ON TAKING ROOTS IN FINITE FIELDS

Leonard Ad'leman1
Massachusetts Institute of Technology

INTRODUCTION

Among the most important concepts in number
theory is that of gquadratic residue.

For all relatively prime a, mE€N
a is a quadratic residue modulo m
if and only if x* = a MOD(m) has
a solution (if not, a is a quadra-
tic non-residue).

From purely computational considerations the con-
cept is crucial, being of central importance in all
recent primality algorithms [12], [16], (18] and in
methods for factoring polynomials over finite fields

(51, [6].

How hard is it to decide if a is a quadratic
residue modulo m? Few problems have received more
attention [7]. When m is prime, the Legendre symbol,
the Jacobi symbol and the Gaussian Law of Quadratic
Reciprocity yield a polynomial time algorithm [14].
When m is composite, then the above result for primes
together with the Chinese Remainder Theorem yields a
polynomial time algorithm assuming m can be factored
(thus this problem is probably noty- or NP-complete).
Finding x's such that x* = a MOD{m) when a is a qua-
dratic residue is a far more complex problem. In [11]
it was shown that finding the least x such that
x* = a MOD(m) is NP-complete (even if m is factored).
The main result of this paper is: v

THEOREM [ [Assuming Extended .Riemann Hypothesisl.
There ie a determinigtic polynomial time algorithm
which on inputs a, p €N, where p is prime, outputs
the least X €N such that x* = a non(;ﬁ (or "wo"” if a
18 a quadratic non-restdue modulo pJ..

The history of this problem is quite interesting
[7]. The first reference to it is by Bhascara Acharya
(1150 AD) who considered the very special case
x? = 30 MOD(7). General methods have been discussed
by many great mathematiciains including Lagrange,
Legendre, Gauss, Dirichlet and Lebesgue. However,
among recent algorithms it appears that those of
Berlekamp [5], [6] (as part of a general method to
factor polynomials) and Lehmer [10] are best. Both
algorithms run in random polynomial time.T

Both are based on a clever trick, where, roughly
speaking, the problem x? = a MOD(p) is transformed

ISupported in part by 0ffice of Naval Research contract
NOQO14-67-0204-0063.
2

Supported by National Science Foundation grant
DCR72-03725-A02.

Supported by National Research Council grant NRC-A5544

+Intuit'ive1y, we mean that the algorithm, when modified
to use a random number generator, will always output
the correct answer and that the algorithm has a high
probability (independent of the input) of termination
within polynomial time. This is a seemingly stronger
notion than that of Strassen and Solovay [18], who
only require that the output be correct with a high
probability. For a more precise definition see [3];
for a discussion of the relationship between these
two types of definitions see [13].

3

175

Kenneth Manders2 Gary Miller
University of California, Berkeley

3
University of Rochester

into a new problem (x+c)? = a MOD(p) which because of
the quadratic character of the roots is easy to solve.
This trick seems to rely on very subtle features of the
additive structure of numbers modulo n. As a conse-
quence there seems to be no direct way to apply exist-’
ing number theoretic results to determine if these
algorithms run in deterministic polynomial time. Our
algorithm also runs in random polynomial time but since
it relies directly on features of the multiplicative
structure of numbers modulo p, deep number theoretic
results due to Ankeny [4] apply. (See below.)

The next theorem contrasts a consequence of
Theorem [ with a result from [11].

THEOREM II. Let P1 be the problem of finding an
X EN such that x* = a MOD(m) from imputs a, m €N,
where a 13 a tic residue modulo m, and m is nre-
sented fully factored. Let Pp be the problem of find-
ing the least x €N such that x> = a MOD(m) from inputs

a, m EMN, where a is a quadratic residue modulo m, and
m is presented fully factored.

a) lAssuming Extended Riemann Hypothesis] .PI ig
in deterministic polynomial time.

b) P, is NP-complete.

To solve Py, use Theorem [ to solve x? = a MOD(p)
for each prime divisor of m. If p*, a« > 1 is the lar-
gest power of p dividing m, solve x¢ = a MOD(pK),

k=2,3,...,0 @S
k=1 k=1:,.2 i
X = X1+ VP = 2%, 1P +(xk_]~a) = 0 MoD(p)

(see [14], Ch. 2.6), and use the Chinese Remainder
Theorem to find the solution MOD(m). The difficulty of
Pg seems to be that we have no way of predicting the
size of the solution obtained from the Chinese Remain-
der Theorem in relation to the choice of solution to

x* = a MOD(p®). (This phenomenon is reminiscent of the
difficulty of comparing the sizes of numbers repre-
sented in a residue system [9].)

Our methods extend to give the following results:

THEOREM III [Assuming Extended Riemann Hypothesis].
For all n, there is a deterministic polynomial time
algorithm which on inputs a, p € N, where p is prime,
outputs the least x €N such that x" = a MOD(p) (or
"o Lf no such X exists). ;

THEOREM IV [Assuming Extended Riemann Hypothesis].
There is a deterministic algorithm rumwning in time
0(n 1og®(p+a)) for some ¢ > 0 such that on inputs a, p,
n €N where p is prime ocutputs the least X € N such
that xP = a MOD(p) (or "™o" if no such X exists).

Extensions of Theorem IV to include finding roots
of arbitrary pelynomials of degree n would be of consid-
erable interest. Recent results due to Plaisted [15]
seem to indicate that these algorithms must be exponen- .
tial in n. In this direction, it is straightforward to
use Theorem I and the quadratic formula to get:

THEOREM V [Assuming Extended Riemann Hypothesis].
There is a deterministic polynomial time algorithm which
on inpute a,b,c,p €N, where p is prime, outputs both
roots of the equatiom ax® +bx+c = 0 MOD(p) (or "mo" if
the equation has no roots).



Because of the explicit formulas for solutions to
polynomials of degree up to four it is 1ikely that a
similar result can be proved for these cases by apply-
ing Theorem III. Unfortunately further generally
valid extensions by this technique are impossible as a
consequence of Galois' famous results (in cases in
which solution formulas for equations of higher degree
of special forms do exist, the algorithm might again

be extended).
THE ALGORITHM

The following three easy lemmas are central to
the algorithm:

LEMMA I. For all N,K,p,a €N with p-1 = 25(2041)
and p prime:

If aZNH = 1 MOD(p) then aNﬂ' ie a

solution to x? = a MOD(p).

- a MOD{p). (a5 2 a2 5 d™ ) (1) &

LE{‘(NA I1. PFor all N,K,p,a,9,d €N with
p-1 = 2X(2N+1), p prime, and g a quadratic non-residue
modulo p:
1f a29(2¥1) = 1 MOD(p) and 229~ 1(2W+1) £ 1 Mop(p)
where 1 < J < K then ]
K-0y29"T (2n41)
(ag2™™) = 1 Mon(p) .

J-1
k=0 27 T(aw1) o1
2 = (g2

PROOF. (ag (241)y,

@ @) < )y = 1 wootp).
LEMA III. PFor all m,g,a,b,y €N, y = 0 MOD(2):
17 b2 = ag’ MOD(m) zhen (b(e/2)"")2 = a MoD(m).

PROOF. _(b(g*/%)™T)? = p2(¢/%)7T(¢/2)°T =
:g:’égﬁ)“_{g”zr‘ = a(g"?)(¢?)(¢/?2) N (#7%)"!
3 m).

The algorithm begins by finding the least number

W

J
Jy such that a2 |(2¥+1) = 1 MOD(p). If Jy = O then
the algorithm finds a square root by application of
Lemma I. If not it uses Lemma II to construct a new
number as for which the least number Jo such that

Jz2
a% (241) = 1 MoD(p) is guaranteed to be such that

J2 < J1. It continues in this fashion until for some
ag, Jy = 0. It then uses Lemma I to find a square root
by of aj. It finally uses Lemma III to extract a
square root of a from by.

To carry out this process the algorithm needs a
quadratic non-residue modulo p. The following deep
result due to Ankeny [4] guarantees that this can be
found in polynomial time.

THEOREM (Ankeny) [Assuming Extended Riemann
Hypothesis]. There exists a ¢ > 0 such that for all
primes p the least quadratic non-residue modulo p is
less than c(log p)*. (Recent results obtained by
P. Weinberger [20] suggest that c < 4.

Below is a more precise version of the procedure.
"On input a,p

I Use the Euclidean Algorithm and Miller's Algorithm
[12,13] to reject the input if either a and p are
not relatively prime or if p is not prime.

-1
[T If aEzh £ 1 MOD(p) then output "a is not a quadra-
tic residue modulo p" (see [14]) and halt.
g=t
III Find the least g such that g e £ 1 MOD(p) (this g
is a quadratic non-residue and by Ankeny's results
this step is carried out in polynomial time).

IV Compute K, N such that p-1 = 25(2N+1).
v Set L =1, : J
VI Find the least J such that a2 (2*1) = 1 mop(p).

VII If J =0 (Lemma I applies) then set D = a"'' and
go to VIII. If J # 0 (Lemma II applies) then set-
& -d=1 _
a = ag »5et L = L-g and go to VI. (Mote:
Step II and Lemma II assure J < K?.

VIII Compute (using Euclidean Algorithm) the inverse
L™! of L MOD (p), output MIN{D-L™" MOD(p),
-(oL™") mon(p)}.

We outline a second proof of Theorem I, which pro-
vides further motivation for Lemma II, and for the more
general construction of Theorems III and IV. First we
note a principle which allows a reduction of the general
problem of finding a g-th root modulo p to the problem
of finding a q-th root modulo p of a number whose order
is a power of q, i.e. be~ = 1 MOD(p) and 2® is the
smallest exponent for which this holds.

LEMMA IV. 1f a%% = 1 MOD p; (s,t) = 1, then for
any golution V,W EZL of vs+wt = 1, we have for
b = a%" MOD(p), ¢ = a¥s MoD(p): .

be = a MOD(p)
bS5 = 1 MOD(p) and (0(a),s) = (O(b),s)
¢t = 1 MoD(p) and (0(a),t) = (0(c),t)

where (X,y) = gcd{x,y}, and 0(x) is the order of x in
the multiplicative group of integers modulo p and prime
to p.

The proof is obvious. As small v, w exist, b and
¢ can be obtained quickly.

Let us take (without loss of generality) q = 2 in
the following. With any prime number p, we can asso-
ciate the binary tree with root -1 and such that the
immediate descendants of any node b, 1 < b <p, b a
quadratic residue mod p, are the two solutions of
x* = b MOD(p), 0 < x < p. Thus the Teaves of the tree
are quadratic nonresidues mod p. A1l numbers occurring
as nodes in the tree have order 2% for some a > 0.

By Lemmas IV and I we can now reduce the problem
of solving x> = a MOD(p) to the case where a occurs in
the tree associated with p; this problem can in turn be
solved by finding a leaf x in the subtree with root a
and squaring x until we obtain one of the immediate
descendants of a, which is the desired solution.
Ankeny's result shows that we can quickly find a qua-
dratic non-residue modulo p, which by Lemma IV can
again be reduced to a leaf % of the tree. If % does
not lie in the subtree with root a, let b be the root
of the minimal subtree containing £ and a; say

22% = b MOD(p). By Lemma II we can now find a ¢ such

that ch'1 = -1 MD(p); %c is still a quadratic non-
residue modulo p and %c and a are contained in a
strictly smaller subtree than £ and a. By repeating
this process, we find a leaf in the subtree with root
a, as desired.

176



For Theorems III and IV we modify the algorithm
as follows: To extract an n-th root, we factor
gcd(n,p-1) and repeatedly extract a g-th root, where q
is a prime dividing gcd(n,p-1). Finally we extract an
n/gcd(n,p-1)-th root. This last problem can be solved
immediately, using a generalization of Lemma I:

LEMMA I'.K For any n,N,N',a,p,h,K €N with p
prime, p-1 = n™(nN+N'), 0 < N' < n, (n,nN+N') = 1 and
h = n=1 MOD(nN+N'):

r a™N' = MoD(p), then

ah is a solution to X" = a MoD(p) .

In this case we have K = 0 and clearly the condi-
tions of Lemma I' can be satisfied. Thus we can in
the following restrict ourselves to consideration of
the problem:

x%9 = a MOD(p), q.p primes, q|p-1 .

To solve this problem, we apply the original algorithm;
steps I-VI are modified in the obvious fashion replac-
ing “2" by “"q" and "quadratic (non-)residue” by “g-th
(non-)residue" and "2N41" by "gN#N', 0 < N' < g".
Ankeny's theorem applies to the size of the least q-th
nonresidue equally well [4], so step III runs in poly-
nomial time.

In step VII, if J = 0 we apply Lemma I' instead
of I; if J > 0 then we use a similar generalization of

Lemma II, with "gZK”J" replaced by “gZK'j-l", where A
is determined by trial and error to satisfy

1(J«,ﬂ)fl. 0<I'A<n, AEN
J=1,N+N K= '
az (2 ),gk'z (2NN ) = 1 MoD(p)

Finally, step VIII is carried out as before, with
"q" replacing "2" in Lemma III.

Remark. We indicate a different method for find-
ing roots. The algorithms produced by this method are
less efficient than those given; however they exem-
clify a strateav (using primitive roots) which may be
more generally apolicable in obtaining extensions of
these results.

In the algorithms above, take g to be a primitive

root modulo p rather than an arbitrary g-th nonresidue.

This can be done, using

THEOREM (Wang [19]) [Extended Riemann Hypothesis]
For some ¢ > 0, and any prime p: The least primitive
root modulo p is less than c(log p)2#%, where # is the
number of prime factors of p-1.

Unfortunately, there is no known deterministic poly-
nomial time algorithm to decide whether g is in fact a pri-
mitive root modulo p, so step III of the algorithmwill not
work. Instead, steps IV-VIII (as modified for q-th roots)
are run for each number less thanc(logp)® until a correct
result is obtained; this can be verified by substitution
in the congruence.

OPEN PROBLEMS

1. Are the problems of
a) Primality testing
b) So1ying x* = a MOD(p), p a prime (inputs:

a,p

deterministic polynomial time interreducible
(without ERH, of course)? This type of question
might lead to more insight into the role played
by ERH: Is ERH being put to a different use in
the two problems?

177

Is the problem of finding a solution of x? = a
MOD(m), where m is an arbitrary natural number and
the prime factorization of m is not given, in deter-
ministic polynomial time? Compare Theorem II. If
not, is factorization “required" to solve this
problem? That is, can the problem be solved in
deterministic polynomial time using an oracle for
a problem Q such that factorization cannot be done
in deterministic polynomial time with an oracle
for Q. (Only a plausibility argument can be
expected at present for the latter claim.)

Consider the problem
"on input <p,y,g>, p prime, 0 <y < p,
g primitive root modulo p, find x:
0 <x < p-1, g =y MOD(p)."

Is there a deterministic polynomial time algorithm
to do this?- Assume ERH.

The last two problems have practical as well as theore-
tical interest because of recent developments in crypto-

logy.

See [8] and [17].
- ACKNOWLEDGMENT

The authors thank Dana Angluin for helpful conver-

sations and encouragement,

10.

1.

12.
13,

14.
15.

16.

REFERENCES

Adleman, L., Number Theoretic Aspects of Computa-
tional Complexity, Ph.D. Thesis, Berkeley (1976).
Adleman, L. and Manders, K., Diophantine Complex-
ity, Conf. Rec. 17th Annual IEEE Symp. Foundations
of Computer Science (1976), 81-88.
Adleman, L. and Manders, K., Reducibility, Random-
ness, and Intractability, Proc. 9th Annual ACM
Symp. on Theory of Computing (1977), 151-163.
Ankeny, N., The Least Quadratic Non-Residue,
Annuals of Mathematics 55 (1952), 65-72.
Berlekamp, E.R., Algebraic Coding”Theory, McGraw-
Hi1l, New York (1968).
Berlekamp, E.R., Factoring Polynomials Over Large
Finite Fields, Mathematics of Computation 24
(1970), 713-735.
Dickson, L., History of the Theory of Numbers,
Chelsea Publishing Co., New York (1952, 1966).
Diffie, W. and Heliman, M., New Directions in
Cryptography, IEEE Trans. Information Theory
(Nov. 1976).
Knuth, D,, Seminumerical Algorithms, Vol. 2 of
Ihe A;t of Computer Programming, Addison-Wesley
1969). : ’
Lehmer, D., Computer Technology Applied to the
Theory of Numbers, Studies in Number Theory,
Mathematics Association of America (1969), 117-
151.
Manders, K. and Adleman, L., NP-Complete Decision
Problems for Quadratic Polynomials, Proc. 8th
Annual ACM Symp. on Theory of Computing (1976),
23-29,
Miller, G.L., Riemann's Hypothesis and Tests for
Primality, Ph.D. Thesis, Berkeley (1975).
Miller, G.L., Riemann's Hypothesis and Tests for
Primality, J. Computer and System Sciences 13
(1976), 300-317,
Niven, I. and Zuckerman, H., An Introduction to
the Theory of Numbers, John Wiley & Sons (1972).
Plaisted, D., New NP-hard and NP-complete Polyno-
mial and Integer Divisibility Problems, Conf. Rec.
18th Annual IEEE Symp. Foundations of Computer
Science (1977).
Rabin, M.0., Probabilistic Algorithms, in Algo-
rithms and Complexity, New Directions and Recent
Results, J. Traub (ed.), Academic Press, 21-40.



17.

18.

19.
20.

Rivest, R.L., Shamir, A. and Adleman, L., On Digi-

tal Signatures and Public-key Cryptosystems, Labo-
ratory for Computer Science, M.I.T. Report MIT/
LCS/TM-82 (April 1977).

Strassen, V. and Solovay, R., Fast Monte-Carlo
Tests for Primality, SIAM Journal on Computing
(1977), 84-85.

Wang, Y., On the Least Primitive Root of a Prime,
Sci. Sinica 10 (1961), 1-14,

Weinberger, P. (Private Communication), Also
informal presentation at the Asilomar Number
Theory Conference (Dec. 1975).

178



