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~ Abstract

In this paper we describe a simple parallel algorithm for list ranking. The
algorithm is deterministic and runs in.O(logn) time on EREW P-RAM with .
n/ logn processor. The algorithm matches the performance of the Cole-Vishkin
[CV86a] algorithm but is simple and has reasonable constant factors.

1 Introduction

List ranking is a fundamental operation on lists. The problem is: given a linked
list, compute the distance each cell is from the end of the list. The problem can
be solved by a straightforward sequential algorithm that traverses the list. However,
the problem is much more difficult to solve efficiently in parallel. The problem was
first proposed by Wyllie [Wyl79] who gave an algorithm that ran in O(logn) time
using n processors. A substantial amount of effort has been put in to. finding a .
deterministic parallel algorithm that achieves the same time bound with n/logn
processors. Such an algorithm would be optimal in the sense that it would’ have a.
time processor product equal to that of the sequential algorithm. The result of Wyllie _
has been gradually improved in a series of papers [Vis84] [WHB6] [KRS85] [MRS5)
[CV85], until Cole and Vishkin [CV86a] succeeded in giving an optimal algorithm.
with O(logn) runtime on an EREW P-RAM. The draw back to their algorithm is
that it is complicated and has very large constant factors. They rely on an expander
graph construction to solve a scheduling problem that arises. In this paper we give
an algorithm that runs in O(logn) time and uses n/logn processors. Our algorithm
is much simpler, and does not rely on an expander graph construction.

There are two main reasons why the parallel list ranking problem has attracted so
much attention. First of all, list ranking is a fundamental operation that.has many
applications. List ranking can be used to compute a prefix sum for any associative
operation over a list; this can either be done by using the ranks to reorganize the list
into an array and using an efficient algorithm for data independent prefix sum, or by
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gmbedding the associative operation into the list ranking algorithm. Another appli-
cation of list ranking is to perform traversal operations, such as preorder numbering,
on trees [TV85]. The problem of expression evalution on trees can be reduced to list
ranking [GMT86] which leads to optimal algorithms for evaluating certain types of
~ expressions. The second reason for looking at parallel list ranking is that the problem
has been a rich source for ideas about parallel algorithms in general. For example
certain arbitration techniques have been developed for list ranking that have turned
out to have much wider an application [GPS87]. Many ideas about methodologies for
parallel algorithms and schelduling have come out of this work.

‘Our list ranking algorithm follows the same scheme as other efficient list ranking
algorithms. We first describe the general scheme and then give the basic version of
our algorithm. Although the first algorithm is correct, it does not achieve the O(logn)

' running time because the processor workload may be unbalanced. We show how to
. fix the problem by attending to certain details: The final subsection gives the analysis
" of the algorithm which establishes it as an optimal algorithm.

20 L'ist ranking Algorithms_ |

. The staridard parallel algorithm for list ranking is due to Wyllie and runs in O(logn)
"time using n processors. The algorithm uses.a path-doubling strategy. Each cell v
contains a pointer D(v) and at each time step the assignmemt D(v) = D(D(v)) is
‘made. The distance covered by a pointer doubles at each’time step, so in log n steps,
“all pointers are at the end of the list. It is straight forward to embed the computation
of the distance to the end of the list in this process. The drawback of this algorithm
‘is that the work (time—processor product) performed is O(nlogn) as opposed to O(n)
work for the natural sequential algorithm. The goal of subsequent work on the list
ranking problem has been to reduce the processor requirement while still maintaining
a run time of approximately O(logn). 5
The basic step of the list ranking algorithm can be viewed as splicing out an
element from the list. When the pointer D(v) is replaced by D(D(v)) the cell D(v)
is removed from the list starting at v. .The source of the inefficiency in Wyllie's
algorithm'is that the same cell is spliced out of a number of different lists instead
" of being left alone once it is spliced out. The basic approach to get improved list
ranking algorithms has been to splice out a large number of the list cells and then
solve the list ranking problem on the smaller list. Most of the list ranking algorithms
subsequent to Wyllie contain the following steps:

1. Splice out elements from the list so that O(n/logn) elements remain.
2. Solve the list ranking problem on the reduced list with Wyllie's algorithm.
3. Reconstruct the entire list by processing the elements that were spliced out.

~_Step 2 can be done in O(log n) time and n/ logn processors since the list has been
~ reduced in length. Step 3 can also be done in O(logn) time with n/ logn processors.
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The details of this step depend on the data structure used to represent the spliced out

. elements. However, standard parallel techniques suffice for this step. The key step
in order to have an optimal parallel algorithm is step 1 which must also be solved
in O(logn) time with n/logn processors. It is this step that has been gra.dually- _
improved in the series of papers on list ranking and is the step that we addr&s inour .
algorithm.

There are two major issues that arise in the algorithms to splice elements out of thel_
list. The issues are identifying elements to remove and resolving contention. In order
to perform the splice out phase efficiently, it is necessary to have fewer processors than
list cells, so processors must identify cells to work on. As cells are removed, processors
must be reallocated and find cells still in the list to work on. Naive strategies run into
the problem that as elements get removed from the list, it becomes more difficult to
find clements still in the list to work on. Various scheduling and reorganizing, ‘schemes

“have been developed to get around this difficulty. Note that to get an optimal n /logn:
processor algorithm, a constant fraction of the processors must succeed in finding an*
element to remove from the list at each time step. A feature of our algorithm is a
rather simple scheduling strategy that allows the processors to keep busy with cellsl '
still in the list.

The most frequently used reorga.mza.tmn scheme is to move the remammg cells to
the start of the array [Vis84] [WHB86] [KRS85] [CV86b] [MR85]. The basic way to do
this is to compute a prefix summation of the number of live cells in the array, and then.
move cells forward. The summation can become a bottleneck since it takes O(logn)
time on an EREW P-RAM. The summation can be performed less than O(logn) time
on the more powerful CRCW P-RAM [Rei85] [CV86b], so this step need be dominant. .
An alternate approach proposed by [MR85] is to compress with a probabilistic routine .
that does not give perfect compression, but does concentrate the live cells sufficiently
so that they can be easily identified. ‘A different approach to allocating the work is
to have processors randomly probe into the array to find cells to work on [Vis84]. To.
construct their optimal deterministic list ranking algorithm Cole-Vishkin introduced
a complicated rescheduling scheme based on expander graphs [CV86a]. All of these
schemes can be viewed as dynamic rescheduling, since the processor assignments
depend upon the data. In contrast to these algorithms, our algorithm relies upon a

* static scheduling of the list cells to the processors.

The second issue in splicing out elements is a.vo:dmg contention. Two a.d]a.cent
list cells can not be spliced out at the same time. A natural strategy to resolve
contention is with randomization [MR85] [Vis84). When processors identify adjacent
cells to remove, random bits are chosen and then a protocol .is used that insures
that adjacent cells are not selected. The deterministic case for resolving contention
is more difficult. Cole-Vishkin and Han [CV85] [Han87)] independently developed
deterministic protocols based on the cells’ addresses to resolve contention. The Cole-
Vishkin method (deterministic coin-tossing) finds a subset of the list cells such that
no adjacent cells are in the subset and every cell is within a distance of k of an element
of the subset. The subset is referred to as a k-ruling set. They show that a 3-ruling
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set can be constructed in O(log® n) time and a log®™® n-ruling set can be constructed in
O(k) time. Our algorithm will use their subroutine for constructing a loglog n-ruling
set.

8 Ba‘s'ic Algorithm

Our list ra.nkmg algorithm splices items out of the list until n/logn items remain.
When the algorithm is reduced to n/logn items, Wyllies algorithm can be applied
. with one processor per list cell. The ranks of the items can then be computed by
addmg them back into the list in the reverse of the order that they were removed.
One way to view our algorithm is that the processors make probes into the list to
find cells to work on. The probing is done in a manner that assures that the processors
making probes find distinct cells that have not been removed. If a processor identifies
_ a cell with neither of its neighbors identified by other processors, then the cell can be
spliced out immediately. The difficult case is when the cell identified by a processor
is adjacent to a cell identified by another processor. The processors cannot splice out
their cells simultaneously. One of the key components of our algorithm is the manner
. in which contention is resolved. '
We refer to a set of adjacent cells that are selected by processors as a chain. The
first cell is the ruler and the remaining cells are subjects. It is easy to determine
" which cells are rulers and which cells are subjects in constant time. All of the work of
removing the subject cells is assigned to the processors of the ruler. The processors
‘of the subject cells are released and go on to work on other cells. A ruler removes
its subjects by splicing them out one at a time. This removal takes place while other
cells are probing the list and determining whether they are rulers or subjects.

The algorithm is divided into stages. During a stage, a processor may remove a
cell from the list or find another cell to work on. A stage can be performed in constant
time. Each ruler removes one of its subjects in a stage. If a ruler removes its last
subject, it becomes active and will participate in the reallocation phase, otherwise it
waits for the next stage to remvoe its next subject. After the rulers have removed
subjects, all active processors pick cells and arbitrate to find rulers and subjects. At
this time, the selected cells not adjacent to other selected cells are spliced out. The

_processors associated with subject. cells are set to being active at the next stage so
that they are reallocated.

The allocation of processors to list cells is done in a static manner. Initially, the
memory is divided up into n/logn blocks of logn items each. Each processor is
'assigned one of these blocks which we refer to as its queue. The items in a queue are
not necessarily adjacent in the list. A processor acts upon the items in its queue in
‘order, starting with the first item. We refer to the number of items left in a queue
as its. height, and the item currently under consideration as its head. There are two

. ways that an item can cease to be the head of a queue, it can be spliced out, or it
can become a subject. In either case, the processor takes the next item in the queue
as its new head. If a queue becomes empty, then the processor ceases to work.
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. We give a more formal description of this algorithm by giving the code for a
single stage. Each processor runs the following code. The queue for the processor is
represented by an array, with head the location of the queue head. The list is assumed
to be doubly linked. The cell p has pointers p.nezt and p.prev to its successor and
predecessor respectively. A cell also has a status field, which can have the value ruler,
subject, active, inactive or removed. Initially, all cells have mactwe sta.tus, active
status indicates that a processor is assigned to them.

The code breaks into the three indicated parts. The first part is where the mlers
can remove cells, the second part is to identify new rulers and sub ]ects, and the last
part is to advance the queue where necessary. :

Stage
p := Q[head];
-- Rulers splice out cells
if p.status = ruler then
SpliceOut(p.nezt);
if p.nezt.status # subject then
p.status := aclive;
end
end
-- Identify new rulers
if p.status = active then
if p.prev.status # active A p.nezt.status # active then
SpliceOut(p); p.status := removed;
else if p.prev.status = active then
p.status := ruler;
else
p.stalus := subject;
end
end
-- Advance queue heads
if p.status = removed V p.status = subject then
head := head — 1;
if head < 0 then
stop
else
Q[head).status := active;
end
end

It must be shown that this algorithm correctly splices out the list elements and
that O(logn) stages are sufficient to reduce the list to n/logn cells. The correctness
of the algorithm follows from the.facts that adjacent cells are never remaved at the
same time, and every cell is eventually looked at by a processor. The run time is more
difficult to establish, (especially since, as currently stated, it is greater than O(logn).)
The following arguement.shows that as long as-most of the processors have nonempty
queues, then the algorithm is performing work at a reasonable rate. ‘We do this by
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a cell can be spliced out, it can either be removed as an isolated cell, or by becoming
a subject and then removed by a ruler. When an isolated cell is spliced out, we assign
~"the processor one unit, when a ruler splices out a cell we assign the processor one
half unit and when we make a cell a subject we assign the processor one half unit.
'Thuh, for each'cell that is removed, one unit is assigned. At the start of a stage, each
processor is associated with a cell that has status ruler or status available. If there
are k available cells, at least k/4 units are assigned, since the number of subjects
created is at least as large as the number of rulers created. If all processors were to
remain busy, this argument would show that 4logn phases would suffice to remove
all of the cells from the list. However, some processors could exhaust there queues,
~while others had made very little progress. One bad case that could occur is for a
ruler to have a large number of subjects (as many as n/logn) which would take a
very long time to remove. To solve this problem, we alter the selection of rulers, so
that a ruler never has too many subjects, and the cells that are made rulers tend to
- be lower down in their queues.

4 Load Balancing

In the previous section we saw that the problem with our proposed algorithm is that
some queues could be delayed working on long chains, while others could finish quickly
and become idle. The solution to this problem has two parts, we insure that the chains
do not become too long and also insure that the shorter queues are assigned work as

- opposed to the longer queues. The major tool that we use for this is the ruling set
algorithm of Cole and Vishkin [CV85).

‘Definition 4.1 In a list L, a k-ruling set is a subset R of L such that there are no
‘adjacent elements in R, and every element of L is within distance k of an element of

R.

Cole and Vishkin give an efficient parallel algorithm for constructing a ruling set.
We use a version of their algorithm that finds a loglogn ruling set in a list of length
n in constant time with one processor assigned to each element.

The process of identifying rulers consists of taking the sets of ddjacent elements
that are picked by processors at that phase. In the original algorithm, we just take
the first cell in a chain as a ruler, and the remaining cells as subjects. To balance
the ‘work load, we break up the longer chains that we identify. There are a number
of things that we can do while making chains and still have a stage run in constant
time. If we break up a chain so that we have some non-adjacent pieces of length

- one, we can splice them out when they are encountered. We can also traverse the list

backwards, instead of forwards to splice out elements. This allows us to have as rulers
the cells of minimum height in a chain, and then remove cells working uphill. Finally,
we can mark the first and last elements of a chain so that rulers know when to stop
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removing items. With the flexibility to perform these operations, it is easy to break
the chains into increasing height, decreasing height, and constant height chains.' The
constant height chains can then broken up into subchains of length at most loglog n
time with the ruling set algorithm. The code gwen above can be mnd:ﬁed to perform
these additional tasks. -

The effect of the modification is to have the following two constraints on rulers _
and chains: a ruler never has more that loglogn subjects, and the height of a ruler is
no greater than the height of its subjects. The performance analysis given in the next
section shows that these condxtlons are sufficient to make this an O(Iog n) a.lgonthm.

5 Performance Analysis

In this section we prove that the algorithm with the enhanced method of choosing
rulers is an O(logn) algorithm. The proof relies on an accounting sche that divides
the work for removing an item amongst the various steps.

Each cell is assigned a weight related to its height. The i-th item from the top
is assigned a weight of (1 — @)’ where a = 1‘““ The accounting scheme is the
same as the one sketched above: the removal of an isolated item is the full weight of
the item, the removal of an item by a ruler is half the weight, the identification of a
subject is half the weight, and the identification of a ruler is 0. We show that each
stage reduces the total weight by a factor of at least 1 — & This allows us'to bound .

Ik
the number of phases that are required to reduce the number of items to 1;‘—-.

Claim 5.1 A single phase of the algorithm reduces the wctght by afactor ofat least
1-2,

To facilitate the argument, we use the followihg bookkeeping trick: ‘the weight of
a queue is considered to be the weight of the remaining elements, plus the remaining
weight of the subjects of the queue head. In Figure 1, queue 1 has weight (1 —a)? +
(1-a)}+(1-a)'+1(1—-a)®+ (1 - a), with the first three terms coming from
queue 1, the fourth term coming from queue 2 and the fifth term coming from queue
We cover the three major cases separately. First we look at what happens when
an isolated cell is removed. Suppose that we remove a cell of wieght (1 — a)’. The
queue has weight at most ):u:;-:to;u(l —a) < Tigi(l-a)i=(1- )“ Thus, the

factor of reduction is
2£+1<}<logn(1 - “)j =1 (1 = “)i
T iciciogn(d ~ oy Ligi<logn(l — )’

<l—-a

The second case is when a vertex is identified as a subject. We account for the
weight of all of the queues associated with the chain. The queues that have cells that
become subjects lose one cell each and the queue that has the ruler picks up the cells.
Each cell that becomes a subject has half of its weight removed by the accounting.
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Figure 1: Figure 1. Computing the weight of a chain
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Figure 2: Figure 2. Réa.rranging weights

Suppose the weight of the ruler is (1—a)®, and the weight of the subjects are (1—a)s
for 2 < j < k. Since the ruler is chosen to be the element of minimum height, we
have i < i;. Let Q; = Ti;<iciogn(l — @)'. The factor of reduction is:

¥ Tacjcr(l — @) 1 - @Zagiar(l = a)i <1-
Ligi<k @i 2 gl —a)f =

The final case to consider is when a ruler removes a cell. In this case we have to
.account for the weight of the queue as well as the weight of the chain of subjects. We
shall perform the accounting as if the heaviest element was removed (even though it is
not necessarily the case). It can be simulated by rearranging the weights as indicated
in the Figure 2.

" Suppose the ruler has weight (1—a)’ and the subjects have weight (1—a)™, ..., (1-
‘a), where (1 — a)'* is the maximum weight and k < loglogn. (Finally the value of
a and the length’s of the chains come into play!) The fraction of reduction is:

1—

nh-.l R

- . L1-a) ’ (1—a)™
Ligj<topn(l — @)’ + 3 Tigicr(l — @)

= (1 —a)* + (1 —a)*loglogn =~ 3

. We can now state the main theorem concerning the runtime of this algorithm.
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Theorem 5.2 The number af list ceHs rema:mng aﬁer Slogn staycs is at most

n/logn.

Proof: At the start of the algorithm, ‘the total weight of aJI of the items is:

n n 1
e 2 (1 -a)< P,
Ogﬂ- 0<|<lo‘n ogn a

Since the Weight of the smallest. item is (1 ajh;ml, if we show that the total wei ght
is reduced to at most 2—(1—a)” logn+1 at time ¢ = 5logn, we will have mta.bhshed

that there are at most n/ logn items. Since the tota.l weight is reduced by a-factor of
at least l — £ each stage, the weight at time ¢ is a.t most

(-—)‘.1 loglogn(l-—)““" I;E;(i_a)’fw._

logn a

6 Conclusions

We have shown that list ranking can be solved by a rela.txvely simple optimal a.lgo- .
rithm. It is important to pursue the idea further and develop truely practical list
ranking algorithms. In practice, Wyllie's algorithm is still probably the best deter-
ministic algorithm, although we believe that our algorithm is a contribution towards
finding a better practical algorithm. In this paper we have considered the synchronous.
P-RAM model. An important area of research is to look at the list rank problem in
other models such as asynchronous models [LG87). : -
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