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tWe propose a 
ombinatorial approa
h to plan non-
olliding motions for a polygonal bar-and-joint frame-work. Our approa
h yields very eÆ
ient deterministi
algorithms for a 
ategory of robot arm motion plan-ning problems with many degrees of freedom, wherethe known general roadmap te
hniques would give ex-ponential 
omplexity. It is based on a novel 
lass ofone-degree-of-freedom me
hanisms indu
ed by pseudotriangulations of planar point sets, for whi
h we pro-vide several equivalent 
hara
terization and exhibitri
h 
ombinatorial and rigidity theoreti
 properties.The main appli
ation is an eÆ
ient algorithm forthe Carpenter's Rule Problem: 
onvexify a sim-ple bar-and-joint planar polygonal linkage using onlynon self-interse
ting planar motions. A step in the
onvexi�
ation motion 
onsists in moving a pseudo-triangulation-based me
hanism along its unique tra-je
tory in 
on�guration spa
e until two adja
ent edgesalign. At that point, a lo
al alteration restores thepseudo triangulation. The motion 
ontinues for O(n2)steps until all the points are in 
onvex position.1 Introdu
tionIn this paper we present a new approa
h to a 
ategoryof planar motion planning problems, in
luding non-
olliding unfoldings of open and 
losed 
hains (robotarms), even in the presen
e of 
ertain types of obsta-
les (movable 
onvex polygons or 
exible polygonal
hains). All of our 
onstru
tions are elementary andare based on a novel 
lass of planar embedded graphs
alled pseudo-triangulations whi
h possess ri
h 
om-binatorial properties. We use te
hniques from Rigid-�Supported by NSF grant CCR-9731804.

ity Theory and Visibility graphs, together with in-sights gained from Oriented Matroid Theory. Themain ideas of our approa
h are best illustrated by thebasi
 problem of 
ontinuously re
on�guring a simpleplanar polygon to any other planar 
on�guration withthe same edge-lengths, while remaining in the planeand without 
reating self-interse
tions along the way,for whi
h we will des
ribe a simple and eÆ
ient al-gorithm. This is done by �rst �nding motions that
onvexify both 
on�gurations with monotone motions(de�ned below), then taking one path in reverse.The paper is organized as follows. In the remain-ing of this introdu
tion, we give an informal high-levelview of the result and its 
onne
tion with previouswork. Preliminary 
on
epts are de�ned in se
tion 2.Se
tion 3 
ontains several 
ombinatorial 
hara
teri-zations of pseudo triangulations, as well as a sket
hof algorithms for 
omputing them. Se
tion 4 
ontainsthe rigidity theoreti
 results on pseudo-triangulations.Se
tion 5 
ontains the des
ription of the global 
on-vexi�
ation motion and 
omplexity analysis. We 
on-
lude with some suggestions for further resear
h.Frameworks and Robot arms. A bar-and-jointframework is a 
ombinatorial graph G = (V;E) em-bedded in the plane with rigid bars (�xed lengthstraight line segments) 
orresponding to the edges.Edges 
an move freely in the plane around adja
entjoints (verti
es). The motions preserve rigidly thelengths of the graph edges, but impose no restri
-tion on the non-edges, whi
h may in
rease or de
reasefreely. In general, edges may 
ross and slide over ea
hother during the motion, but in this paper we are in-terested in avoiding 
ollisions and will not allow this.Of parti
ular interest are the monotone motions,where all the pairwise interdistan
es between verti
esnever de
rease during the motion, thus guaranteeingnon-
ollision.A linkage or robot arm is a planar framework whoseunderlying graph is a non-self-interse
ting path with nverti
es, and a 
losed 
hain is a simple planar polygonon n verti
es. Straightening a linkage means moving it
ontinuously until all its verti
es lie on one line withnon-overlapping edges. Convexifying a 
hain meansmoving it to a position where it forms a simple 
on-



vex polygon. Other types of frameworks of interest inthis paper in
lude semi-simple polygons and pseudo-triangulations, de�ned below.The Carpenter's Rule Problem: Is it always pos-sible to straighten a planar linkage, or to 
onvexify aplanar 
hain? This question has been open sin
e the1970's. Re
ently, Connelly, Demaine and Rote [12℄have answered it in the aÆrmative. Their solutionstill left open the problem: Find, algorithmi
ally, a�nite sequen
e of simple (�nitely des
ribed) motionsto straighten a linkage, or to 
onvexify a polygon.Previous Results on Re
on�guring Linkages.The general te
hniques for solving motion planningproblems based on roadmaps work well on problemswith bounded degrees of freedom, but yield exponen-tial algorithms for high degree of freedom problemssu
h as the one we are interested in. See [32℄, [10℄,[4℄ and [5℄. In pra
ti
al appli
ations, probabilisti
roadmap heuristi
s were used instead, see [24℄, [18℄.Under various 
onditions, problems about re
on�gu-ration of linkages range in 
omplexity from polynomial([26℄) to NP- and even PSPACE-hard, see [19℄, [38℄,[21℄.The parti
ular problem of straightening bar-and-joint linkages and 
onvexifying polygons has a

umu-lated a distinguished history, with some approa
hesgoing ba
k to a question of Erd�os [14℄. See Toussaint[34℄ for a fas
inating a

ount. There are abundant
onne
tions with work done in the 
omputational bi-ology, 
hemistry and physi
s literature and motivatedby topi
s su
h as protein folding or mole
ular model-ing. When 
rossings are allowed, Lenhart and White-sides [26℄ have shown that the 
on�guration spa
e hasat most two 
onne
ted 
omponents and gave a linearalgorithm for 
onvexi�
ation based on simple motionsmoving only a 
onstant number of joints at a time. Re-
ent results in the mathemati
s literature [22℄ aim atunderstanding the topology of the 
on�guration spa
eof 
losed 
hains, but they allow 
rossings. The univer-sality result for me
hani
al linkages ([20℄, [23℄) holdsfor the general self-interse
ting 
ase.Studying re
on�gurations of linkages with non 
ross-ing motions has re
eived a re
ent impetus in [28℄,and results on planar linkages using spatial motions([7℄, [1℄), trees, 3 and higher-dimensional linkages ([6℄,[11℄) have followed. The Carpenter's Rule question,raised in the 1970's in the Topology 
ommunity by G.Bergman, U. Grenander, S. S
hanuel (
f. [25℄) andindependently in the early 1990's in the ComputerS
ien
e 
ommunity by W. Lenhart, S. Whitesides, J.Mit
hell, seems to have �rst appeared in print in [26℄and [25℄. It was re
ently settled by Connelly, De-maine and Rote [12℄: all 
hains 
an be 
onvexi�ed,all linkages 
an be straightened. Their approa
h isto �rst prove (using linear programming duality andMaxwell's theorem, using a te
hnique originating inCrapo andWhiteley [13℄ and Whiteley [35℄) that therealways exists a lo
al, in�nitesimal motion whi
h neverde
reases any interdistan
es. The a
tual velo
ities 
anbe found using linear programming. Then they pro-vide a global argument, showing the existen
e of a


ontinuous deformation obtained by integrating theresulting ve
tor �eld.Our Results. We strengthen and provide an al-gorithmi
 extension of the above mentioned result.While they have proven that the 
on�guration spa
e ofplanar non-
rossing 
hains with the same orientationis 
onne
ted, we show how to algorithmi
ally 
om-pute a path, 
onsisting of a �nite number of �nitely-des
ribed ar
s, between any two su
h 
on�gurations.Along the way, we 
hara
terize a family of planar rigidframeworks 
alled pseudo-triangulations, whi
h yield1DOF monotone me
hanisms when a 
onvex hull edgeis removed, a result of independent interest in RigidityTheory. The ri
h 
ombinatorial and rigidity-theoreti
properties of pseudo-triangulations whi
h we presentin this paper are likely to add to the appli
ability ofthis versatile data stru
ture, a slight generalizationof the one introdu
ed by Po

hiola and Vegter[29℄ intheir study of the visibility 
omplex and re
ently ap-plied to kineti
 geometri
 algorithms ([2℄, [3℄).Novelty. Our approa
h is based on the idea of ab-stra
ting oriented-matroidal properties that holdthroughout a portion of a 
ontinuous motion. Therigidity theoreti
 properties of our generalized pseudotriangulations are novel, as is the pseudo-triangulationbased approa
h to 1DOF monotone me
hanisms for�nding a path in 
on�guration spa
e. Along the way,we also give a generalization of a key lemma in [12℄by showing the non-existen
e of self-stress in bar-and-strut frameworks of a more 
omplex stru
ture thanthose arising from polygons.Proof Te
hniques and Overview of the Convex-i�
ation Algorithm. The 
onvexifying path, seen inthe (2n�3)-dimensional 
on�guration spa
e (transla-tions and rotations of the original 
hain being fa
toredout), is a �nite sequen
e of 
urve segments (ar
s) 
on-ne
ting 
ontinuously at their endpoints.Ea
h ar
 
orresponds to the unique free motion ofa monotone, one-degree-of-freeedom (1DOF) me
ha-nism indu
ed by a planar pseudo-triangulation witha 
onvex hull edge removed. The me
hanism is 
on-stru
ted algorithmi
ally by adding n � 4 bars to theoriginal polygon. It is set in motion by pinning downan edge and rotating another edge around one of itsjoints. We show that this indu
es the whole frame-work to move monotoni
ally, i.e. with non-de
reasinginterdistan
es between all pairs of verti
es. One stepof the 
onvexi�
ation algorithm 
onsists in movingthis me
hanism until two adja
ent edges align, at whi
hmoment it 
eases to be a pseudo-triangulation. We ei-ther freeze a joint (if the aligned edges belong to thepolygon) and lo
ally pat
h a pseudo-triangulation fora polygon with one less vertex, or otherwise performa lo
al 
ip of the added diagonals.There are many ways to 
onstru
t the initial pseudo-triangulation (e.g. using an adaptation of the greedy
ip algorithm of Po

hiloa and Vegter [29℄) or to pat
hit at the alignment points. For the sake of the analysis,we use a 
anoni
al way whi
h helps us to keep tra
kof a global integer valued weight fun
tion f(n). Ea
h



alignment step de
reases f(n) by at least one unit.Hen
e the algorithm stops in at most f(n) su
h steps.The analysis of one of the 
onvexi�
ation s
hemeswould yield O(n2).Combinatorial Rigidity and Pseudo triangula-tions. A 1DOF monotone me
hanism obtained froma pseudo-triangulation is an abstra
tion and a 
anon-i
al representation of one of the many basi
 solutions,indu
ing monotone in�nitesimal motions, that the lin-ear programming approa
h of [12℄ would �nd for a 
er-tain position of the polygon in its 
on�guration spa
e.We 
hara
terize pseudo-triangulations in severalequivalent ways, exhibiting their ri
h 
ombinatorialproperties. Some of these are spe
ialized versions ofLaman's 2n � 3 
ount and Henneberg 
onstru
tionsfrom 
ombinatorial rigidity (see [36℄ or [17℄). Theproof of 
orre
tness of our approa
h derives from theseproperties, as well as from a generalization, from sim-ple polygons to the wider 
lass of pseudo-triangulationframeworks, of the approa
h used in [12℄ based on LPduality and Maxwell's theorem.2 De�nitions and PreliminariesReferen
es. For rigidity theory terminology and ba-si
 results, we refer the reader to [30℄, [36℄, [37℄ and[17℄. In parti
ular, rigidity, �rst-order and generi
rigidity, as well as 
lassi
al results on 2-dimensionalrigidity su
h as Laman's theorem, the Henneberg 
on-stru
tions, Lovasz and Yemini 
overing with two trees[27℄ and Maxwell's Theorem are to be found there.For oriented matroids, see [8℄, although we won't needmore than the 
ir
ular hyperline (or lo
al) sequen
esof [9℄ and [16℄ (see also [33℄).Notation and abbreviations. Our setting is theEu
lidian plane. All index arithmeti
 is done mod nin the set [n℄ := f1; � � � ; ng. We abbreviate \
ounter-
lo
kwise" as 

w and \one-degree-of-freedom me
ha-nism" as 1DOF me
hanism.
(a) (b) (c)

(d) (e) (f)Figure 1: (a), (b) and (
) A
y
li
 and (d), (e) and (f)
y
li
 sets of ve
tors.A
y
li
 sets of ve
tors and edges. A set of ve
torsin R2 (with a 
ommon origin) is a
y
li
 if it is stri
tly
ontained in a half-plane, and 
y
li
 otherwise. Theterminology 
omes from oriented matroid theory (see[8℄), an approa
h we won't explain in this abstra
t,but whi
h provided the guiding line in our sear
h for


ombinatorial properties of rigid frameworks. Morepre
isely, a set of a
y
li
 ve
tors has no linear 
om-bination with positive, not all zero 
oeÆ
ients thatsums them to zero, while in the 
y
li
 
ase there is al-ways one. Collinearities may o

ur, see the examplesin Fig. 1. The a
y
li
 
ase of several 
ollinear ve
-tors but in the same dire
tion, and the rest in a
y
li
relation with them will o

ur in our algorithm at thebeginning of ea
h step. A spe
ial 
y
li
 
ase, whi
hwill o

ur at the end of ea
h step of our 
onvexi�
a-tion algorithm, will have some ve
tors 
ollinear and inopposite dire
tions, and all the others 
ontained in ahalf-plane.An a
y
li
 set of edges is a set of segments withendpoints in a �nite set of planar points su
h thatthe ve
tors around ea
h vertex, taken in the dire
tionof the adja
ent segments and dire
ted away from thevertex, form an a
y
li
 set. See Fig. 2.
(a) (b)

1

Figure 2: (a) An a
y
li
 set of edges. Around ea
hvertex, the ve
tors in the dire
tions of the adja
entedges are depi
ted. (b) A set of edges whi
h is 
y
li
,due to vertex 1.Polygons, pseudo-triangles and pseudo k-gons.A polygon on the ordered set of points P = fp1; � � � ; pngis obtained by joining pairs of 
onse
utive points withline segments (edges of the polygon). It is simple ifnon-adja
ent edges do not meet. In this 
ase, thereis a well-de�ned and 
onne
ted interior and exteriorof the polygon. We will assume that the verti
es arelabeled in 

w order, i.e. su
h that the interior lies tothe left when the boundary of the polygon is traversedin that order.
(a) (b) (c)Figure 3: (a) A pseudo-triangle. (b) A semi-simplepseudo-triangle. (
) A pseudo 4-gon and its two pos-sible minimum pseudo-triangulations.A pseudo-triangle is a simple polygon with threeverti
es on its 
onvex hull, joined by three inward




onvex polygonal 
hains. In parti
ular, a triangle isa pseudo-triangle. We introdu
e semi-simple pseudo-triangles as a spe
ial 
ase whi
h allows for some degen-era
ies: some of the inner 
onvex angles may be zero,but none of the inner re
ex angles should be � or 2�.More generally, if we fo
us on the 
onvex verti
es ofa simple polygon and on the inner 
onvex 
hains be-tween them, we will refer to the polygon as being apseudo k-gon if it has exa
tly k 
onvex verti
es. SeeFig. 3(
) for an example. Semi-simple pseudo k-gonsallow simple types of degenera
ies: some of the k 
on-vex angles may be zero, but none of the re
ex anglesis � or 2�.Note. A 
omplete treatment of the general 
on
eptof semi-simple polygons as the limit 
ase for simplepolygons needs more te
hni
al apparatus and will notbe 
overed in this paper. See Fig. 4 for examples andhints to some of the 
omplexities involved in giving a
omplete de�nition.
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(c)Figure 4: (a) A semi-simple and (b) a simple poly-gon on the same set of points, and (
) a semi-simple
ollinear polygon and several possible interpretations(and perturbations) of it. The main question is: whi
hway 
ould an opening motion go?For the main problem treated in this paper, andif we start with a simple polygon, then the only nonsimple polygons appearing along the way and whi
hare needed to make our approa
h work will be semi-simple k-gons.
(a) (b) (c)Figure 5: (a) A minimum pseudo-triangulation. (b)A non-minimum pseudo-triangulation whi
h 
ontainsa minimum one. (
) A non-minimum pseudo trian-gulation whi
h does not 
ontain a minimum pseudotriangulation.Pseudo Triangulations. A pseudo-triangulation ofa point set P is a partitioning of the 
onvex hull ofP into pseudo triangles su
h that every point appears

as the vertex of at least one pseudo triangular fa
e.We 
an view it as a 
olle
tion of edge segments withthis property. Equivalently, it is a spe
ial embeddingof a spe
ial planar graph su
h that the outer fa
e is
onvex and all internal fa
es are pseudo triangles. Aminimum pseudo triangulation is one whi
h has theleast number of edges among all pseudo triangulationsof the same point set. See Fig. 5.Pseudo k-gons 
an also be further subdivided intosmaller pseudo l-gons, l < k by the addition of innerdiagonals. Call that a pseudo subdivision. E.g. apseudo 4-gon 
an be partitioned into two (or more)pseudo triangles, see Fig.3(
).Frameworks. A framework (G;W ) is a graph G =(V;E), jV j = n, together with a set of positive weights(lengths) W = fleje 2 Eg. A realization of (G;W ) ona set pf points P = fp1; � � � ; png is a mapping of ver-ti
es to points and edges to line segments (i.e. anembedding of G) so that the length of the segment
orresponding to edge e is le. The set of all possiblerealizations of a framework is 
alled its 
on�gurationspa
e. As usual, we fa
tor out translations and rota-tions. The 
on�guration spa
e may be empty, dis
on-ne
ted and in general has a 
ompli
ated topologi
alstru
ture. The a
tual values of the edge lengths arenot relevant to our dis
ussion, hen
e by abuse of ter-minology, from now on we will refer to a realization(G;P) as a framework. A motion or re
on�guration ofthe framework is a 
urve (one dimensional traje
tory)in 
on�guration spa
e going through the point givingthe framework realization.
(a) (b)Figure 6: The same graph embedded as two 
ombina-torially distin
t frameworks, whi
h are 1DOF me
ha-nisms: (a) is monotone, (b) is not.A 
ombinatorial framework (G;M) asso
iated to aframework realization (G;P) is obtained by retaining(in M) only some 
ombinatorial information from theunderlying oriented matroid of the set of points P.Sin
e in this paper we work only with spe
ial typesof frameworks, we do not give here the general def-inition. In our parti
ular 
ase, the information Mretained from the embedding will be, for ea
h ver-tex, the signed 
ir
ular sequen
e in whi
h a dire
tedline rotating 

w en
ounters the adja
ent edge ve
tors.An edge ve
tor is re
orded positively or negatively de-pending on whether the rotating line en
ounters it inits dire
tion or in the opposite one. This 
on
ept is aspe
ialization of the lo
al sequen
es of Goodman andPolla
k [16℄ (see also [9℄ and [33℄) and retains (partial)oriented matroid stru
ture from the underlying set of



points P . In parti
ular, we 
an read o� from this in-formation the planar nature of an embedding of theframework and the 
y
li
 or a
y
li
 nature of the edgeve
tors at ea
h vertex.A framework is planar if its underlying graph is aplane graph (i.e. a planar graph plus the informationabout its fa
e stru
ture), and is embedded in a man-ner 
ompatible with the plane graph stru
ture (i.e.all fa
es are embedded as simple polygons). It is apseudo-triangulation if all internal fa
es are pseudo-triangles and the outer fa
e is 
onvex. A frameworkis a
y
li
 if all the edge ve
tors around ea
h vertexare a
y
li
. We also allow for the spe
ial situation (tothe best of our knowledge, not dealt with in the lit-erature on planar graph embeddings) when the fa
esof the embedded framework are semi-simple pseudo k-gons (in parti
ular semi-simple pseudo-triangles). Forthe 
areful reader who already noti
ed that some 
aremust be exer
ized with the de�nition of what it meansfor the outside fa
e to be a semi-simple pseudo k-gon,we rush to add that it 
an be done in a natural way.First we have to show that the outer fa
e is also somesort of pseudo k-gon. If the outer fa
e is the 
on-vex hull of the points, when we \look from the out-side" (i.e. from inside the outer fa
e) it has no 
onvexvertex, just a single re
ex 
hain, hen
e it is an outerpseudo 0-gon. If it has a 
onvex vertex (and hen
e onere
ex 
hain) it is an outer pseudo 1-gon, et
. Noti
ethat the outer pseudo 3-gon looks quite di�erent fromthe usual pseudo triangle: its verti
es are outside, notinside the 
onvex hull of three 
onvex verti
es. For ex-ample, the outer fa
e of the framework in Fig. 6(a) isan outer pseudo 1-gon, and for (b) is an outer 2-gon.In general, the outer fa
e will be the only one withthis spe
ial type of pseudo k-gon. On
e we �xed thisdetail, semi-simpli
ity is then extended in the obviousway.
(a) (b)Figure 7: (a) A generi
ally rigid graph in an in�nitesi-mally 
exible embedding. (b) A rigid framework witha non-generi
ally rigid underlying graph.Two frameworks are 
ombinatorially equivalent ifthere is a one-to-one 
orresponden
e between theirverti
es preserving edges and fa
es, the outer fa
e andits orientation, and the underlying partial orientedmatroid, i.e. the 
ir
ular 

w order of lines throughthe edges around ea
h vertex. This just means thatthey have the same underlying 
ombinatorial frame-work (and the embeddings have the same orientation,but we'll skip this detail here). In parti
ular, we de-�ne equivalent pseudo triangulations. The 
lass ofall 
ombinatorially equivalent pseudo triangulations

is 
alled a 
ombinatorial pseudo triangulation. Theunderlying 
ombinatorial framework 
aptures the in-formation (and 
an be used to represent) the 
ombi-natorial pseudo triangulation.A 
ru
ial idea in our 
onvexi�
ation algorithm willbe to use me
hanisms obtained from pseudo triangu-lations, and to re
on�gure them 
ontinuously as longas the 
ombinatorial pseudo triangulation does not
hange.Rigidity, Generi
 Rigidity, In�nitesimal Rigid-ity. A framework is (lo
ally) rigid if its verti
es 
annotbe moved 
ontinuously while preserving the lengths ofthe edges, ex
ept for translations and rotations. Oth-erwise it is 
exible. It is in�nitesimally 
exible if thereexists an assignment of velo
ity ve
tors vi to ea
h ver-tex pi so that hpi � pj ; vi � vji = 0, where h; i is thedot produ
t. Otherwise it is in�nitesimally (or �rst-order) rigid. A graph is generi
ally rigid if it is rigidfor all embeddings on generi
 sets of points (see therigidity theory referen
es for pre
ise de�nitions). Cer-tain embeddings of generi
ally rigid graphs may bein�nitesimally 
exible, or even 
exible. See Fig. 7.Noti
e that these frameworks are 
y
li
. A graph isminimally rigid if it is rigid and removing some edge
reates a graph whi
h is no longer rigid.Laman's theorem provides a 
ombinatorial 
har-a
terization for minimally rigid graphs on generi
 em-beddings: these are graphs on n verti
es with exa
tly2n� 3 edges, and su
h that every subset of k verti
esspans no more than 2k�3 edges. Henneberg 
onstru
-tions provide an indu
tive 
onstru
tion of generi
allyrigid graphs via two types of lo
al additions. A stepof type 1 involves adding a vertex, joined by two newadja
ent edges to two previously 
onstru
ted verti
es.A step of type 2 adds a new vertex and three adja
entegdes to three old verti
es su
h that at least two arejoined by an edge, and then drops one of the exist-ing edges among these three old verti
es. The readerunfamiliar with these 
onstru
tions may re
ognize, inthe simplest appli
ations of the type 1 steps whi
hpreserve planarity, basi
 ways of produ
ing triangula-tions.
(a) (b)Figure 8: (a) A 1DOF me
hanism (Peau
ellier's link-age). (b) A framework with an underlying generi
allyminimally 
exible graph, and with a rigid (but notin�nitesimally rigid) embedding.One-degree-of-freedom me
hanisms. A me
ha-nism is an embedded framework whi
h is 
exible. Itsdegree of freedom (DOF) is the dimension of its 
on�g-uration spa
e (after fa
torization to translations androtations). A generi
 minimally 
exible graph is a



generi
ally rigid graph with one edge removed (in par-ti
ular, it has exa
tly 2n� 4 edges). In a generi
 em-bedding, a minimally 
exible graph is a one degree offreedom (1DOF) me
hanism, but in other embeddingsit may even be rigid, see Fig.8. Noti
e that these ex-amples are planar but not a
y
li
.Monotone me
hanisms. A 1DOF me
hanism ismonotone if the non-rigid pairwise interdistan
es ei-ther all in
rease or all de
rease during the lo
al mo-tion. See Fig.6 for examples. E.g the Peau
ellier link-age in Fig.8 is not monotone, neither is it a
y
li
.3 Rigidity of Pseudo-TriangulationsFrom now on we are interested only inminimum pseudotriangulations and show that they have a wealth of
ombinatorial and rigidity theoreti
al properties.Theorem 3.1 (Chara
terization of minimumpseudo triangulations) Let G = (V;E) be a graphembedded on the set P = fp1; � � � ; png of points. Thefollowing properties are equivalent.1. G is a minimum pseudo-triangulation.2. The edges E of G form an a
y
li
 and planar setof segments, and E is maximal with this property(of being both planar and a
y
li
).3. G is an a
y
li
 pseudo triangulation of the 
on-vex hull of P.4. (pseudo triangle Laman 
ount) The fa
es of Gare pseudo-triangles and the number of edges is2n � 3.5. (planar a
y
li
 Laman 
ount) The set of edgesE is planar, a
y
li
 and has 2n � 3 elements.6. (planar a
y
li
 Henneberg 
onstru
tion) G 
anbe 
onstru
ted indu
tively as follows. Start witha triangle. At ea
h iteration, add a new ver-tex in one of the fa
es of the already 
onstru
tedembedded graph (whi
h will be an a
y
li
 pseudotriangulation). Conne
t in one of the two ways(see Fig. 9):(a) Type 1: (degree 2) Join the vertex with twotangents to the already 
onstru
ted part. Ifthe new vertex is outside the 
onvex hull,the two tangents are uniquely de�ned. If itis inside an internal pseudo triangular fa
e,there are three di�erent ways of adding twotangents to the three inner 
onvex 
hains ofthe fa
e.(b) Type 2: (degree 3) Add two tangents as be-fore. Then 
hoose an edge on the 
onvex
hain between the two tangent points, re-move it. This 
reates a pseudo 4-gon. Re-pseudo triangulate by adding the unique bi-tangent di�erent from the one just removed.

Moreover, if any of the above 
onditions is satis-�ed, then the subgraph indu
ed on any subset set ofk verti
es has at most 2k � 3 edges (the hereditaryproperty).For the proofs, we will need a series of basi
 de�ni-tions and fa
ts, whi
h we present in a sket
hy manner.Given a point outside a 
onvex hull, a tangent from thepoint to the hull is a line segment 
ontaining all thehull verti
es on one side and tou
hing it at a vertex.Given two 
onvex hulls, a bitangent is a line segmenttou
hing ea
h hull in one point and whose supportingline does not separate the verti
es on the same hull.1. Given a 
onvex hull and an exterior vertex, thereexist exa
tly two tangents from the point to thehull.2. Given a pseudo triangle and a vertex interiorto it, there exist exa
tly 3 tangents, all interiorto the pseudo triangle, from the point to the(
onvex hull of the) three inner 
onvex 
hains.3. Given a pseudo 4-gon, there exist exa
tly twoways of adding a bitangent between (the 
onvexhulls of) two inner 
onvex 
hains. Ea
h one in-du
es a partitioning of the pseudo 4-gon into twopseudo triangles.4. (Flips in pseudo triangulations) Two adja
entpseudo triangles 
an be 
ipped: the unique 
om-mon edge is deleted and repla
ed with anotherone (for whi
h there is a unique 
hoi
e) to ob-tain again two adja
ent pseudo triangles (seeFig.3(
)).
(a) (b)Figure 9: Henneberg steps. (a) type 1 and (b) type2. Top level, when the new vertex is added on theoutside fa
e, bottom level, when it is added inside apseudo triangular fa
e.Proof: 1 ! 2 This is the most tedious to prove,so we give only a short sket
h here. The proof is by
ontradi
tion. Assume G 
ontains an a
y
li
 vertexA. Then A is internal (not on the 
onvex hull). Usingthe above properties, we argue that there is a sequen
eof deletions of edges, starting with an edge adja
entto A, and re-pseudo-triangulations of the larger fa
esthus obtained, whi
h 
ontains fewer edges.2 ! 1 Assume G is maximally planar and a
y
li
.We prove by 
ontradi
tion that if G is not a pseudotriangulation, then we 
an add edges in an a
y
li
 and



planar fashion, thus 
ontradi
ting maximality. If Gis not 
onne
ted, add bitangents between the 
onvexhulls of di�erent 
omponents. If it does not 
ontainits 
onvex hull edges, add them. These operationspreserve planarity and a
y
li
ity, hen
e by maximalitywe 
an assume G is both 
onne
ted and 
ontains the
onvex hull edges. Similarly, we may argue that itsfa
es are semi-simple polygons. If they are not pseudotriangles, we 
an always add internal bitangents.2 ! 3 follows immediately now, and the reversefrom an adaptation of the proof of the �rst impli
a-tion.3 ! 2 is straightforward.3 ! 5 This is one of the interesting parts. Wepresent here a proof based on a 
ontinuous motion ar-gument. Move the points 
ontinuously from the orig-inal position to 
onvex position. Changes happen atdis
rete steps, when three points on the same fa
ebe
ome 
ollinear. It is easy to show how to lo
allypat
h the pseudo triangulation at ea
h event withoutin
reasing the number of edges. When all the pointsrea
h 
onvex position, the pseudo triangulation be-
omes a triangulation of a 
onvex set, whi
h has ex-a
tly 2n � 3 edges.5 ! 4 follows from 1 and 2.The fa
t that any subset of k verti
es indu
es atmost 2k � 3 edges folllows easily, sin
e a
y
li
ity andplanarity are hereditary properties (hold on subsets).5 and 4 ! 6 We work out the 
onstru
tion inreverse. Be
ause of the edge 
ount, a simple 
ount-ing argument showss that there must exist at leastone vertex of degree stri
tly less than 4. If there ex-ists a vertex of degree 2, its two adja
ent edges aretangent to the fa
e obtained by removing them, be-
ause of a
y
li
ity. For a vertex of degree 3, the twoextreme edges adja
ent to it must be tangents (be-
ause of a
y
li
ity). The fa
e obtained by removingthe third edge is a pseudo 4 gon (follows from theother equivalen
es), and the addition of the se
ondbitangent re
reates a pseudo triangle. Removing thevertex, the remaining graph satis�es the same prop-erties (be
ause of the hereditary property). Hen
e theargument 
ontinues.6 ! 3, 5 and 4 are straightforward: at ea
h stepthe number of verti
es in
reases by 1 and the numberof edges by 2. 2To simplify the terminology, in the rest of this paperwe will refer to a minimum or a
y
li
 pseudo triangu-lation as simply a pseudo-triangulation.Theorem 3.2 (Algorithms) Any a
y
li
 set of edges
an be extended to a pseudo-triangulation by arbitrar-ily adding edges while preserving a
y
li
ity. A 
anon-i
al extension 
an be 
onstru
ted deterministi
ally inO(n log n) time. If the set of points 
ontains repeti-tions or 
ollinearities, the resulting fa
es may be semi-simple pseudo triangles.Note that in this paper we have not aimed at propos-ing the best algorithmi
 solutions for 
onstru
tingpseudo triangulations and 
on
entrated instead on

their properties and relationship to the 
onvexi�
a-tion problem. To illustrate that there is not a uniqueway for 
onstru
ting them (be
ause just simply addingedges at randomwhile preserving a
y
li
ity would work),we sket
h here two possible 
onstru
tions for pseudotriangulations of polygons whi
h run in O(n2) time.We will use the se
ond one in the 
omplexity analysis.More eÆ
ient 
onstru
tions (
anoni
al greedy), run-ning in O(n log n) 
an be obtained via an adaptationof Po

hiola and Vegter's greedy 
ip algorithm [29℄.We wish to thank Mi
hel Po

hiola for pointing thisout.In
remental algorithm. The pseudo triangulationis 
onstru
ted in
rementally, adding one edge of thepolygon at a time, in 

w order, starting at a vertexon the 
onvex hull. This insures that the last stepwill reuse a previously inserted edge and won't ne
es-sitate any additional deletions. At ea
h step of theinsertion we add a vertex, a polygon edge and one ad-ditional edge. However, we might have to displa
e ormodify several other edges, depending on whether thea
y
li
ity 
ondition, the planarity 
ondition, or bothare violated by the insertion of the new polygon edge.We show how to modify some of the added pseudo-triangulation edges using an argument whi
h we 
allthe rubber band argument with snapping, whi
h lo
allymodi�es (in linear time) the edges adja
ent to the newpolygon edge to preserve a
y
li
ity and planarity. Thedetails are deferred to the full paper.

Figure 10: A typi
al step of the in
remental algorithmfor 
omputing the pseudo-triangulation of a polygon.Re
ursive algorithm. Compute the 
onvex hull ofthe polygon. The edges of the 
onvex hull whi
h arenot edges of the polygon are subdividing the polygoninto po
kets. Imagine removing the po
kets: what isleft is a 
onvex polygon. Triangulate it. Then put



ba
k the po
kets and bend the diagonals of the tri-angulation along shortest (geodesi
) paths inside thepolygon.The pro
ess 
an now be repeated for ea
h po
ket.But the 
onvex hulls of po
ket subpolygons may in-terse
t (not along polygon edges, but along some ofthe added hull edges). Again, we will bend the added
onvex hull edges to get geodesi
 
onvex hulls, thenre
urse inside ea
h po
ket.The 
onstru
tion has the added advantage of be-ing able to 
ount the number n�3 of added edges viaa simple 
harging s
heme, whereas an edge is 
hargedto either a geodesi
 hull of some subpolygon or to ashortest path between two verti
es of su
h a subpoly-gon. We omit the details here.We asso
iate a weight fun
tion to the pseudo trian-gulation 
onstru
ted by this algorithm: f(n) = num-ber of bends in all the shortest paths and geodesi
hulls of this 
onstru
tion. Sin
e there are linearlymany shortest paths and geodesi
s a

ounted for (we
onsider maximal paths only, not subpaths), and ea
h
an have at most linearly many bends, f(n) = O(n2).When the polygon is 
onvex f(n) = O(n). We willuse this fun
tion for the 
omplexity analysis.Theorem 3.3 (Rigidity property of pseudo tri-angulations) Pseudo-triangulations are in�nitesimallyrigid (and hen
e rigid), and minimally so (removingan edge the property no longer holds).The proof is an adaptation, using the propertiesof pseudo triangulations, of known proofs of Laman'stheorem for generi
 rigidity of graphs with the heredi-tary (2n�3)-property (every subset of k verti
es spansat most 2k � 3 edges, and there are 2n � 3 edges intotal).4 Monotone 1DOF me
hanisms from pseudo trian-gulationsTheorem 4.1 (Main property of a
y
li
 pla-nar pseudo-triangulations) A rigid bar-and-jointframework whose underlying graph is obtained by re-moving a 
onvex hull edge from a pseudo-triangulationis a 1DOF monotone me
hanism.Proof (sket
h). The proof is an extension of theone in [12℄ (subsequently refered to as the \CDR proof"),using the a
y
li
 property of the edges, and the linearindependen
e in the 
on�guration spa
e of the 2n-4bars. In parti
ular, we have strengthened their result,by showing that any framework whi
h is generi
allyindependent (obtained from a generi
ally rigid (de-pendent) framework by removing some bars), a
y
li
and does not 
ontain all the 
onvex hull edges is 
ex-ible and monotone.We �rst show that there exists a unique in�nitesi-mal motion (this is a stronger statement than the onein the CDR proof for polygons, be
ause we restri
tedthe number of degrees of freedom of the me
hanism).The proof depends only on the 
ombinatorial type ofthe pseudo triangulation, hen
e as long as this does not


hange, the motion 
ontinues. This step 
an be mademore pre
ise by an argument as in the CDR proof(based on integration of the resulting ve
tor �eld), andprodu
es the desired traje
tory in 
on�guration spa
e.To prove the existen
e of the monotone in�nitesi-mal motion, we also have to adapt slightly the argu-ment in the CDR proof, using LP duality, Maxwell'sTheorem lifting and the mountain-valley argument of[36℄. Add all possible diagonals (\struts") and pla-narize the graph. By LP duality it suÆ
es to showthat there exists no self-stress whi
h is positive onthe struts. For the sake of a 
ontradi
tion, assumethere exists su
h a self-stress and use Maxwell Theo-rem to lift the pi
ture in 3d to a polyhedral surfa
e.Then 
utting the polyhedral surfa
e with a horizon-tal plane epsilon below the vertex with maximum z-
oordinate in the lifting, one obtains a polygon, whi
hwill have at least three verti
es on the 
onvex hull thatmust 
orrespond to mountain edges. The proje
tionof the mountain edges on the plane of the se
tion in-du
es three 
y
li
 ve
tors, whi
h 
an only be alongthe edges of the pseudo triangulation. This 
ontra-di
ts the a
y
li
ity of the pseudo-triangulation. SeeFig. 11, where M is the vertex where the maximumis attained. Just like in the CDR proof, the argument
an be easily extended to the 
ase when the maximumis attained on an edge or fa
e, and a
y
li
ity guaran-tees that we obtain a 
ontradi
tion.
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(a) (b)Figure 11: The mountain/valley argument: (a) Cut-ting just below the vertex of maximum z-
oordinate,we get the image in (b).Our 
ase needs a few more details added to thebasi
 stru
ture of CDR proof. First, we need the as-sumption that the rank of the original system of equal-ities (
orresponding to the bars of the framework) is2n � 4, otherwise there will be no basi
 solutions tothe linear program. The argument based on Maxwelllifting is then used to show the existen
e of a positivesolution, however we need extra 
are, sin
e removingan edge from the framework to get the rank down tothe 
riti
al value of 2n � 4 does not, in itself, implythat there exists a stri
tly in
reasing motion on all di-agonals despite the fa
t that the mountain-valley ar-gument holds on the interior points. Indeed, there areboth monotone and non-monotone me
hanisms aris-ing from pseudo-triangulations by removing an edge,but only those obtained by removing a 
onvex hulledge are monotone. A simple extension of the argu-ment 
overs the 
onvex hull verti
es and semi-simplepseudo triangles. We defer these details to the fullpaper.



5 The Main ResultEa
h monotone me
hanism indu
ed by a pseudo tri-angulation 
an be moved as long as the edge ve
torsremain a
y
li
. We 
omplete the proof by showinghow to glue together the traje
tories 
orresponding tothese motions. A 
hange in a
y
li
ity o

urs whentwo bars be
ome 
ollinear. At that point, we have tore
ompute a new pseudo triangulation. The followingtheorem proves that this 
an be done either with lo
al
hanges and keeping the same number of verti
es inthe original polygon, or by de
reasing by at least onethe number of verti
es of the polygon and applyingindu
tion.Theorem 5.1 (Gluing traje
tories at alignmentevents) When two edges align, one of the following
ases two 
an o

ur:1. Two adja
ent edges of the polygon be
ome 
ollinear.In this 
ase, we freeze the joint, eliminating onevertex of the polygon (and apply indu
tion to
ontinue).2. Two adja
ent added diagonals or one diagonaland an edge of the polygon be
ome 
ollinear. Inthis 
ase, we perform a 
ip in the pseudo trian-gulation to obtain a pseudo triangulation with asemi simple fa
e.An example is depi
ted in Fig. 12.
(a) (b) (c)Figure 12: Pat
hing the pseudo triangulation by a lo-
al 
ip when two bars (not both polygon edges) align.The above theorem is not stated in full generality,to avoid 
luttering the overall pi
ture with details. Inparti
ular, several verti
es may straighten simultane-ously, but the same type of argument would work. Al-ternatively, we 
an imagine a perturbation argument,used to help with the 
omputation of a new pseudo-triangulation at the boundary 
ase. We must avoidusing the same two edges that just be
ame 
ollinear.This 
an be done by perturbing the joint vertex toa nearby position whi
h would intuitively 
orrespondto what the me
hanism would look like \right after"passing through the straightened position. It will nolonger be a
y
li
, and there will be exa
tly one edgewhose removal will make it a
y
li
 again. Then we 
anuse the extension theorem for pseudo triangulations toadd a new edge. Perturbing ba
k to the original po-sition of the vertex, the indu
ed me
hanism will havetwo overlapping edges and one of its fa
es will be asemi-simple pseudo triangle (see Fig.12).

Another problem o

urs whan we freeze two alignededges of the polygon. In this 
ase we must get rid ofthe other diagonals (if any) adja
ent to the vertex,whi
h 
an also be done by lo
al 
hanges (but mayinvolve linearly many edges). O

asionally this oper-ation rigidi�es the framework: then we must pi
k upanother 
onvex hull edge to remove from the 
onvexhull. All these details are unproblemati
, and the fulldes
ription is deferred to the full paper.Theorem 5.2 Termination and 
omplexity anal-ysis The 
onvexi�
ation of a polygon terminates in�nitely many steps, whi
h is at most O(n2) steps ifwe use the weight fun
tion based on shortest paths andgeodesi
 hull as invariant.Proof With some 
are in the pat
hing strategy, it
an be shown that no 
ombinatorial pseudo triangula-tion will o

ur twi
e in the 
onvexifying motion. Sin
ethere are �nitely many 
ombinatorial pseudo triangu-lations, the algorithm terminates.
A B

 A  B
 C

  A
  B

  C

CFigure 13: When the two aligning edges do not belongto the polygon, there are two possible diagonal 
ips.A 
ip redu
es the number of bends in geodesi
 pathsusing the vertex involved in the alignment.Amore 
areful a

ounting 
an bring down the num-ber of steps to O(n2). We use the weight fun
tionintrodu
ed for the re
ursive algorithm in se
tion 3 tokeep tra
k of the number of bends in the shortest pathsand geodesi
 hulls. The key observation is that a lo-
al 
ip de
reases the number of bends by at least one(or more, depending on how many geodesi
 paths gothrough the vertex where the event happened). Thespe
ial events (when two edges of the polygon align)are only linearly many, and they may not in
rease theweight fun
tion by more than O(n) ea
h (or: re
om-pute a re
ursive pseudo triangulation on fewer verti
esat that point). The �nal value of the weight fun
tionis at most linear. Hen
e the number of steps is at mostO(n2).Theorem 5.3 Main Result: Convexi�
ation ofPlanar Chains with Monotone Motions Everyplanar polygon 
an be 
onvexi�ed with at most O(n2)motions. Ea
h motion is indu
ed by a 1DOF mono-tone me
hanism 
onstru
ted from a pseudo triangula-tion with a hull edge removed, whi
h is moved untiltwo of its adja
ent edges align. At that point a lo
al
ip of the diagonals restores a pseudo triangulation.The 
omplete traje
tory in 
on�guration spa
e is a se-quen
e of simple 
urves, ea
h one naturally parametrized



by a rotating edge in the work spa
e. A �rst pseudotriangulation 
an be 
omputed eÆ
iently (O(n log n)or O(n2)) by several algorithms and updated in (atmost) linear time per step.6 Con
lusionsWe have shown how to 
ompute algorithmi
ally a tra-je
tory in the 
on�guration spa
e of a planar linkage,
orresponding to a motion that 
onvexi�es the poly-gon without produ
ing self-
rossings along the way.The proof is based on a number of novel ideas, mostprominently the use of pseudo triangulations, whosemain 
ombinatorial and rigidity theoreti
 propertieshave been des
ribed. But still many more await at-tention, su
h as: study the graph whose verti
es 
orre-spond to pseudo triangulations and whose edges 
or-respond to 
ips in pseudo 4-gons. What is its diam-eter? How many pseudo triangulations of a point setor polygon are there? Is there any interesting poly-tope whose 1-skeleton is the graph of pseudo triag-ulations (as there is for regular triangulations [15℄)?Sin
e pseudo triangulations 
an be naturally de�nedin the 
oordinate-free 
ontext of oriented matroids,what 
ombinatorial properties would distinguish them(as a 
olle
tion) from the ones realizable in the eu-
lidian plane? Is there a 
on
ept of a regular pseudotriangulation, as it is for triangulations?From the point of view of Rigidity Theory, we haveexhibited a 
lass of planar rigid graphs with elegant
ombinatorial properties. We think that the rigid-ity theoreti
 properties of pseudo triangulations willprove to be useful in other appli
ations. It would beinteresting to understand the properties of the non-monotone me
hanisms obtained by removing a non-
onvex hull edge of a pseudo triangulation and theirdegenerate 
on�gurations.All the pi
tures in this paper have been produ
edusing the software pa
kage Cinderella [31℄, whi
h sup-ports motions of 1DOF me
hanisms and even ani-mates them. But not all \pseudo-triangulation-minus-hull-edge" me
hanisms admit a Cinderella 
onstru
-tion. It would be interesting to 
lassify pseudo trian-gulations in a 
omplexity hierar
hy, based on the ex-tra primitives that should be in
luded in Cinderella tosimulate them (i.e. added to basi
 ruler and 
ompass
onstru
tions). This is also related to the problem of
omputing (in the real RAMmodel) the 
oordinates ofthe points realizing a 
on�guration of a pseudo trian-gulation me
hanism at one edge alignement moment,given the 
oordinates of the points at the previousevent. It probably 
annot be done better than usingstandard numeri
al approximation te
hniques.A web page 
ontaining Cinderella animationsand other graphi
al and 3d illustrations of ourapproa
h 
an be found at the author's url,http://
s.smith.edu/ streinu. Thanks to my stu-dents Beenish Chaudry, Vi
toria Manfredi, ChristineRi
e and Elif Tosun for their help.
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