Subtree Isomdrphism'is in Random NC o

~ Phillip B. _th.bbona' e e Riéhaﬁld M. -Ka.a_"p

Universily of California, Berkc_fey Universily of Califqmia,,Bcf_kldéj-

Gary L. Miller .~ ¥ = - : Daﬁﬁy Soroker B -

University of Southern California. " Universily of California, Berkeley '
A_Bs_tract_

Given two trees, a guest tree G and a host tree H, the subtree isomorphism*® .
problem is to determine whether there is a subgraph of H that is isomorphic -~
to G. We present a randomized parallel algorithm for finding such an isomor- .
phism, if it exists. The algorithm runs in time O(log® n) on a CREW PRAM,
where n is the number of nodes in H. Randomization is used (solely) to solve B
each of a series of. bipartite matching problems during the course of the al- ~
gorithm. We demonstrate the close connection between the two problems by ..
presenting a log .space reduction from bipartite perfect matching to subtree
isomorphism. Finally, we present some techniques to reduce the number of '
processors used by the algorithm. . -

1. Introduction

A subtree of a tree T is any subgraph of T that is a tree. Given two (unrooted) - -
trees, a guest tree G and a host tree H, the subtree isomorphism problem is to
"determine whether there'is a subtree of H 'that is isomorphic-to G. There is-an
O(n??) sequential algorithm for this problem due to Matula[5], where n is the - -
number of nodes in H. In this paper, we present an O(log®n) time randomized
algorithm for a CREW _PRAM that exhibits the mapping between the trees, if -
'such a mapping exists. We assume the word size of the PRAM is clogn for some s
constant ¢. With a few techniques to reduce the processor count, the algorithm
uses < y/n + P(n) processors, where P(n) is the number of processors needed for

one bipartite matching problem on n nodes using the fastest algorithm for bipartite . .

matching to date[7], for a total of o(n*®) processors. More precisely, let M(n) be the -
number of bit operations required by a CREW PRAM to multiply two nxn boolean
matrices in O(logn) time. Then our algorithm uses n**M(n)/ log® n processors.
Our algorithm is based on Matula’s sequential algorithm. The main obstacle to
developing a fast parallel algorithm from this sequential algorithm is that its runniﬁg

time is proportional to the height of the tree. But by adapting the dynamic tree -

contraction algorithm of Miller and Reif[6], we show that subtree isomorphism is
in random-NC (RNC). Dynamic tree contraction is one of two classic methods for.

44

achieving NC and RNC algorithms for problems involving potentially unbalanced
trees; the other is recursively finding a vertex “1/3 — 2/3” separator for the tree(2].
In a complementary effort, Lingas and Karpinski[4] independently developed an
RNC? algorithm for subtree isomorphism based on the latter method. In both
algorithms, the randomization is used to perform the bipartite matching problems:
il a (deterministic) NC algorithm is found for bipartite matching, then subtree
isomorphism will also be in NC.

As in Matula’s algorithm, we recast subtree isomorphism as a problem on limbs
of Gand H. A limb of a tree T is a subgraph of T rooted at a vertex u consisting of
an edge {u,v} of T, together with the connected component of T' — {{u, v}} which
contains v. Let T'(u,v) denote the limb of T defined by the root vertex u and the
edge {u, v}. Any edge {v,w} € T, w # u, will determine a limb T'(v, w), a subgraph

i of T{u,v), which we call a child limb of T(u, v). If {;,1,} is the only edge incident

to 1; in T, then the limb T'(,,1;) contains all of T', and is denoted a root limb, and
T(l5,1;) is denoted a leaf limb. We say S(s;, 8;) is limb imbeddable in T'(1,,1,) if
and only if S(s;, s;) is isomorphic to a subtree of T'(;,1;) such that s; is mapped
" tot; and s, is mapped to t;. The height of a limb T'(t;,?;) denotes the maximum
distance of any vertex of T'({;,1;) from the root vertex ;. A unary chain in a tree

T is a maximal sequence of edges {{o,1:}, {t1,%2},..., {th=1, s}, where T'(t;, t;4,) is

the only child limb of T'({;_;,1;), for 1 < i < k, and T(1},1441) is not a leaf limb.
Given two trees G and H, one can test whether there is subtree of H that is

~ isomorphic to G as follows. First choose a root limb G(g,,92) of G. G can be

imbedded in H if and only if G(g;,g2) can be limb imbedded in some limb of

. (typically not a root limb). To determine whether G{g;, g;) can be limb imbedded
in H(h, h;), one can apply the following theorem due to Matula:

Theorem 1 [5]: Let G(g:,g;) be a limb of a iree G and H(h;, h,) be a limb of a
iree H. Lel A be a bipartile graph, where the boys are the child limbs of G(g;, g;)
‘and the girls are the child limbs of H(hi, hm). There is an edge between boy G(g;, gx)
and girl H(hp,, h,) if and only if G(g;, gx) is limb imbeddable in H(h,, hy,). Then
“there ezisls a maiching in A thal matches all the boys if and only if G{gi, g;) is limb

 imbeddable in H(hy, hm).

In this way, one can solve an instance of the subtree isomorphism problem by
starting at limbs of height 1 and progressing up to the root limb G(g,, g2}, at each
height solving a series of bipartite matching problems in order to determine which
limb imbeddings are possible.

In order to achieve polylogarithmic running time we will apply dynamic tree
" contraction[6] to the guest tree. At each phase of the contraction process the fol-
- lowing two operations are applied to the current tree G: the rake operation, which
deletes the edges incident with the leaves of G, and the compress operation, which
pairs up edges along unary chains in G and replaces each pair by a single edge. As
the contraction process proceeds, information about the possible limb imbeddings of
G in H is accrued. In particular, for each limb in G with exactly one child limb, we
" compute and maintain a set of conditionals defining its limb imbeddability in H as
a function of the as-yet-unknown limb imbeddability of its one child limb. As part

45

of a compress operation, such conditionals for a limb can be readily composed with.
the conditionals for its child. By the time G is a single edge, sufficient information
is available to determine whether the root limb of G is limb imbeddable in any limb -
of H. If so, an explicit isomorphism of G to a subtree of H is constructed during a
second iterative process which expands G back to its original size by reversing the
contraction process. | '

To reduce the number of processors, we will apply two bipartite matching algo-
rithms: one for the decision problem (determine if a perfect matching exists) while
contracting the tree, and one for the search problem (find the edges in a perfect
_matching) while expanding the tree. Further processor savings are achieved by solv-
ing groups of related matching problems at once. Finally, we show that bipartite
perfect matching and subtree isomorphism are mutually NC reducible by presenting
a log space reduction from the former to the latter. '

Miller and Reif[6) use dynamic tree contraction to develop NC algorithms for
the related problems of tree isomorphism, canonical labels for trees, and canonical
labels for all subtrees. The latter problem assigns labels to all nodes in a rooted tree
such that two nodes u and v have the same label if and only if the mazimal subtree
rooted at u is isomorphic to the mazimal subtree rooted at v. This differs from
the subtree isomorphism problem, in which the subtrees of H are not necessarily
maximal.

2. The subtree isomorphism algorithm

Let ng be the number of nodes in G and n = ny be the number of nodes in H. Let
G be rooted at a root limb G{g1, g2). This determines aset of ng—1 limbs associated
with the rooted G. As the algorithm proceeds, it contracts G using suitably defined
rake and compress operations. Throughout the algorithm, we will associate the
limb G(gi, g;) with its second vertex g;, and name the limb G(x,g;) to reflect the
fact that the parent node of g; may change as a result of compress operations. The
host tree H is not rooted and thus has 2(ny —1) limbs to consider. As the algorithm
does not alter H, we will name its limbs with two vertices, e.g. H(hy, hi).

As the contraction process proceeds, the algorithm maintains a correspondence
between the limbs that remain in the contracted tree G and the limbs of the original
rooted tree G. The limb G(g,, g,) of G corresponding to the limb G, g;) of Gis
called the original limb of é{*, g;). At the beginning of the process, each limb of G
is its own original limb. The assignment of original limbs to current limbs changes
whenever a compress operation takes place. Consider the case where edges {gi,9;}
and {g;,gx} on a unary chain are compressed into a single edge {gi,gx}. Suppose
that, before the compress operation, the original limb of G(*, g;) is G{gp, o). Then,
after the compress operation, the limb G(x,g;) is no longer present, and the original
limb of é(*,‘gk> becomes G{(g,,d,)- Based on this correspondence, we say a limb
G(x,g9;) in G is limb imbeddable in H{hy, h;) if and only if the original limb of
G(x, g;) is limb imbeddable in H(hy, k). o |

At the conclusion of each contract phase, the following data will have been

46

computed:

o for each leaf limb G(*, g;) currently in G or removed at an earlier rake step,
a yalue giving the sel of M limbs in which G (%, g,—) can be limb imbedded;

o for cach limb G(x,¢;) with exactly one child limb, a partial value c0n51st1ng
of a collection of conditional sets.

" The conditional sets are defined as follows: let G(*, g;) be the child limb of G(* gi)
Then the conditional set of the pair G(,), H (hx, h;) contains the limb H(hm, hp)
if and only if determining that G(%, g;) is limb imbeddable in H(hpn, h,) would yield
. the fact that G(* gi) is limb imbeddable in H(hy, &;). A short hand notation for

~this situation is “H (hy, &) if H(hm,h,)”". The partial value of a limb with exactly
'~ one child limb is the collection of its Z(n;,: — 1) conditional sets.

2. 1. Pseudo-code for the algonthm |

k 'Our algorithm uses e following data structures. Let Imbed|,] be an (ng —1) x
~'(2ng — 2) matrix, with one entry for each pair G(x, g;), H(h;, hs). Durmg the course
~ of the algonthm Imbed|g;, (h;, ks)] will be set to 1 if and only if G(x, ;) is found
- to be limb imbeddable in H(h;, k). If it is set to 1, then G(x,g;) must be a leaf.
Thus the original limb of G{x, gi) will no longer change, and Imbed|g;, (;, hy)]
will be valid for the rest of the algorithm. Let Conditionals|,,] be an auxiliary
(ng—1) x (2ng—2) x (2ny — 2) matrix, used for storing the conditional sets of
. all pairs of limbs. Conditionals[g;, (h;, hx), (hi, hm)] will be set to 1 if and only if
"H(h;, hm) is in the conditional set of the pair G(x, g;),H (h;, hy).
Algonthm C below gives a pseudo-code description of our subtree isomorphism
- algorithm.

| . Theorem 2 Given {wo trees G and H, algorithm C delermines if there is a subiree
of H isomorphic 1o G.

.Proof: We omit the proof. It will appear in the full paper. O

- 2.2 Analysis of the algorithm

. The resource bounds for our algorithm are bounded by the time and processor count
. "needed for steps C9 and C13. We will use the Mulmuley, Vazirani, Vazirani ran-
domized algorithm(7] for constructing a perfect matching in a bipartite graph. This
* algorithm takes O(log® n) time and n?M(n)loglogn/logn processors, i.e. o(nt14)
. processors, where n is the number of nodes in each half of the bipartite graph..
- For step C9, i.e. steps C19-C22, for each g;, O(ny) bipartite matchmg problems
" of size < ny are solved in parallel. For each g;, this requires O(log ny) time and
. n}yM(ng)loglog ny/log ny processors. Similarly, for step C13, i.e. steps C23-C2T,
for each g;, O(nH) bipartite matching problems of size < ny are solved. This
- requires O(log? ny) time and n}; M(ny)log log ny [log ny processors for each g;.

47

Algorithm C: Given a tree H on ny vertices {hl, ,,,,} and a tree G on nc vertlces .
{81151 94} this nlgomhm determlnes if thete isa subt:ee of H lsomorphm to G.'

1. Select a root limb G(gl,gg) of G, and for a.ll g; except g1,
' let g;.parent be the parent of g; in the resulung rooted tree G

2. Initialize the Imbed and Condnuonnls matnces to, nll zeroes. Then for each '
' leaf imb G(%; gi), set Imbed[g;, (h;, h4)] to 1 for all H limbs H(hj, hy).
For each limb. G‘(*, gi) with exactly one child limb: for all H limbs H(h,,h;.),
sel Cond;tmnals[g.,(h,,hk) (hx, b)) to 1 for 2ll its child limbs H(h;., h;)

3. WHILE there exists > 1 edges in e DO
4, IN PARALLEL for each limb G(*,g,) in G DO
i /* rake all leaves updnte thelr pa.tents nccordmgly “‘/
b. | IF leaf limb
6. mark g; as deleted from G
7. ELSE IF all its child hmbs are leaf limbs
8. IF > 1 child limbs _
9. - Find_Imbeddings.For_Limb(g;)
_ ELSE /* exa.clly 1 chlld limb “‘/ _
10. determine the set of H limbs in which G’(*, ;) is hmb Imbeddable _
from its conditionals and the A limbs in which its remaining
child limb G(#, ;) is now known to be limb imbeddable, =
e.g. if Conditionals(g;, (hx, 1), (hm, bn)] = 1 and
Imbed|[g;, (hm, hn)] = 1, set Imbed[g;, (hx, b)] to 1.
11. ELSE IF some of its child limbs are leaf limbs and some are not
12. IF exactly 1 nonleaf child limb G(x, 9;)
13. Find _Conditional Imbeddings_For_Limb(g;, g;)
/* comptess all unary chains */
ELSE /* none of its child limbs are leaf limbs */-
14, IF exactly 1 child limb AND edge {g;.parent,g;}
is of even parity on its unary chain ' :
15. compose the conditionals associated with g; and g;.parent,
e.g. “H(h;,h;) if H(hx, h;)” in parent and “H (kx, ki) '
if H{km,hn)” in g; tesults in “H(h;, b;) if H(hm,hn) i
marking Condltxonals uccordmgly -
16. mark g.-.pa.rent as deleted from G
Y g;.parent «— (g;.parent).parent -

18. Let G‘(*, ¢;) be the remaining limb in G. I there is :;n H(h;.;h;) si:lc_h that
Imbed|g;, (h, k)] = 1, then there is a subtree of / isomorphic to G.

48

PROCEDURE Find.Imbeddings For Limb(g'):

19, IN PARALLEL for each limb H(h,A") of } DO:

20. IF M (h,A') has at Jeast as many child limbs as G(g'.parent, g')

21. Set up a bipartite matching problem P where the boys are the child
(leaf) limbs G(#,9}),...,G(%,g}) of G(%,¢') currently in G or
removed by an earlier rake operation, and the girls are the child
limbs H (h',h),..., H(h', ki) of H (h,h’). There is an edge between
boy G(,g!) and girl H (A’ h%) if and only if G(#, ¢!) can be
limb imbedded in 4 (&', 4}), i.e. Imbed|¢!, (h'yk3)] = 1. Also,
add dummy limbs (with edges to all the girls) to the set
of boys, to make the number of boys equal the number of girls.

22, | Find a perfect matching in P. If one exists, set Imbed[g’, (k, 4')] to 1.

PROCEDURE Find Conditional Imbeddings For Limb(g', o.):
23. IN PARALLEL for each Limb H(h, &) of H DO:

- 24.. - IF H(k, k') has at least as many child limbs as G(g'.parent, g')
26, .. - IN PARALLEL for all child limbs H(h', k) of H(h,h') DO:
‘26, . Set up a bipartite matching problem P’ as in C21, except exclude

-child limbs G(x,g") and H (', h}) from the matching problem.

27 . ' Find a perfect matching in P'. If one exists,
5 & R . " set Conditionals[g, (A, &'), (k', h})] to 1.

Lemma 1 Let G be a tree rooted ai a roof limb. Let G(gi,9;) be a limb in G that
. has ¢ child limbs. Let the contraction process (as defined in Algorithm C) be applied
to G until the iree is contracted 1o 1 edge. Then (1) there are no bipartite matching
problems solved for node g; if c < 1, (2) there is ezaclly one phase in which there
are bipartile maiching problems solved for node g; if ¢ > 1, and (8) prior {0 the
malching problems during his phase, G(g:, g;) will be the original limb of G(*,g_,-).

- - Proof: The main observation behind the proof is that we perform a lazy rake
operation, one that solves matching problems at a node g; only when the rake
‘operation will result in G{x, g;) having 0 or 1 child limbs. O
"+ O(logng) iterations of the WHILE loop suffice to contract G to 1 edge[6], and
- so steps C3-C17 will take O(log nglog? ny) time. By lemma 1, step C9 or step
C13 will be executed at most once for each gi- It follows that algorithm C runs in
" O(lognglog’ny) time on a CREW PRAM with o(ngn}') processors. In the next
section, we show how the processor count can be significantly reduced.

In order to exhibit an explicit isomorphism of G to a subtree of H, we make the

49

following additions to algorithm C. While contra.ctmg the tree, count the number
of contract phases applied so far, in order to save the “time” each node was deleted.
When a node is deleted as a result of a rake operation, also save the name of
its parent; for a compress operation, save the name of ifs child. Save a.ll perfect
matchmgs constructed.

After G has been contracted, we reconstruct G by an expansion process which
reverses the contraction process, with each expand phase splicing back into G all
nodes and edges deleted at the corresponding contract phase. At the conclusion of
each expand phase, we will have computed the home limb for each limb in the current
G. The home limb of a limb G(, ;) is the limb H (hx, ki) such that the isomorphism
being constructed maps the (current) original limb of G(x, gi) to H(hy, h;). Because

they are associated with the original limbs of the current G limbs, these home limbs .
t}'plcally will be scattered throughout H prior to the final expand phase. During the

expansion process, new home limbs are computed based on the matchings performed.
during the contraction process and the home limbs of existing limbs in G.

Clearly the time and processor count for exhibiting the 1mbedd1ng is bounded N
by the time and processor count for algorithm C. ' - =

3. Processor efficiency .

We have recast the subtree isomorphism problem as a problem on limbs, a.s'in"_
Matula’s algorithm, in order to save having to try out all possible roots for the trees.

~ In this section, we show how to reduce further the number of processors needed. - N

First, use a decision algorithm for steps C22 and C27. In addition, while contracting '
the tree, save the “time” the matching problems were solved for each node. Then,
construct the necessary matchings while expanding the tree. We expand, the tree

as described in section 2, with the following modification. At the beginning-of each |
expand phase, if (decasmn) bipartite matching problems were solved for node g; ' -

at the corresponding contract phase, construct the matching and save the results.

There are two cases to consider. (1) If step C9 was performed, then the home limb . _

H(h;, hy) of G(x,g;) is known, so it suffices to solve only one’(search) bipartite
matching problem for g;: the matcling problem for-the pair G{x, i), H(h;, hi). (2)
If step C13 was performed, then both the home limb H (A, h;) of G(x,g:;) and the
home limb H(h;, h,) of the remaining child limb G(* g;) of G(x, g;) are known, soit

suffices to solve only one (search) bipartite matching problem for the pair G'(* gi)
H{hy, hi) where G(x,g;) and H (ki k) are excluded from the matching problem.

Lemma 2 During the czpun.s:on process, ﬁaerc is at most one bipartile maiching
problem solved for each node in ihe rooted H.

Proof: By lemma 1, there wxll be at most one blpartlte matchmg problem solved for
each node g;j dunng the expansion process, and this ma.tchmg problem determmes 2
the home limb of G(g;, g;). O : b

The running time for expanding the tree is O(log ng log® ny), using the Mul—
muley, Vazirani, Vazirani algorithm for constructing perfect matchings. Define the

50

work of an algorithm to be the sum over all processors p; of the number of PRAM in-
structions/operations executed by p; during the course of the algorithm. Clearly the
~ work to expand the tree is dominated by the work to construct the matchings. Let d;
be the degree of node h;. By lemma 2, the work is < 72, d?M(d_;) log d; log log d;,
i.e. € O(n};M(ny)lognyloglogny)
We will now analyze the complexity of contracting the tree using a decision
“algorithm for bipartite matching instead of a search algorithm. Recall that a bi-
. partite graph has a perfect matching if and only if a certain symbolic matrix is
‘nonsingular[3]. Based on this fact, Borodin, von zur Gathen, Hopcroft[1] developed
a randomized algorithm for deciding if a bipartite graph has a perfect matching that
runs in O(log? n) time on a CREW PRAM. An improved version of their algorithm
computes determinants over Z,, the integers modulo some suitable prime p of size
O(n*)[9]. This can be done with O(y/nM(n)) work on a CREW PRAM, using the
. Preparata and Sarwate algorithm(8] for computing the adjoint and the determinant
of a matrix, since all operations involve O(log n)-bit numbers. '
. While contracting the tree, we can save processors by solving groups of related
'_ matchmg problems at once as follows. The a;; entry of the adjoint of a matrix A
contains the determinant of the minor A;; (the (j,) cofactor). Thus by testing
whether a cofactor is 0, we can determine if a perfect matching exists when the
parent limb and any one H limb are left out of the matching problem. From Rabin
. and VaZIram[Q] it follows that this holds even when the adjoint is computed over
Zy,. Thus, in order to find in which parent limbs H (h;, hs) adjacent to hy the limb
G(-k gi) can be limb imbedded, we solve one bipartite matching problem where the
" ‘boys are the child limbs of G(,gi)(currently in G or removed by an earlier rake
' operation), and the girls are the child limbs H(hy, h;) adjacent to h;. Add dummy
boys to match the number of girls as in step C21, except that one of these dummy
boys is designated to correspond to G(*, g:). From the matrix adjoint computed,
* test the cofactors of the dummy row corresponding to the parent G‘(*, 9.). G(x,g:) is
'limb imbeddable in H (h;, hy) if and only if the cofactor in row G{*, g;) and column
H(h;, hy) is # 0. In this way, for each node g;, < ny bipartite matching problems
(one per each h;) are solved, each with < d; = deg(h) children. The work to solve
. these maf.chmg problems is < ng Xr% \/E—M), i.e. € O(ngy/ngM(ny)) This
" technique can also be apphed to condltxonal matchmg problems, where the parent
is left out of the graph and the dummy row corresponds to the remaining child (or
vice-versa). This results in < 2ny — 2 bipartite matching problems solved for each
node g;, each with < ny children.
- Let algorithm C’ be the improved version of algorithm C, which uses the above
steps to save processors and to exhibit the mapping.

‘. Theorem 3 Given a iree H on ny verlices and a {ree G on ng verlices, algorithm
" C' determines, with probability > 1/2, if there is a subiree of H isomorphic 1o
G, and ezhibitls the mappmg It runs in time t € O(log ng log? nH) on a CREW
PRAM with (ng + nj log ny loglog ny)n}t M(ny)/t processors, i.e. O(log®n) time
- with n>*M(n)/log® n processors. . '

51

4. Reducing bipartite matching to subtree isomorphism

In this section we show that bipartite perfect matching is log space reducible to
subiree isomorphism. (Lingas and Karpinski[4] independently discovered an NC!
reduction of bipartite perfect matching to subtree isomorphism). . -

Let A = (X,Y, E) be a bipartite graph, where X = {z1,23,..-,Za} and ¥ = .
{¥1,¥2,.-+,¥n}. We will construct trees T., T, corresponding to the vertex sets X
and Y, such that every imbedding of T} in T, yields, in a natural way, a perfect
matching in A. It is convenient to view T, and T} as rooted at R, and R, respec-
tively. This creates no obstacle since our construction forces R, to be mapped to
R, in any imbedding. The structure of the trees is as follows:

T, : R. has n+ 2 children - X;, X3,...,Xa, V1, Va. X.- corresponds to vertex z; in
A. V; and V, have no children. For 1 <i < n, X; is the parent of i children,
Xij, each of which is a root of a path of length n —i+1. " 5

T, : R, has n + 2 children - Y},Y3,.. ., Y,, Uy, U, Y; corresponds to vertex y; in A.
V; and V; have no children. For1<i<n, Y; is the parent of n children, Yj;, .
where Y;; is the root of a path of length n — j + 1 if {y;, z;} € E and length
n — j otherwise. ' B

Note that this reduction can clearly be performed in log space. .

Theorem 4 T, is imbeddable in T, if and only if A has a perfect maiching.:-

It follows that the problem of deciding if a bipartite graph has a perfect matchihg R

is log space reducible to the problem of deciding if a tree is isomorphic to a subtree
of another tree, and the problem of consiructing a perfect matching in a bipartite
graph is log space reducible to the problem of constructing an imbedding of a tree
into another tree. From the reduction, we observe that the number of imbeddings
of Ty in T} is 2n!(n — 1)!(n — 2)!--- 2! times the number of perfect matchings of A.
Thus the problem of determining the number of imbeddings of a tree in another -
tree is # P-complete. y B

5. Remarks

Suppose we use a search algorithm for bipartite matching while contracting the -
guest tree. Then we can extend our Monte Carlo algorithm to a Las Vegas algo-
rithm as follows. Given a matching M, we can determine whether M is maximum
as follows. By directing all'matched edges from the boys to the girls, directing
all unmatched edges from the girls to the boys, and applying a shortest path cal-
culation in this directed graph, we can find an-augmenting path or prove that
none exists. The resulting algorithm runs in expected time O(log ng log? ng) with
ngny M(ny)loglog ny/(log ng log ny) Processors. : e T
The case where G (or H) has bounded maximum degree d can be done determin-
istically in time O(d log® ny log ng) on a CREW PRAM. Simply solve each bipartite

52

matching problem in our algorithm using d applications of the above method for

finding an augmenting path in parallel.

‘With appropriate implementation, our algorithm is in RNGC?. To see this, ob-
serve (1) without the matchings, our algorithm runs in O(log® n) time, and can be
" implemented on an NC circuit of depth Q(log'-‘" n), and (2) the bipartite matching
~ algorithms used are in RNC?,

Acknowledgement

.. The first author was supported by the International Computer Science Institute (ICSI),
" Berkeley, CA and by an IBM Doctoral Fellowship.. The second author was supported in
part by ICSI and NSF Grant #DCR-8411954. The third author was supported in part by
NSF Grant #DCR-8514961 and by the Mathematical Sciences Research Institute (MSRI),

. - Berkeley, CA. The fourth author was supported by ICSI and by Defense Advanced Research

- Projects Agency (DoD) Arpa Order #4871, monitored by Space and Naval Warfare Systems
- Command under Contract #N00039-84-C-0089. He is currently at IBM Almaden Research.

References

(1] A. Bd_rodi_n;'J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and
" . GCD computations. In Proc. of the Symp. on Foundations of Compiter Science
- (FOCS), Oct. 1982. i .

| 2] B..-'-Brént. The parallel evaluation of general arithmetic expressions. JACM,
" 21:201-208, 1974. -

I [3] J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat.
Bureau of Standards, 71B:241-245, 1967.

' - [4] A. Lingas and M. Karpinski. Subtree isomorphism and bipartite perfect match-
ing are mutually NC reducible. 1987. submitted for publication.

. [5] D. W. Matula. Subtree isomorphism in O(n*?). Annals of Discrete Mathemat-

‘ics, 2:91-106, 1978.

[6] G.L. Miller and J. H. Reif. Parallel tree contraction and its applications. In

| -IProé. of the Symp. on Foundations of Computer Science (FOCS), Oct. 1985.
(7] K..-‘_Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix
in\",érsion. Combinatorica, 7(1):105-113, 1987.

[8] F. Preparata and D. Sarwate. An improved parallel processor bound in fast

' matrix inversion. /nformation Processing Letters, 7(3):148-150, 1978.

[9]M O Rabin and V. V. Vazirani. Mazimum Maichings in General Graphs
- {hrough Randomization. Technical Report TR-15-84, Aiken Computation Lab-
- oratory, Harvard University, Oct. 1984.

