A Simple Randomized Parallel Algorithm for
List-Ranking

Richard J. Anderson* Gary L. Miller!

Abstract

In this paper we give simple parallel algorithm for the list-ranking problem. The
algorithm is a randomized O(logn) time, n/logr processor algorithm for an EREW
P-RAM. The algorithm is substantially simpler than other optimal algorithms for list-
ranking. Keywords — parallel processing, analysis of algorithms.

1 Introduction

A major goal in the design of parallel algorithms is to achieve substantial speed up without
sacrificing processor efficiency. The most desirable parallel algorithms are the ones with
processor-time product equal to the sequential complexity of the problem. These algorithms
are referred to as optimal parallel algorithms since little penalty is incurred with the intro-
duction of parallelism.

In this paper, we present a simple optimal algorithm for list-ranking. The list-ranking
problem is: given a linked list in memory, compute the distance that each cell is from the end
of the list. This problem can be solved sequentially in linear time by traversing the list and
recording the distances. The parallel complexity of this problem has attracted considerable
attention for a number of reasons. The problem is a fundamental data structure problem
and is equivalent to a number of other problems. List-ranking is an important subroutine in
parallel algorithms for such problems as expression evaluation [1], [4], tree traversal [7] and
connected components. The list-ranking problem has become an important test bed where
ideas for efficient parallel algorithms have been developed and improved.

The list-ranking problem was introduced by Wyllie [9]. He gave an O(logn) time, n
processor algorithm for the problem. The bound was gradually improved through a series of
results [8], [5], 3] until Cole and Vishkin gave an O(logn) time, n/logn processor determin-
istic algorithm [2]. The Cole-Vishkin result disproved a conjecture [9] that an O(logn) time
optimal list-ranking algorithm did not exist. The Cole-Vishkin algorithm is an extremely

*Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195, USA
'Department of Computer Science, University of Southern California, Los Angeles, California 90089, USA

complicated algorithm. It requires a number of different stages and at
pander graphs to handle a scheduling problem that arises. The other p1
optimal list-ranking algorithm is a randomized algorithm due to Miller and .
result is a corollary to their more general result on expression evaluation.

Our list-ranking algorithm is a randomized algorithm that runs in O(logn) time
O(n/ logn) processors. The algorithm is much simpler than the other optimal algoritL
[2], and would be substantially faster in practice. The algorithm is for the EREW P-h
so that it relies on exclusive reads and writes to memory.

The standard parallel algorithm for list-ranking is due to Wyllie and runs in O(logn,

time using n processors. The algorithm uses a path-doubling strategy. Each cell v contains
a pointer v.nezt and at each time step the assignment v.nezt := v.nezt.nezt is made. The
distance covered by a pointer doubles at each time step, so in logn steps, all pointers are
at the end of the list. It is straight forward to embed the computation of the distance to
the end of the list in this process. The drawback of this algorithm is that the work (time—
processor product) performed is O(n log n) as opposed to O(n) work for the natural sequential
algorithm. The goal of subsequent work on the list-ranking problem has been to reduce the
processor requirement while still maintaining a runtime of approximately O(logn).

The basic step of the list ranking algorithm can be viewed as splicing out an element
from the list. When the pointer v.nezt is replaced by v.nezt.nezt the cell v.nezt is removed
from the list starting at v. The source of the inefficiency in Wyllie’s algorithm is that the
same cell is spliced out of a number of different lists instead of being left alone once it is
spliced out. The approach that we take is to splice elements out of the list until all elements
have been removed. We then reconstruct the list and compute the distances of the cells.

2 List-ranking Algorithm

Our algorithm consists of two phases. The first phase splices cells out of the list and the |

second phase reconstructs the list. The reconstruction phase is simpler than the first phase,
since the reconstruction is performed by undoing the work performed in the first phase and
it is not difficult to retain this information. The first phase removes all of the cells from the
list in O(logn) time. Since there are n cells and O(n/ logn) processors, O(n/ log n) cells
must be removed per phase. There are two major considerations in removing a large number
of cells. The first is identifying a large number of cells that have not been removed. We
do this by a fairly natural approach in scheduling work to be done. Although our solution
to this is relatively simple, the problem of finding available cells has lead to considerable
complications and inefficiencies in other list-ranking algorithm. The second issue that arises
is to avoid contention in removing cells. Adjacent cells cannot be removed in the same phase.
To avoid this problem, we use a simple randomized protocol.

We now describe the list-ranking algorithm in detail. We assume that the list is doubly
linked, so that a list cell v has fields v.nezt and v.prev. It is not difficult to set up the
backward links in O(logn) time with n/logn processors.

The basic structure of the algorithm is to divide the list elements into groups of logn

2

Sy

and assign a processor to each group. The groups consist of consecutive cells from memory,
there is no assumption that the elements in a group are adjacent in the list. Each processor
is responsible for splicing out the elements in its group or queue. A processor will work from
the head of the queue, attempting to splice out the top element. When a processor succeeds
in splicing out an element, it goes on the next element in its queue.

At a time step, each processor takes the cell from the head of its queue and attempts to
remove it from the list. Let v be a list cell, and let v.nezt and v.prev denote the cells adjacent
to v in the list. If v is at the head of the queue of processor p, then p attempts to remove v
with the assignments v.prev.nezt := v.nest and v.nezt.prev := v.prev. The only thing that
could go wrong is if v.prev or v.nezt is also a queue head for a different queue. When two
adjacent list cells are at the heads of separate queues, it is necessary to arbitrate to find out
which one can be removed. The following simple, probabilistic scheme can be used. When
adjacent queue heads arise, each processor chooses independently and uniformly a one or a
zero. These bits can be thought of as being associated with the list cells at the heads of the
queues. Now, if a cell has a one, and the next cell has a zero, the cell with a one can be
removed from the list. It is clear that adjacent elements will never be removed at the same
time with this scheme. Each list cell v has a field v.dist that records the distance covered by
v.dist. This value is initially one and is updated whenever the adjacent list cell is removed.
The value of v.dist is used in the reconstuction phase.

The probability that a processor gets to remove the cell from the top of its queue in a
phase is at least ;. Thus, the expected time for a queue to become empty is at most 4 log n.
In the next section we show that the expected time for all the queues to become empty is
O(logn). . :

The first phase splices out elements until all of the list cells are removed. When that
point is reached the second phase is run to rebuild the list and compute all of the distances.
This is essentially the reverse of the first phase. The cells are put back into the list in the
reverse order of their removal. The distance a cell is from the end of the list can be computed
when it is put back into the list. Let v.rank be the distance to the end. When v is added to
the list, the assignment v.rank := v.dist + v.nezt.rank suffices for the rank computation.

3 Analysis -

In this section we establish a bound on the expected number of phases that are needed
to remove all elements from the queue. The number of items removed from the queue for
processor p at time ¢ can be represented as a random variable X,,. We wish to establish
that for ¢ = clogn, the probability that X}, < logn is small. The random variable X, . can
be thought of as a sum of random variables Z, 4, ..., Zp,: where Z,; is 0 or 1 corresponding
to whether or not an item is removed. These random variables are not independent since the
chances of being able to remove a cell depends upon which cells are queue heads. However,
as long as X, < logn, (i. e. the queue is not empty), Prob[Z,, = 1] > L. It is not difficult
to show that for k < logn, Prob[X,, < k] < Prob[T;cic; Z: > k] where Z;,..., Z, is a family

of independent random variables with Prob(Z; = 1] = } and Prob[Z; = 0] = 3. We can
therefore use standard estimates on the distribution of sums of Bernoulli trials to bound the
random variables.
Let S be the sum of ¢ Bernoulli trials with success probablility q. The following bound
[6] shows that the probability is small that S7 is substantially less than its expected value of
qt: ,
Prob[S{ < (1 —¥)qt] < e~ ™™ for0<~y<1.

If wetakeg =%, t=16logn, and v = —-, we have:

Prob{ > Zi<logn]<e ~glogn i

1<i<16logn

The probability that a particular queue is not empty at time 16 logn is less than 1. Since
there are n/ logn queues, the probability that there is a non-empty queue at tlme 16 logn
is less than . It follows that expected runtime is O(logn).

It is possi 1‘%le to improve the expected runtime of the algorithm by splicing out elements
from the list until only n/logn cells remain. This will take just a little over 4logn phases.
Then the list-ranking problem can be solved on the n/logn items with n/logn processors
using Wyllie’s algorithm in O(logn) time.

4 Program

In this section we give the program for the list-ranking algorithm. We give the code for
a single processor. Each processor runs the same program. The list cells are represented
as records with a number of fields. Each processor has an array of logn pointers to list
cells which serves as the processor’s queue and an index which gives the queue head. The
first routine is the routine to splice out the cells and the second routine is the routine to
reconstruct the list. The processors run the first routine until all of the cells are removed
and then they all run the second routine.

The record to represent a list cell is:

cell_record=
record
nezt, prev: 1 cell_record;
rand : {0,1} -- Random bit for arbitration
head : {true, false}; -- True if the cell is a queue head, intially false
dist : integer; -- Distance in original list covered by the pointer to nezt, initially 1
rank : integer; -- The distance from the end of the list
time : integer, -- The time that the cell was removed from the list
end
Splice

t:=1; 1:= 1; cell := queue[l]; cell.head := true;
while i < logn do
cell.rand := Random{0,1};
if cell.rand = 1 and (cell.nezt.head = false or cell.nezt.rand = 0) then
cell.prev.nezt := cell.next;
cell.nezt.prev := cell. prev;
cell.prev.dist := cell.prev.dist + cell.dist;
cell.time := t;
i := i+ 1; cell := queueli]; cell.head := true
end
ti=1+1;
end
end

Reconstruct
1 := logn; cell := queueflogn); t := tmes;
while : > 0 do
if cell.time = t then
cell.rank := cell.nezt.rank + cell.dist;
i:=1—1; cell ;= queue(i];
end
t:=1-1;
end
end

References

(1] R. Cole and U. Vishkin. The Accelerated Centroid Decomposition Technique for Optimal
Parallel Tree Evaluation in Logarithmic Time. Technical Report 242, Courant Institute,
1986. :

[2] R. Cole and U. Vishkin. Approximate scheduling, exact scheduling, and applications to
parallel algorithms. In 27th Symposium on Foundations of Computer Science, pages 478-
491, 1986.

[3] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In Proceedings of the 18th ACM
Symposium on Theory of Computation, pages 206-219, 1985.

[4] H. Gazit, G. L. Miller, and S. H. Teng. Optimal tree coniraction in the EREW model.
1986. Extended abstract.

[5] G. L. Miller and J. H. Reif. Parallel tree contraction and its applications. In 26th
Symposium on Fo_undat:'ons of Computer Science, pages 478—489, 1985.

[6] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating
packing integer programs. In 27th Symposium on Foundations of Computer Science,
g ger prog ymp
pages 10-18, 1986.

[7] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM
Journal on Computing, 14(4):862-874, 1985. '

[8] U. Vishkin. Randomized speed-ups in parallel computation. In Proceedings of the 16th
ACM Symposium on Theory of Computation, pages 230-239, 1984.

(9] J. C. Wyllie. The Complezity of Parallel Computation. PhD thesis, Department of
Computer Science, Cornell University, 1979.

