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ABSTRACT

In this paper we present an application of our Bézier-based approach to moving meshes [1] to Navier-Stokes simulations
with several immersed elastic membranes. By a moving mesh we mean one that moves with the material and is
adapted to maintain good aspect ratio triangles of minimal size. The adaptations we employ include point insertion
and removal, as well as edge smoothing. This work is being done as part of the Sangria project [2] whose goal is
to develop geometric and numerical algorithms and software for the simulation of blood flow at the microstructural
level. In our approach, we adopt the Lagrangian paradigm where domain boundaries and object interfaces move
together with the fluid in which they are immersed. This approach has the advantage that boundaries and object
interfaces are easy to track. A moving mesh also poses difficult geometric problems since very distorted elements can
be created as the simulation evolves. This can lead to several undesirable or catastrophic situations such as inverted
or overlapping elements. From the computational geometry perspective, the challenge presented by the Lagrangian
paradigm is the ability to maintain a good quality mesh as the simulation evolves in time. We tackle this problem by
using non-linear elements and by locally modifying the mesh using a few primitive operations. The use of non-linear
elements allows us to represent the mesh with fewer elements in our simulations, and the use of local operators allows
us to avoid remeshing the simulation domain at every time step.
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1. INTRODUCTION

In this paper we present an application of our Bézier-
based approach to moving meshes [1] to Navier-Stokes
simulations with several immersed elastic membranes.
By a moving mesh we mean one that moves with the
material and is adapted to maintain good aspect ratio
triangles of minimal size. The adaptations we employ
include point insertion and removal, as well as edge
smoothing. This work is being done as part of the San-
gria project [2] whose goal is to develop geometric and
numerical algorithms and software for the simulation
of blood flow at the microstructural level. In our ap-
proach, we adopt the Lagrangian paradigm where do-
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main boundaries and object interfaces move together
with the fluid in which they are immersed. This ap-
proach has the advantage that boundaries and object
interfaces are easy to track. A moving mesh also poses
difficult geometric problems since very distorted ele-
ments can be created as the simulation evolves. This
can lead to several undesirable or catastrophic situa-
tions such as inverted or overlapping elements. From
the computational geometry perspective, the challenge
presented by the Lagrangian paradigm is the ability to
maintain a good quality mesh as the simulation evolves
in time. We tackle this problem by using non-linear el-
ements and by locally modifying the mesh using a few
primitive operations. The use of non-linear elements
allows us to represent the mesh with fewer elements in
our simulations, and the use of local operators allows



us to avoid remeshing the simulation domain at every
time step.

One of the main goals of the Sangria project is to gain
a better understanding of the behavior of red blood
cells in blood flow. Red cells are deformable bodies
which consist of fluid contained within a solid mem-
brane. The plasma in which they are immersed is a
(mainly) Newtonian fluid. Accordingly, blood flow can
be described by means of incompressible Navier-Stokes
equations with the addition of elastic forces for cell
membranes. In this paper we apply our moving mesh
approach to the solution of such systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the Sangria project and its goals.
In Section 3 we describe previous related work. In
Section 4 we describe our moving mesh framework in
more detail. In Section 5 we describe the mathemat-
ical formulation of our physical model. In Section 6
we describe our experimental results, and finally in
Section 7 we mention future work.

2. THE SANGRIA PROJECT

The goal of the Sangria project is to develop parallel
geometric and numerical algorithms for the simulation
of complex flows with dynamic interfaces. Our target
application is the simulation of blood flow at the mi-
croscopic level where individual cell deformations and
their interactions with the surrounding fluid have to
be accounted. Due to the complexities involved in the
simulation of thousands of individual cells, no simula-
tions of blood flow at this scale exists. However, they
are crucial to the development of artificial organs, and
better models of macroscopic blood flow.

From a computational perspective the main challenges
in microstructural blood flow simulations are the de-
velopment of numerical algorithms that stably and ac-
curately deal with the interaction of moving and de-
forming domains and the moving fluids around them.
We must maintain the deforming interfaces with a ge-
ometric object such as a mesh and must develop ef-
ficient geometric algorithms to update the underlying
mesh as time evolves. In this paper we concentrate on
such geometric algorithms. The target application is
to simulate blood flow in three dimensions, here we
focus first on two-dimensional simulations, utilizing
many procedures that generalize well to higher dimen-
sion applications.

3. RELATED WORK

Approaches to the problem of an elastic membrane
in a fluid motion have traditionally been one of three
types. (as catagorized by Hill in [3]). The first ap-
proach is what is known as an Eulerian boundary-

capturing method. In this approach, a fixed grid is
used to compute the fluid flow, and the location of
the mesh boundary is maintained throughout the use
of phase field variables (level sets). This approach is
described in detail in [3]. The main difficulty with
boundary-capturing methods is that very high-order
functions must be used for the phase field, and even
still the interfaces cannot be sharply resolved. An-
other problem is that these methods generally have a
great deal of difficulty tracking multiple or different
types of interfaces.

The second major approach is known as an Eulerian
boundary-tracking method. In this method the fluid
flow is once again computed on a fixed grid, however,
the membranes are tracked using a set of markers or
another mesh. The markers are then moved and up-
dated with the flow to track the interface. Central to
such methods is the immersed boundary method devel-
oped by Peskin. This appraoch is discussed in more
detail in [4, 5].

Lastly, our type of approach to the problem of an elas-
tic membrane in a fluid motion is the Lagrangian front-
tracking approach. In this approach the fluid is solved
on a mesh which explicitly contains the boundary.
From the meshing perspective, this is the most chal-
lenging approach to this problem, since the mesh must
be relocated and adapted at every timestep. Antaki et.
al. discuss an implementation of this approach in [6].
Their method relied on moving the mesh points but
then completely remeshing at every timestep. Ours
is the first approach we know of to solving the prob-
lem of an elastic membrane in a fluid using a purely
Lagrangian moving mesh.

We see many advantages with our method. Most no-
table is the ability to handle a large number of bound-
aries or membranes that may be geometrically very
close but not touching. These boundaries may be
connected to each other in a complicated way, such
as membranes forming a honeycomb pattern. Lee
and Leveque [5] state that the problem of how to
handle different densities and viscosities on each side
of a membrane remains open for Eulerian boundary-
tracking approaches. Handling different densities and
viscosities in our framework is extremely easy. An-
other major advantage in using moving meshes is the
size of the formulation. Far fewer elements are needed
to resolve the boundary geometry. In section 6 we
present several simulations accomplished with only a
few thousand degrees of freedom. Most other simu-
lations attempting to capture similar behavior have
relied on hundreds of thousands of variables.

There are several other works in the area of moving
meshes, all of which are restricted to moving linear
meshes. Kuprat et al. [7] describe a three-dimensional
system for moving meshes, X3D. Their system modi-



fies the mesh topology to maintain the Delaunay prop-
erty as the mesh moves. It also provides mesh smooth-
ing to optimize mesh quality, and mesh refinement by
means of point insertions. Other work in moving linear
meshes with local modifications is described in [8, 9].
In the case when there is no flow, such as simulating a
shock wave, one may coarsen and refine a non-moving
mesh. A nice example appears in [10].

4. MESHING FRAMEWORK

In this section we give an overview of our moving mesh
framework. For a more complete discussion please re-
fer to [1].

4.1 Element Types and Mesh Hierarchy

Bézier curves and triangles were selected for defin-
ing mesh elements for two main reasons. Firstly, us-
ing curved instead of linear elements allows us to use
meshes with far fewer elements, both for represent-
ing geometry and for obtaining accurate numeric so-
lutions. Secondly, Bézier curves and triangles have a
number of mathematical properties leading to elegant
algorithms.

Bézier curves are completely defined by their con-
trol points which form the control polygon. Similarly,
Bézier triangles are completely defined by their con-
trol points which form a control net. See Figure 1.
For more information about Bézier curves and trian-
gles see [11, 12] among others.

Figure 1: A quadratic Bézier triangle: The boundary of
the quadratic triangle is shown in bold. The control net
consists of six vertices and four straight triangles.

B-spline curves are a convenient way for us to rep-
resent C1 continuous curves. First, they allow us to
represent object boundaries when we want to enforce
C1 continuity. Quadratic B-spline curves are made
of a sequence of quadratic Bézier curves connected in
such a way that the overall curve is C1 continuous ev-
erywhere. They are completely determined by a con-
trol polygon, or de Boor polygon, and a knot sequence.

See Figure 2. For more information regarding B-spline
curves the reader can refer to [11, 12]. Using B-spline
curves to represent mesh interfaces allows us to due
computations with membranes that are C1 continu-
ous. (See Figures 7-11).

Figure 2: A quadratic B-spline and corresponding control
polygon. The black points are the values the curve takes
at the knots. The white points are the internal points of
the control polygon.

Figure 3: A Bézier mesh (left), its control mesh(center),
and logical mesh(right)

4.2 Mesh Adaptation Methods

In our meshing methods we consider three different
level of meshes: the Bézier mesh, the control mesh,
and the logical mesh. The distinction between these
three meshes is very useful in describing and defin-
ing mesh improvement methods for curved elements,
although all three meshes need not be distinctly rep-
resented in the implementation. The curved mesh is
the highest level mesh. This is a mesh of the domain,
and it is on this mesh that functions are defined. The
logical (or linear) mesh is the straight mesh formed
by connecting the vertices of the curved mesh and
maintaining the same topology. If the curved mesh
is not very curved, we expect it will inherit most of
the properties of the logical mesh. The control mesh
is obtained from the Bézier mesh by replacing every
curved triangle by four straight triangles. The vertices
of these triangles are the vertices and control points of
the curved triangle. By controlling the validity and
quality of this control mesh, we can control the valid-
ity and quality of our curved elements. Figure 3 shows
a Bézier mesh and its logical and control meshes.

As the mesh domain moves and deforms, it becomes
necessary to modify the mesh in order to maintain cer-



tain quality guarantees. Our algorithms for these tasks
are based on linear mesh improvement techniques.

First, we keep the logical mesh Delaunay using well-
known incremental Delaunay algorithms based around
bistellar edge flips. The edge flip for curved triangles
is implemented using edge flips of the control mesh.
See Figure 4.

Figure 4: (a) The dashed edge is flipped in the curved
mesh. (b) The corresponding dashed edges are flipped
in the control mesh.

Second, as the mesh is distorted, elements may be
stretched too large to capture the desired properties
of the simulation, or elements may develop a poor
aspect ratio that cannot be cured by edge flipping.
In this case, we refine the mesh by inserting circum-
centers as in [13]. Third, as we refine elements as
described above, portions of the mesh may end up
with many triangles whose sizes are much smaller
than actually needed by the simulation. To keep
the mesh from becoming too large, we perform mesh
coarsening by means of the Douglas-Peucker algorithm
[14] for boundaries, and the function-based coarsening
paradigm of Talmor et al [15, 16].

Finally, if triangles become very curved, poor numeric
solutions may follow. To avoid this situation we repo-
sition the control points of such triangles by means of
smoothing techniques. See [1] for details.

Figure 5: (a) An edge to be smoothed is identified based
on its quality. (b) The control mesh (c) Isolate the star
of the control point to be move (d) Move control point
based on linear mesh improvement techniques (e) Update
the control mesh (f) better quality elements

4.3 State-Dependent Functions

Throughout the process of adapting the mesh after it
has moved, we must maintain several functions f on
the mesh domain. The type of function f is problem-
dependant and user-specified. In our simulations, we

use isoparamtric finite elements, so our mesh will carry
piecewise quadratic functions. Most important to us is
the velocity solution from the previous timestep, since
it is necessary for computing the next solution (see
Section 5).

Since adapting the mesh changes the domain for f , we
must project f onto the new mesh domain. This is ac-
complished by making local projections of f whenever
local mesh modifications are made, and then comput-
ing the local reinterpolation error. The choice of a
relevant error norm and projection is problem depen-
dant, but the computations are generally easy, since
they are done in a local setting with few degrees of
freedom. If the calculated re-interpolation error due
to a mesh modification is too great, then the modifi-
cation can be aborted and can be replaced with a mesh
refinement.

The most common case of this procedure is when an
edge flip would create an undesirable amount of rein-
terpolation error, and accordingly, the edge is split in-
stead. Strict refinement techniques (point insertions,
edge splits), will not introduce any re-interpolation er-
ror. Using these ideas, the mesh adaptation methods
can be fairly liberal with respect to altering the mesh,
and can default to the more conservative refinement
schemes as necessary to control error.

In Figure 6, we show an example of one possible rein-
terpolation. Piecewise quadratic functions are be-
ing carried on the mesh. When the mesh domain is
changed due to an edge flip, a new piecewise quadratic
function is chosen that will minimize the L2 error be-
tween the old function and the new function.

(a) (b)

(c)

Figure 6: (a) An initial quadratic mesh domain and a
function carried on the mesh (b) The mesh domain is
changed by an edge flip, the old function is projected to
a new function (c) Plot of the reinterpolation error due
to the edge flip.



5. PROBLEM FORMULATION

5.1 Lagrangian Formulation of Incom-
pressible Navier-Stokes

We begin with the basic expression of the incompress-
ible Navier-Stokes equations in a Lagrangian frame-
work. Consider a body Ω with a smooth boundary Γ.
We denote velocity as u, pressure as p, viscosity and
density as µ and ρ. We wish to find a solution (with
appropriate boundary conditions) to the system:

ρu̇ + µ∆u −∇p = f (1)

∇ · u = 0 (2)

where u̇ is the material time derivative of velocity and
∆ is the Laplacian operator. We use a Backward-Euler
scheme for the time derivative, to arrive at:

ρu + τ(µ∆u −∇p) = τ f + ρu0 (3)

Where u0 is the velocity solution from the previous
timestep and τ is the size of a timestep. The moving
mesh framework is what makes u0 easily computable
in the material configuration.

5.2 Membrane Forces

In our simulations we have chosen to model the tension
due to the membrane as a body force lagged in time.

This simplifies the numerical simulation by absorbing
the membrane forces into f , so that the elasticity only
affects the right hand side of the equation. This has
shown to be a somewhat stable approximation in prac-
tice. If we denote the force due to elasticity as fm, this
effectively makes our system:

ρu + τ(µ∆u −∇p) = τ fm0
+ ρu0 (4)

∇ · u = 0 (5)

So that fm0
is the membrane force computed on the

previous iteration. Again, because of the moving
mesh, this is easily computable in the material con-
figuration.

Since we have chosen to model the force due to the
membrane as a body force, we must find some way to
capture the boundary layer that the membrane forces
act upon. We approximate the membrane force due
to a membrane as follows:

fm(x) =

∫
Γ

fm(χ(ŝ))δ(x − χ(ŝ)) dŝ (6)

Where δ is the discrete delta function and the mem-
brane Γ is arclength parametrized by χ(ŝ). This ap-
proach is the immersed boundary method and is due
to Peskin [4]. When we use this approximation with

a moving mesh that is tracking the membrane Γ, the
effect is that the spatial approximation given by the
mesh spreads the boundary layer over all the elements
adjacent to the membrane. This means that as the
mesh is refined near the membrane, the approxima-
tion to the membrane force is improved.

Traditional Eulerian boundary tracking methods ap-
proximate the membrane forces on all the intersected
elements of a fixed grid, and thus robust Eulerian
methods must continually adapt the mesh for reso-
lution near the moving membrane. By using a moving
mesh framework, once we have established the needed
mesh resolution near the membrane, the created mesh
elements move with the membrane over time and mesh
resolution near the membrane is preserved.

5.3 Calculating Elastic Membrane Forces

The remaining problem is the calculation of fm(χ(ŝ)),
which we will simply write as fm(ŝ). Following [5, 4],
given any parameterization χ of the membrane Γ, the
elastic tension at s can be written as:

t(s) = ke(|χ
′(s)| − 1) (7)

fm(s) = ke

d

ds
(t(s)τ (s)) (8)

The elastic constant of the membrane is given by ke

and the unit tangent vector of Γ is given by τ (s). This
computation is extremely straightforward when using
moving meshes. An initial arclength parametrization
of the membrane Γ is given as χ̂(ŝ). All the edges and
vertices in the mesh corresponding to Γ are endowed
with pointers to the membrane Γ and with markers ŝ0

(and ŝ1 for edges). When ever the mesh is refined or
coarsened these boundary markers are appropriately
maintained. Then a simple change of variables allows
us to calculate (and subsequently integrate) fm on
any edge of the mesh.

6. EXPERIMENTS

In this section we present the results of three different
experiments that exercise our framework.

6.1 Stretched Membrane

In this experiment we have two fluids both with viscos-
ity of 0.0125 inside a square whose sides are of length
1. Initially, one of the fluids occupies a circular region
of radius 0.25 and is separated from the other fluid
by a membrane. From time t = 0.0 to time t = 0.2
upward and downward forces are applied to the upper
and lower parts of the membrane respectively. After
time t = 0.2 these forces are removed. We present



two different setups for this experiment: one where
the membrane elasticity constant is 1.0 and another
where it is 10.0. See Figure 7 and Figure 8.

Area preservation is one common gauge of the quality
of numeric simulations that attempt to track mem-
branes. Our simulations maintain the same quality
with respect to this metric as many other simulations
using vastly more elements [5].

It can be seen in these figures that as the tension in the
membrane increases as the fluid inside the membrane
experiences less deformation. The fact that the fluids
do not go back to their initial configurations can be
attributed to the effect of viscosity.

Figure 7: Stretched membrane with elasticity constant
of 1.0. From left to rigth and top to bottom, the frames
correspond to times t = 0, t = 0.12, t = 0.24, t = 0.36,
t = 0.48 and t = 0.60 respectively.

6.2 Falling Membrane

In this experiment we have the same two fluids as be-
fore. Again they both have a viscosity of 0.0125 and
are separated by a membrane. In this case however
a constant downward body force (gravity) is applied
over time to the region enclosed by the membrane. We

Figure 8: Stretched membrane with elasticity constant
of 10.0. From left to right and top to bottom, the frames
correspond to times t = 0, t = 0.12, t = 0.24, t = 0.36,
t = 0.48 and t = 0.60 respectively.

present the results for two different set ups: one where
the constant of elasticity for the membrane is 0.0, and
another where the elasticity constant is 5.0. In both
cases we start with little to no initial tension on the
membrane.

It is observed that as the elasticity constant increases
the fluid undergoes less deformation, as expected. See
Figures 9 and 10.

6.3 Flow between parallel plates

In this simulation we consider fluid flowing between
two parallel plates. The flow in this case establishes a
parabolic profile. We have placed an elastic membrane
off center in the fluid. As time progresses, the mem-
brane begins to shear, until this is counteracted by
the elastic tension, at which point the cell gradulally
realigns itself with the horizontal fluid flow.



Figure 9: Falling membrane with elasticity constant of
0.0. From left to right and top to bottom, the frames
correspond to times t = 0.0, t = 0.30, t = 0.60, t =
0.90, t = 1.20 and t = 1.50 respectively.

Figure 10: Falling membrane with elasticity constant of
5.0. From left to right and top to bottom, the frames
correspond to times t = 0.0, t = 0.30, t = 0.60, t =
0.90, t = 1.20 and t = 1.50 respectively.



Figure 11: An elastic membrane moving with flow be-
tween two plates. Frames are shown at time t = 0.0,
t = 2.0, t = 4.5, t = 7.0 and t = 9.5 from top to
bottom.

7. FUTURE WORK

From the meshing perspective the main open research
question is the development of three-dimensional sim-
ulations of blood flow. We believe that most of the
tools we have developed for two-dimensional simula-
tions will readily extend to three dimensions, but there
are still several open geometric questions.

Within the two-dimensional realms, most of our fu-
ture work is in the development of better numerical
schemes. The current scheme which lags the elastic
forces could be improved to include elasticity in the
computation, by using an implicit method. Incorpo-
rating elasticity into the solver should yield better re-
sults. Another area in need of improvement is the time
stepping procedure. The development of a higher-
order time stepping scheme would allow for even larger
time steps in our simulations. The last area of re-
search is in better ways to approximate the boundary
layer. Given that the boundary is precisely tracked
by the moving mesh, we could foresee using higher-
order elements only in the vicinity of the membrane,
and using less accurate elements elsewhere. A mixed
element-type approach of this nature would allow for
greater accuracy of the solution without dramatically
increasing the number of elements in the moving mesh.

If we wish to use mixed elements for Navier-Stokes
simulations we must be concerned with satisfying the
Babuska-Brezzi conditions for compatability between
our admissable spaces of velocity and pressure func-
tions, thus some care must be taken when adding new
basis elements to the finite element method.
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