanism.Proof (sketh). The proof is an extension of theone in [12℄ (subsequently refered to as the \CDR proof"),using the ayli property of the edges, and the linearindependene in the on�guration spae of the 2n-4bars. In partiular, we have strengthened their result,by showing that any framework whih is generiallyindependent (obtained from a generially rigid (de-pendent) framework by removing some bars), ayliand does not ontain all the onvex hull edges is ex-ible and monotone.We �rst show that there exists a unique in�nitesi-mal motion (this is a stronger statement than the onein the CDR proof for polygons, beause we restritedthe number of degrees of freedom of the mehanism).The proof depends only on the ombinatorial type ofthe pseudo triangulation, hene as long as this does not

hange, the motion ontinues. This step an be mademore preise by an argument as in the CDR proof(based on integration of the resulting vetor �eld), andprodues the desired trajetory in on�guration spae.To prove the existene of the monotone in�nitesi-mal motion, we also have to adapt slightly the argu-ment in the CDR proof, using LP duality, Maxwell'sTheorem lifting and the mountain-valley argument of[36℄. Add all possible diagonals (\struts") and pla-narize the graph. By LP duality it suÆes to showthat there exists no self-stress whih is positive onthe struts. For the sake of a ontradition, assumethere exists suh a self-stress and use Maxwell Theo-rem to lift the piture in 3d to a polyhedral surfae.Then utting the polyhedral surfae with a horizon-tal plane epsilon below the vertex with maximum z-oordinate in the lifting, one obtains a polygon, whihwill have at least three verties on the onvex hull thatmust orrespond to mountain edges. The projetionof the mountain edges on the plane of the setion in-dues three yli vetors, whih an only be alongthe edges of the pseudo triangulation. This ontra-dits the ayliity of the pseudo-triangulation. SeeFig. 11, where M is the vertex where the maximumis attained. Just like in the CDR proof, the argumentan be easily extended to the ase when the maximumis attained on an edge or fae, and ayliity guaran-tees that we obtain a ontradition.
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(a) (b)Figure 11: The mountain/valley argument: (a) Cut-ting just below the vertex of maximum z-oordinate,we get the image in (b).Our ase needs a few more details added to thebasi struture of CDR proof. First, we need the as-sumption that the rank of the original system of equal-ities (orresponding to the bars of the framework) is2n � 4, otherwise there will be no basi solutions tothe linear program. The argument based on Maxwelllifting is then used to show the existene of a positivesolution, however we need extra are, sine removingan edge from the framework to get the rank down tothe ritial value of 2n � 4 does not, in itself, implythat there exists a stritly inreasing motion on all di-agonals despite the fat that the mountain-valley ar-gument holds on the interior points. Indeed, there areboth monotone and non-monotone mehanisms aris-ing from pseudo-triangulations by removing an edge,but only those obtained by removing a onvex hulledge are monotone. A simple extension of the argu-ment overs the onvex hull verties and semi-simplepseudo triangles. We defer these details to the fullpaper.



5 The Main ResultEah monotone mehanism indued by a pseudo tri-angulation an be moved as long as the edge vetorsremain ayli. We omplete the proof by showinghow to glue together the trajetories orresponding tothese motions. A hange in ayliity ours whentwo bars beome ollinear. At that point, we have toreompute a new pseudo triangulation. The followingtheorem proves that this an be done either with loalhanges and keeping the same number of verties inthe original polygon, or by dereasing by at least onethe number of verties of the polygon and applyingindution.Theorem 5.1 (Gluing trajetories at alignmentevents) When two edges align, one of the followingases two an our:1. Two adjaent edges of the polygon beome ollinear.In this ase, we freeze the joint, eliminating onevertex of the polygon (and apply indution toontinue).2. Two adjaent added diagonals or one diagonaland an edge of the polygon beome ollinear. Inthis ase, we perform a ip in the pseudo trian-gulation to obtain a pseudo triangulation with asemi simple fae.An example is depited in Fig. 12.
(a) (b) (c)Figure 12: Pathing the pseudo triangulation by a lo-al ip when two bars (not both polygon edges) align.The above theorem is not stated in full generality,to avoid luttering the overall piture with details. Inpartiular, several verties may straighten simultane-ously, but the same type of argument would work. Al-ternatively, we an imagine a perturbation argument,used to help with the omputation of a new pseudo-triangulation at the boundary ase. We must avoidusing the same two edges that just beame ollinear.This an be done by perturbing the joint vertex toa nearby position whih would intuitively orrespondto what the mehanism would look like \right after"passing through the straightened position. It will nolonger be ayli, and there will be exatly one edgewhose removal will make it ayli again. Then we anuse the extension theorem for pseudo triangulations toadd a new edge. Perturbing bak to the original po-sition of the vertex, the indued mehanism will havetwo overlapping edges and one of its faes will be asemi-simple pseudo triangle (see Fig.12).

Another problem ours whan we freeze two alignededges of the polygon. In this ase we must get rid ofthe other diagonals (if any) adjaent to the vertex,whih an also be done by loal hanges (but mayinvolve linearly many edges). Oasionally this oper-ation rigidi�es the framework: then we must pik upanother onvex hull edge to remove from the onvexhull. All these details are unproblemati, and the fulldesription is deferred to the full paper.Theorem 5.2 Termination and omplexity anal-ysis The onvexi�ation of a polygon terminates in�nitely many steps, whih is at most O(n2) steps ifwe use the weight funtion based on shortest paths andgeodesi hull as invariant.Proof With some are in the pathing strategy, itan be shown that no ombinatorial pseudo triangula-tion will our twie in the onvexifying motion. Sinethere are �nitely many ombinatorial pseudo triangu-lations, the algorithm terminates.
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CFigure 13: When the two aligning edges do not belongto the polygon, there are two possible diagonal ips.A ip redues the number of bends in geodesi pathsusing the vertex involved in the alignment.Amore areful aounting an bring down the num-ber of steps to O(n2). We use the weight funtionintrodued for the reursive algorithm in setion 3 tokeep trak of the number of bends in the shortest pathsand geodesi hulls. The key observation is that a lo-al ip dereases the number of bends by at least one(or more, depending on how many geodesi paths gothrough the vertex where the event happened). Thespeial events (when two edges of the polygon align)are only linearly many, and they may not inrease theweight funtion by more than O(n) eah (or: reom-pute a reursive pseudo triangulation on fewer vertiesat that point). The �nal value of the weight funtionis at most linear. Hene the number of steps is at mostO(n2).Theorem 5.3 Main Result: Convexi�ation ofPlanar Chains with Monotone Motions Everyplanar polygon an be onvexi�ed with at most O(n2)motions. Eah motion is indued by a 1DOF mono-tone mehanism onstruted from a pseudo triangula-tion with a hull edge removed, whih is moved untiltwo of its adjaent edges align. At that point a loalip of the diagonals restores a pseudo triangulation.The omplete trajetory in on�guration spae is a se-quene of simple urves, eah one naturally parametrized



by a rotating edge in the work spae. A �rst pseudotriangulation an be omputed eÆiently (O(n log n)or O(n2)) by several algorithms and updated in (atmost) linear time per step.6 ConlusionsWe have shown how to ompute algorithmially a tra-jetory in the on�guration spae of a planar linkage,orresponding to a motion that onvexi�es the poly-gon without produing self-rossings along the way.The proof is based on a number of novel ideas, mostprominently the use of pseudo triangulations, whosemain ombinatorial and rigidity theoreti propertieshave been desribed. But still many more await at-tention, suh as: study the graph whose verties orre-spond to pseudo triangulations and whose edges or-respond to ips in pseudo 4-gons. What is its diam-eter? How many pseudo triangulations of a point setor polygon are there? Is there any interesting poly-tope whose 1-skeleton is the graph of pseudo triag-ulations (as there is for regular triangulations [15℄)?Sine pseudo triangulations an be naturally de�nedin the oordinate-free ontext of oriented matroids,what ombinatorial properties would distinguish them(as a olletion) from the ones realizable in the eu-lidian plane? Is there a onept of a regular pseudotriangulation, as it is for triangulations?From the point of view of Rigidity Theory, we haveexhibited a lass of planar rigid graphs with elegantombinatorial properties. We think that the rigid-ity theoreti properties of pseudo triangulations willprove to be useful in other appliations. It would beinteresting to understand the properties of the non-monotone mehanisms obtained by removing a non-onvex hull edge of a pseudo triangulation and theirdegenerate on�gurations.All the pitures in this paper have been produedusing the software pakage Cinderella [31℄, whih sup-ports motions of 1DOF mehanisms and even ani-mates them. But not all \pseudo-triangulation-minus-hull-edge" mehanisms admit a Cinderella onstru-tion. It would be interesting to lassify pseudo trian-gulations in a omplexity hierarhy, based on the ex-tra primitives that should be inluded in Cinderella tosimulate them (i.e. added to basi ruler and ompassonstrutions). This is also related to the problem ofomputing (in the real RAMmodel) the oordinates ofthe points realizing a on�guration of a pseudo trian-gulation mehanism at one edge alignement moment,given the oordinates of the points at the previousevent. It probably annot be done better than usingstandard numerial approximation tehniques.A web page ontaining Cinderella animationsand other graphial and 3d illustrations of ourapproah an be found at the author's url,http://s.smith.edu/ streinu. Thanks to my stu-dents Beenish Chaudry, Vitoria Manfredi, ChristineRie and Elif Tosun for their help.
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