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Given two trees, a guest tree G and a host tree H, the subtree isomorphism problem is to deter-
mine whether there is a subgraph of / that is isomorphic to G. We present a randomized parallel
algorithm for finding such an isomorphism, if it exists. The algorithm runs in time O(log? n) on
a CREW PRAM, where n is the number of nodes in H. The number of processors required by
the algorithm is polynomial in 7. Randomization is used (solely) to solve each of a series of bipar-
tite matching problems during the course of the algorithm. We demonstrate the close connection
between the two problems by presenting a log-space reduction from bipartite perfect matching
to subtree isomorphism. Finally, we present some techniques to reduce the number of processors
used by the algorithm.

1. Introduction

A subtree of a tree T is any subgraph of T that is a tree. Given two (unrooted)
trees, a guest tree G and a host tree H, the subtree isomorphism problem is to deter-
mine whether there is a subtree of H that is isomorphic to G. In Fig. 1, G, is
isomorphic to a subtree of H, but G, is not. The subtree isomorphism problem has
applications in the area of pattern recognition.

Subtree isomorphism is interesting theoretically since it is in P (the fastest sequen-
tial algorithm, due to Matula [151, runs in O(n??) time, where n is the number of
nodes in H), yet most natural generalizations are NP-complete. Examples include
the case where G is a forest and H is a tree (subforest isomorphism) and the case
where G is a directed tree and H is a directed acyclic graph [7]. Given that subtree
isomorphism has an efficient sequential algorithm, it is natural to ask whether the
problem has a fast parallel algorithm, i.e., is in NC. (A problem is in NC if it can
be computed by a log-space uniform family of Boolean circuits of polynomial size
and polylog depth [11, 19].) Miller and Reif [16] showed that the free isomorphism
problem, which can be viewed as the subtree isomorphism problem restricted to the
case where G and H have the same number of nodes, is in NC. This paper presents
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(a) (b) (c) (d)

Fig. 1. (a) A host tree H. (b) A guest tree Gy, which is isomorphic to a subtree of A. (c) A tree isomor-
phic to G,, which is oriented to demonstrate that G, is indeed isomorphic to a subtree of . (d) A guest
tree G, that is not isomorphic to a subtree of H.

two results on the parallel complexity of subtree isomorphism: (1) we present an
O(log*n) time randomized parallel algorithm for the problem, and (2) we show
that the parallel complexity of subtree isomorphism is closely related to the bipartite
perfect matching problem by presenting a log-space reduction from bipartite perfect
matching to subtree isomorphism. Independently, Karpinski and Lingas [13]
developed an RNC? algorithm for subtree isomorphism and an NC! reduction of
bipartite perfect matching to subtree isomorphism. These results show that finding
an NC algorithm for subtree isomorphism is equivalent to finding an NC algorithm
for bipartite perfect matching. The latter is a well-known open problem [12, 17].

Our parallel model of computation is the CREW PRAM. For a description of the
PRAM model, and its relationship to the class NC, see [11]. We assume the word
size of the PRAM is ¢ log 7 for some constant c. Our algorithm exhibits the mapping
between G and H, if such a mapping exists. With a few techniques to reduce the
processor count, the algorithm uses o(n>*) processors, the number of processors
needed for one bipartite matching problem on » nodes using the fastest algorithm
for bipartite matching to date [17]. More precisely, let M(n) be the number of bit
operations required by a CREW PRAM to multiply two # X n Boolean matrices in
O(log n) time. Then our algorithm uses n* M(n)log log n/log n processors.

Our parallel algorithm is based on Matula’s sequential algorithm. The main
obstacle to developing a fast parallel algorithm from this sequential algorithm is that
its running time is proportional to the height of the guest tree. But by adapting the
dynamic tree contraction technique of Miller and Reif [16], we show that subtree
isomorphism is in random NC (RNC). Dynamic tree contraction is one of two
classic methods for achieving NC and RNC algorithms for problems involving
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potentially unbalanced trees; the other is recursively finding a vertex ‘‘1/3-2/3"
separator for the tree [2]. The subtree isomorphism algorithm of Karpinski and
Lingas is based on the latter method. In both algorithms, randomization is needed
(solely) to perform the bipartite matching computations.

Miller and Reif [16] use dynamic tree contraction to develop an NC algorithm for
the related problem of finding canonical labels for all subtrees (maximal subtree
isomorphism). A subtree rooted at node  in a rooted tree T is maximal if it contains
all descendants of u in T. The problem is to assign labels to all nodes in a rooted
tree such that two nodes u and v have the same label if and only if the maximal sub-
tree rooted at u is isomorphic to the maximal subtree rooted at v. This problem dif-
fers from the subtree isomorphism problem, in which the subtrees of H are not
necessarily maximal.

In Section 2, we describe an algorithm for solving a rooted version of subtree
isomorphism. In Section 3, our algorithm is extended to the general (unrooted) case.
We present pseudo-code for the algorithm, as well as details on how to implement
the élgorithm on a CREW PRAM. Section 4 describes how to reduce the number
of processors used, and Section 5 presents a log-space reduction of bipartite
matching to subtree isomorphism. Finally, in Section 6, we present extensions of our
results to other models of computation and to special cases of the subtree isomor-
phism problem.

2. Rooted subtree isomorphism

We first present some definitions. Let e=(%,v) be a (directed) edge in a rooted
tree T, where v is the parent of . We will consider such an edge to be directed out
of u and into v. For each edge f directed into u, fis a child edge or child of e and
e is a parent edge or parent of f. An edge with no children is called a leaf edge; an

€1
€2

€3

(a)

Fig. 2. (a) Rooted tree with unary chain (ej, €, ;). (b) Limb L(x). (c) Limb L(y), a child limb of L(x).
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edge with one child is called a unary edge. A unary chain in T is a maximal sequence
of unary edges e, e,, ..., e, where e, is the child edge of ¢; for 1 <i<k, and e; has
exactly one child edge and that child is not a leaf edge. Edge e;, for i odd (even),
is said to be of odd (even) parity on its unary chain. In Fig. 2, the sequence
(e1, €3, €3) constitutes a unary chain. The /imb L(e) associated with the directed
edge e=(u,v) is the (rooted) subtree of T whose node set V={u,v}U{i|iis a
descendant of u in T}, and whose edge set £={(x, )| (x,») is an edge in T and
x€V,yeV}. Each parent (child) edge of e defines a parent limb (child limb) of
L(e). Each leaf edge defines a leaf limb. The height of a limb is the number of edges
in its longest root-to-leaf path. The level of a limb L(e) in a limb L(f) is the number
of edges in the path from e to f, inclusive. In Fig. 2, for example, L(y) is a child
limb of L(x) of height two and L(z) is a leaf limb in L(x) of level three. A limb-
rooted tree is a rooted tree with exactly one edge directed into the root node. Given
two limbs L(e) and L(f), we say that L(e) is imbeddable in L(f) (equivalently, L(f)
is a home for L(e)) if and only if there exists an isomorphic mapping from L(e) to
a subtree of L(f) such that e is mapped into f.

Let y =(a, b) be an edge in a limb L(x). The partial limb L(x) — L(y) is the (rooted)
subtree of L(x) obtained by deleting all of L(y), except for node b, from L(x) (see
Fig. 3). Given two partial limbs L(i)— L(j) and L(x) - L(y), we say that L(i)—L())
is a home for L(x)—L(y) if and only if the level of L(j) in L(i) is the same as the
level of L(y) in L(x) and there exists an isomorphic mapping from Lx)—L(y) to

a subtree of L(#) — L(j) such that x is mapped to /. In Fig. 3, for example, L) —-L())
is a home for L(x)-L(y).

2.1. Developing a fast parailel algorithm

Matula’s sequential algorithm for subtree isomorphism makes use of the follow-
ing procedure:

Procedure P. Let L(g) and L(h) be a guest limb and a host limb, respectively, for
which we already know the following: for each child edge x of g and each child edge

(a) (b) (c)

Fig. 3. (a) Limb L(x). (b) Partial limb Lx)—L(). (c) Limb L(i). Partial limb L(i)=L(j) is a home for
partial limb L(x)—L(y).
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Fig. 4. (a) Limb L(g) of G and limb L(h) of H. Suppose L(i) and L(k) are homes for L(x), L(j)isa

home for L(y), and L(k) and L(/) are homes for L(z). (b) The bipartite graph to determine whether L (k)

is a home for L(g). L(h) is a home for L(g) since {(x, ), (3, /), (z,0)} is a matching that matches all the
children of g.

i of h, we know whether or not L(i) is a home for L(x). Construct a bipartite graph
B, in which the boys are the child edges of g and the girls are the child edges of A,
and there is an edge in B between child x of g and child i of # if and only if L{i)
is a home for L(x). Determine if there is a matching in B that matches all the boys
in B. L(h) is a home for L(g) if and only if there is such a matching.

Figure 4 gives an example of Procedure P being applied to two limbs.

Theorem 2.1 [15]. Given two limbs L(g) and L(h), Procedure P correctly determines
whether or not L(h) is a home for L(g).

Thus one can determine whether a limb L(#) is a home for a limb L(g) as follows.
If L(g) is a leaf limb, then L(k) is a home for L(g). Else (1) recursively determine
which child limbs of 4 are homes for each of the child limbs of g, and (2) run
Procedure P.

We first consider restricted versions of the subtree isomorphism problem. Let
limb-rooted subtree isomorphism be the subtree isomorphism problem restricted to
the case where both G and H are limb-rooted trees, i.e., G=L(g) for some edge g
in G and H=L(h) for some edge / in H. Let k be the height of L(g). First, consider
a further restriction that g must map to 4. One approach to implementing the above
recursive technique is to process both G and H bottom-up, level by level, starting
with the limbs at level k. In this approach, at each level in turn, the algorithm deter-
mines which limbs of L(#) at level 7 are homes for each of the limbs of L(g) at level
i by running Procedure P on each such pair. In this way, at level one, the algorithm
determines if L(h) is a home for L(g).

Now consider removing the restriction that the roots must match. One approach
is to process L(g) level by level, starting with level k. In this approach, at iteration
i, the algorithm determines which limbs of L(#) are homes for the level-i limbs of
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e The parent edge has more than one child in T and all but one is a leaf edge.
In this case, all the children that are leaf edges are deleted from 7 and so the parent
becomes a unary edge. The leaf marks on the leaf children are used to compute a
unary mark for the parent.

e The parent edge has one child in T'and it is a leaf edge. Here, the child is deleted
from T so that the parent becomes a leaf edge. The unary mark on the parent and
the leaf mark on the child are used to compute a leaf mark for the parent.

Figure 5 gives an example of a rake operation being applied to a tree.

The second operation in a contract phase is called compress. Ina compress opera-
tion, consecutive edges in unary chains in T are paired up, with the pair being re-
placed by a single edge. In this case, an edge é of even parity in its unary chain is
paired with its parent edge 6. The unary marks on the two edges are used to compute
a new unary mark for the single edge which replaces the original two.

At a general step of the contraction process, each edge of 7" is viewed as corres-
ponding to some edge of the original tree T. Initially, 7'is T, so the correspondence
is trivial. At each step, the correspondence can be changed as a result of a compress
operation (rake operations do not change the correspondence). Consider an edge é
of even parity on its unary chain and its parent edge 6, and let correspond to edge
oin T. In the tree resulting from applying the compress operation to & and 8, these
two edges are replaced by a single edge which is considered to correspond to o in
T. Edge é is considered to have been processed and deleted.

Once T has been contracted to a single edge, a second iterative process can be used
to compute final (leaf) marks for a/l the edges of T. An expansion process
reconstructs 7" by reversing the contraction process, with each expand phase splicing

N 7z

(b)

Fig. 5. (a) Limb-rooted tree 7', with circles around its leaf nodes. (b) The tree resulting from applying
the rake operation to 7. Examples of all three types of rake operations are shown: case 1 is applied to
edges x and z, case 2 is applied to edge w, and case 3 is applied to edge y.
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back into the tree all edges deleted at the corresponding contract phase. Final marks
are computed for each edge as it is spliced back into the tree.

For readers familiar with the many variants of the dynamic tree contraction
technique (see [11]), we summarize the variant we use:

e We do not assume the tree is binary. In some applications of this technique (e.g.
expression evaluation [16]), a nonbinary tree is first converted to an equivalent
binary tree, since the technique tends to be easier to apply to binary trees. In our
case, we do not know how to convert from a general tree to a binary tree in a way
that preserves subtree isomorphism.

e We operate on the edges of the tree, not the nodes.

e We use rake with lazy evaluation. In [16], all leaves in T are deleted at each
rake operation. In our variant, we do not delete a leaf unless its parent has at most
one nonleaf child. Since this is a necessary condition for the parent to be or become
a unary or leaf edge, this particular modification does not affect the number of
contract phases required.

Lemma 2.4. Given a limb-rooted tree T with n edges, O(log n) contract phases are
sufficient to reduce T to one edge.

Proof. Miller and Reif [16] show that their variant of contract will reduce a rooted
tree to one node in O(log n) phases, and their proof applies to our variant as
well. O

2.3. Applying the dynamic tree contraction technique

Our goal is to label each edge of G with a corresponding home edge in H such
that these labels define an isomorphic mapping from G to a subtree of H. We use
the dynamic tree contraction technique and the ideas on processing leaf and unary
edges discussed in Section 2.1. We will maintain a tree G, derived from G, consisting
of edges corresponding to limbs in G that have not yet been processed. G starts as
the limb-rooted G, but is contracted during the course of the algorithm by a series
of contract phases.

We will maintain the following invariants I. At the start of each contract phase,
let ; be the edge currently in G which corresponds to the limb L(g;) in G.

(I11) Associated with each leaf edge §; in G is a leaf mark, which is a set con-
sisting of all possible homes in H for L(g;).

(I2) Associated with each unary edge §; in G is a unary mark, which is the set
C(gj» &x) defined earlier, where g is the child of §; in G. Recall that C(g), &)=
{(h,,hy) | L(h,)—L(h,) is a partial limb in A and L(h,)—L(h,) is a home for
L(g;)—L(gx)}-

We now present a case-by-case description of Procedure confract, a contract
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phase suitable for subtree isomorphism. In particular, we will show how to imple-
ment the compress operation and the three types of rake operations described in Sec-
tion 2.2 so as to preserve the invariants J. Pseudo-code for our algorithm will be
described in Section 3.1.

For each nonleaf edge §;in G, at most one of the following operations is applied
to g; in a contract phase:

(R1) An R1 operation is applied to g; if and only if §; has more than one child
in G and each child is a leaf edge. The children are deleted from G and so g,
becomes a leaf edge. For each limb L(h) in H, run Procedure P (of Section 2.1) on
L(g;) and L(h). In setting up the bipartite graph, use the leaf marks on the children
of §; to determine which child limbs of % are homes for each of the child limbs of
g;. Place L(h) in the leaf mark for L(g;) if and only if Procedure P determines that
L(h) is a home for L(g;).

(R2) This operation is applied to &;if and only if &; has more than one child in
G and all but one child g is a leaf edge. All the children of &; other than §; are
deleted from G and so §; becomes a unary edge with child &;. Compute a unary
mark for g; as follows. For each limb L(h,) in H, and each of its child limbs Lh,),
run Procedure P’ on the guest partial limb L(g,—)—L(gJ-) and the host partial limb
L(h,)— L(h,). In setting up the bipartite graph, use the leaf marks on the children
of g; to determine which child limbs of # are homes for each of the child limbs of
g;- Place the ordered pair (A, hy) in C(g;, &) if and only if Procedure P’ deter-
mines that L(k,)— L(h,) is a home for L(g:) - L(g;).

(R3) This operation is applied to &; if and only if & has one child g;in G and g
is a leaf edge. The child &;is deleted from G and so the parent becomes a leaf edge.
Place A, in the leaf mark for g, if and only if there exists a limb L(h,) in H such
that (h,,h,) e C(g;, &) and h, is in the leaf mark for g;.

(C) The C operation is applied to g;if and only if it is in a unary chain, it is of
odd parity on this chain, and is not the last edge on the chain. Let &; be the child
of &, and let g, be the child of & (& is not a leaf edge). Compose C(g;, g;) and
C(gj, &) to get a single set C(gi, &) as follows: place the ordered pair (4,, h,) in
C(g;» &) if and only if there exists a limb L(h,) such that (4,, h)eC(g;,g) and
(hx, h;) € C(g;, 8/). Replace the two edges g, and &; by a single edge §; in G.

Note that only the R1 and R2 operations involve matchings.

Lemma 2.5. A contract phase deletes Jrom G each leaf edge whose parent has at
most one nonleaf child and each unary edge of even parity on its unary chain in G.

Proof. Follows from inspection of the cases above. [
Lemma 2.6. Let G be a limb-rooted tree. Let L(g;) be a limb in G that has ¢
children. Let Procedure contract be applied to G until the tree is contracted to
one edge. Prior to each contract phase, let G be the tree consisting of edges corre-
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sponding to limbs in G that have not yet been processed. Then (a) if §;is a child
of &;in G, then g, is a descendant of g; in G, (b) there are no bipartite matching
problems solved for L(g;) if t=1, (c) there is exactly one phase in which there are
bipartite matching problems solved for L(g;) if t>1, and (d) prior to the matching
problems during this phase, g; will have t children in G, with each child §; corre-
sponding to a child L(g;) of L(g;) in G.

Proof. Claim (a) can be proved by induction on the number of times a C operation
is applied to g;. Initially, if g;is a child of §;in G, then L(g)) is a child limb of L(g;)
in G. Assume the claim is true prior to a next C operation, and let §; be a child of
&;in G. The C operation is the only one that changes a child of §; (others can only
delete children), and this operation replaces the current child §; of §; with the cur-
rent child g of §;. Thus by the inductive assumption, g, is a descendant of g; which
is a descendant of g; in G.

As for claim (b), g; has ¢ children in G initially since it is a copy of G. Suppose
t<1. Then only an R3 or C operation can be applied to §;, so §; will continue to
have at most one child in G. As neither R1 nor R2 operations are applied to §;,
there are no bipartite matching problems solved for L(g;). Claim (b) follows.

If £>1, then the number of children of §; will remain / until the first application
of an R1 or R2 operation to £;. In both these cases, §; is left with at most one child,
and will continue to have at most one child for as long as it remains in G. Thus this
one application of an R1 or R2 operation is the only phase in which there are
bipartite matching problems solved for L(g;).

Claim (d) of this lemma holds since prior to this one application of an R1 or R2
operation, no child of g; can be deleted. [J

Lemma 2.7. A contract phase as defined above (i.e., R1, R2, R3, and C) preserves
the invariants I above,

Proof. Assume the invariants  are true immediately before the contract phase, and
consider an edge g; in G of each type. If g; is a leaf edge after contract is applied
to G, then by Lemma 2.5, immediately prior to this contract phase all the children
of §; were leaf edges. There are three cases:

e Edge g, was a leaf edge immediately prior to this contract phase. Hence its leaf
mark is still valid.

o Edge §; was a unary edge with (leaf) child §;. We claim that an R3 operation
yields a valid leaf mark for g;. If there are limbs L(h,) and L(h,) such that
(h,,, h,) € C(g;, g;) (L(h,) will be a subtree of L(A,)), and h, is in the leaf mark for
§;, then by invariants 12 and 11, L(h,)—L(h,) is a home for L(g;)—L(g;) and
L(h,) is a home for L(g;). Thus by Lemma 2.3, L(h,) is a home for L(g;).
Conversely, if L(h,,) is a home for L(g;), then let g; be mapped to /, in an imbed-
ding of L(g;) in L(h,,). Then partial limb L(h,,) — L(h,) is a home for L(g;)—L(g)),
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and thus by invariants 12 and I1, (A,, hy) € C(g;, g;) and A, is in the leaf mark for
g

e Edge g; had more than one child. By Lemma 2.6, the children of g; correspond
to the child limbs of L(g;). By Theorem 2.1, an R1 operation yields a valid leaf
mark for g;.

Thus invariant I1 holds after the contract phase.

If §; is a unary edge with child g, after contract is applied to G, then there are
two cases to consider:

e Edge §; was a unary edge immediately prior to this contract phase. Then by
Lemma 2.5, £ was of odd parity in its unary chain since even parity edges are
deleted. If §; was the last edge in its unary chain, then its child was g, immediately
prior to this contract phase, and so its unary mark is still valid. Else some edge g;
was the child edge of §; and the parent edge of §;- Thus by Lemma 2.6, g, is a
des:cendant of g; which is a descendant of g; in G. Thus partial limb L(g;)— L(g))
is the union of L(g;)—L(g)) and L(g;)—L(g;). Suppose partial limb L(h,)—-L(h,)
in H is a home for L(g;) — L(g,) with a corresponding mapping ¢ from L(g;)— L(g))
into L(h,)—L(h,). Then ¢ maps gj to some edge £, in L(h,), and using ¢, we get
that L(h,)—L(h,) is a home for L(g))—L(g;) and L(h,)—L(h,) is a home for
L(g;j)—L(g). Thus, by invariant I2, there exists a limb L(h,) such that (h,,h,)€
C(gi»g) and (hy,h,)e C(g;, ). Conversely, if there is a limb L(h,) such that
(hy, h) e Cg;, g5) and (h,, h;) e C(g;, g), then by invariant 12 and Lemma 2.3,
L(hy)—L(h,) is a home for L(g;) —L(g)). Thus a C operation yields a valid unary
mark for g;.

e Edge §; had more than one child, which were all leaf edges except for §,. By
Lemma 2.6, the children of g; correspond to the child limbs of L(g;), so the pos-
sible homes for L(g;)— L(g,) are restricted to partial limbs L(h,,) - L(h,) such that
L(h,) is in H and h, is a child edge of 4, in L(h,). By Corollary 2.2, we can deter-
mine whether L(A,)— L(h,) is a home for L(g;) — L(g;) by applying Procedure P’.
Thus an R2 operation yields a valid unary mark for g

Thus invariant 12 holds after the contract phase, and the lemma follows. [

3. The subtree isomorphism algorithm

In this paper, we presented the limb-rooted version of our algorithm first since
it seems easier to picture what is happening as the algorithm progresses. This
algorithm can be extended trivially to solve the (unrooted) subtree isomorphism
problem. For an unrooted tree, each undirected edge contributes two limbs, one for
each way of directing the edge. Each leaf edge in an unrooted tree T defines two
limbs: a leaf limb consisting of a single edge, and a root limb consisting of all of
T. In the unrooted case, without loss of generality, we first root G at a root limb.
The host tree H is unrooted, but this poses no problem to the parallel algorithm
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described in the previous section: the only difference between the rooted and
unrooted cases is that in the unrooted case, there are twice as many / limbs to con-
sider when considering all H limbs. In fact, the definition of contract is unchanged,
so the lemmas of the previous section hold as stated for the unrooted case. Figure
6 gives an example of contract being applied in the unrooted case.

91 g1
gj
(1) (2) (3) (4) ()
H tree G = G tree G tree Gtree Gtree G tree
Phase limb status mark
(1) gi unary with child g, {(ho, hg), - - -}
gi unary with child g; {(hs, hs),y .-}
(2) g1 unary with child §; {(R}, ko), - -}
i unary with child §; Eliahicyend
g; unary with child gy {(hgs i)y o)
i unary with child g {(hr, hs)y. o}
(3) a1 unary with child g; {(hp he)s - .}
dj unary with child ¢ {(hqs hs), -+ -}
il] leaf {hs,...}
(4) g1 unary with child g; {(hf hg)y -}
g; leaf {fgqies .}
(5) g1 leaf {htyai}

Fig. 6. Given two unrooted trees G and H, G is rooted at edge g, and then contracted using Procedure

contract. By convention, we have labeled the edges of H with a single label, as if H were rooted at node

r. If L(h,,) is the limb when an edge is directed towards r, then let L(4,,) denote the limb when the same

edge is directed away from r. A circle around a leaf node indicates that a leaf mark has been computed

for the edge directed out of the node. For each phase, for a few of the G limbs, we show its status and

one member of its mark. After phase 5, we conclude that L(h;,) is a home for the rooted G. In addition,
contract would determine that L(#,,) and L(h,) are also homes for the rooted G.
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Algorithm A: Given two trees, a guest tree G and a host tree H, this algorithm
determines if there is a subtree of H isomorphic to G.

1. Let G be rooted so that G = L(g;) for some edge ¢, in G. Let G = G.
2. Initialize the Imbed and Unary matrices to all zeroes. Then for
each leaf edge gi, set Imbed|gy, h,] to 1 for all directed edges
hy in H. For each unary edge g; do: for all directed edges h,,
in H, set Unary|g;, hw, hz] to 1 for each child h, of h,,.

3. WHILE there exists > 1 edges in G DO {

4 IN PARALLEL for each nonleaf edge §; in G DO {
5. IF §; has > 1 child edges in G {

6. IF all the children of g; are leaf edges {

7. (R1) mark all these child edges for deletion
8 Determine Leaf_Mark(g;)

| }

9) ELSE IF g; has exactly one nonleaf child g; {
10. (R2) mark all its children for deletion except g;
11. Determine Unary Mark(§;, §;)
}

ELSE { /* let §; be the unique child of §; */
12, IF §; is a leaf edge in G {
13. (R3) mark §; for deletion
14. determine the leaf mark for g; (i.e. the set of homes

for L(g;)) from the unary mark on g; and the
leaf mark on §;, i.e. if Unary(g;, hy, hz] = 1 and
Imbed(g;, h;] = 1, then set Imbed[g;, h,] to 1

15. ELSE IF g; is of odd parity on its unary chain {

/* let §; be the unique child of gj */
16. (C) mark g; for deletion /* g; will be the child of gi */
17

compose the unary marks on §; and g; to get a new
unary mark for g;, i.e. if Unary([g;, h,, he] =1
and Unary|g;, hy, h,] = 1, then set
(new) Unarylg;, hy, h.] to 1

}
}
18. IN PARALLEL delete all edges §; that are marked for deletion

}

19. There is a subtree of H isomorphic to G if and only if
there exists hy, such that Imbed][g;, h,] = 1
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PROCEDURE Determine _Leaf_Mark(g;):

20. IN PARALLEL for each directed edge h, of H DO:

21; IF h, has at least as many children as §; has in G {

22. Construct a bipartite graph B in which the boys are the
children of §; and the girls are the children of hy. There
is an edge in B between boy §r and girl hy if and only
if L(hy) is a home for L(gx), i.e. Imbed(gy, hy] = 1

23. Attempt to find a matching in B that matches all
the boys. If one exists, set Imbed|[g;, hy] to 1
}

PROCEDURE Determine_Unary Mark(§;, §;):
24. IN PARALLEL for each directed edge hy of H DO:

25. IF h, has at least as many children as §; has in G
26. IN PARALLEL for all children hy of h,, DO {
27. " Construct a bipartite graph B’ as in A22 above, except

exclude children §; and h; from the graph

28. Attempt to find a matching in B’ that matches all
the boys. If one exists, set Unary(gi, hw, hz] to 1
}

Fig. 7. The subtree isomorphism algorithm. Given a guest tree G and a host tree H, G is first rooted
at a root limb. The algorithm operates on A and G, where G starts as the limb-rooted G, but is contracted
using rake and compress operations in each iteration of the WHILE loop (A3-A18). Each edge in the
unrooted H corresponds to two directed edges; h,,, Ay, h,, and h; above denote directed edges in H. At
the start of an iteration of the WHILE loop, £, &, k., and £ denote edges currently in G, and L(g)),
L(gj), L(gx), and L(g;) denote their corresponding limbs in the limb-rooted G. Each leaf edge g; in G
has a leaf mark, represented as the row Imbed[g;, —]. Each unary edge £; in G has a unary mark,
represented as the matrix Unary[g;, -, —].

3.1. Pseudo-code for the algorithm

To summarize our subtree isomorphism algorithm, we present pseudo-code for
the algorithm. Let ng be the number of nodes in G and n=ny be the number of
nodes in H, where ng=<ng. Let G be rooted so that G=L(g,) for some g; in G.
Then there are mg=ng— 1 limbs in the limb-rooted G and mgy=2(ngy — 1) limbs in
H. Our algorithm uses the following two data structures. Let Imbed[—, —] be an
mg X my Boolean matrix, used to hold leaf marks. Let Unary[—,—,—] be an
mg X my X my Boolean matrix, used to hold unary marks.

Algorithm A gives a pseudo-code description of our subtree isomorphism
algorithm (see Fig. 7).
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Theorem 3.1. Given two trees G and H, Algorithm A correctly determines if there
is a subtree of H isomorphic to G.

Proof. We will sketch a proof based on induction on the number of contract
phases. Initially, each leaf edge §; in G corresponds to a leaf limb L(g;) in G, and
thus arzy H limb is a home for L(g;). Likewise, each unary edge &; with child g, in
G corresponds to a unary limb L(g;) in G. Partial limb L(g;)—L(g;) is a single edge
&, SO any partial limb L(k,) —L(h,) where L(h,) is a child limb of L(h,) is a home
for L(g;) —L(g)). Thus the invariants I hold after step A2. By Lemma 2.7 each
iteration of the WHILE loop (steps A3—A\18) preserves the invariants I. By Lemmas
2.5 and 2.4, the WHILE loop will succeed in reducing G to one edge g,. By in-
variant 11, the leaf mark on £, is the set of all possible homes for L(g,). Therefore,
there exists a subtree of & isomorphic to G if and only if there exists a limb Lh,)
such that Imbed[g,,h,]=1. O

3.2. Implementation details and analysis

In this section we describe how to implement Algorithm 4 on a CREW PRAM
and how to extend the algorithm to exhibit an isomorphism between G and a subtree
of H. For each step which finds a matching in a bipartite graph (i.e., steps A23 and
A28), we will use a randomized algorithm due to Mulmuley, Vazirani and Vaziranij
[17]. We present a detailed analysis of the running time, processor count, and error
probability for our (randomized) algorithm. We begin with a discussion of the
matching algorithm used, then present a step-by-step analysis of Algorithm A, and

finally describe a procedure for constructing an isomorphic mapping of G to a sub-
tree of H.

Matching algorithm, Recall that M(n) is the number of bit operations used by a
CREW PRAM to multiply two nxn Boolean matrices in O(log n) time
(M(n)<n**¢, where ¢ is less than 0.4 [3,4]). During the course of the algorithm,
for each of a series of bipartite graphs, we find, if possible, a matching that matches
all the boys in the graph. In each such matching problem, we first add extra boys
to the bipartite graph, with edges to all the girls, in order to make the number of
boys equal the number of girls. Then we can apply the Mulmuley, Vazirani,
Vazirani randomized algorithm [17] for constructing a perfect matching in a bipar-
tite graph. Let B be a bipartite graph with n boys, n girls, and m edges. The
algorithm produces a set of edges, which can be checked to see if they form a perfect
matching in B. If B does not have a perfect matching, then the algorithm correctly
detects this fact. If B has at least one perfect matching, the algorithm finds a perfect
matching in B with probability = 1. The resource requirements of the algorithm are
bounded by the time and processors needed to compute the determinant and adjoint
of an nx n matrix whose entries are (2m)-bit (random) integers. This can be done
using Pan’s algorithm [6, 18] which takes O(log?n) time and niM (mlog log n/log n
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processors to invert (with high probability) an # X n matrix whose entries are /-bit
integers. Thus the Mulmuley, Vazirani, Vazirani algorithm takes O(log?n) time
and nmM (n)log log n/log n processors, i.e., o(n>*) processors, since [=2m=<2n*.

In order to ensure that an algorithm that solves many bipartite matching problems
succeeds with high probability, we increase the success probability of the bipartite
matching algorithm by running multiple trials in parallel. In particular, we run
a log n trials of the bipartite matching algorithm in parallel, where & is a constant
which depends on the number of bipartite matching problems to be solved and the
desired success probability of our algorithm. If a bipartite graph B does not have
a perfect matching, then none of the trials will find one. If B has at least one perfect
matching, then, with probability =1- 1/29%087 _ 1 — % at least one trial will find
a perfect matching. In this case, select any one such perfect matching. Let
Algorithm MVV be this modified version of the Mulmuley, Vazirani, Vazirani
algorithm. The MVYV algorithm runs in O(log?n) time using n*M(n)loglogn
Processors.

Step-by-step implementation and analysis. In implementing Algorithm A on a
CREW PRAM, it is helpful to preprocess H and the limb-rooted G after step Al.
For H, use an my X my Boolean matrix M initialized to all zeroes. For each pair
of limbs A; and h; in H, set M[i, j] to one if and only if L(k;) is a child limb of
L(h;). Using a parallel prefix algorithm [14], compute the index of each child
among its siblings. This numbering can be used for allocating edges to processors
throughout the algorithm. We preprocess G in the same way.

Here is a step-by-step analysis of Algorithm A. It is convenient to describe the
implementation of some steps using PRAM instructions in which multiple proces-
sors write to the same location in the same time step (concurrent write). We will later
describe how to implement the algorithm on a CREW PRAM, i.e., without concur-
rent write, in the same asymptotic time and processor bounds.

e For step Al, we root the guest tree G. Given an ordered list of the edges of G,
we can find a node of degree one using concurrent write in O(1) time with mg
processors. Having selected a root, we root G using the Euler tour technique for
trees [24], in O(log mg) time and mg/log mg processors. The preprocessing of G
and H that follows takes O(log my) time and m};/log my; processors. Given this
preprocessing, step A2 takes O(1) time and MM} PrOCESSOrs, Using one processor
per matrix entry.

o Steps A4-Al8 perform one contract phase. The tests in steps A3-AS6, A9, Al12,
and A15 depend on the structure of the current tree. In each case, we wish to deter-
mine if an edge has zero, one, or more than one child edges of a particular type.
The most time-efficient way to perform these tests is using concurrent write. Each
edge §; in G with parent edge g; writes j in cell 4, then reads cell i to see if it has
succeeded in its write attempt. If not, it complains to its parent. This takes O(1) time
and mg processors. For step Al5, each unary edge must determine its parity in its
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unary chain (if any). This can be done in O(log mg) time with mg processors: the
index of each node in a chain is computed by O(log mg) applications of pointer
jumping.

e Steps A7, A10, A13, and Al6, i.e., statements R1, R2, R3, and C, can be done
in O(1) time using Mg processors. Likewise, step A18 takes O(1) time and mg
processors. For statements R1 and R2, all the leaf child edges read from their
parent, in order to see which parent is ready to have all its children mark themselves
for deletion.

e Using concurrent write, step Al4 takes O(1) time and mj; processors for each
gi- For step A17, perform a Boolean matrix multiplication for each & in O(log my,)
time and M(my)/log my processors. Note that a temporary matrix is helpful here,
since Unary is updated in place.

e For step A8, i.e., steps A20-A23, for each edge g, we find matchings in
parallel for at most my,, bipartite graphs, each with at most ng—2 girls. (Note
that for each edge with fewer than two children in G, we will not solve any
bipartite matching problems.) In order to apply the MVV algorithm, we first add
extra boys to the graph, with edges to all the girls, so as to have the same number
of boys as girls. Using the MVV algorithm, step A23 takes O(log?ny;) time and
mHng,M(nH)log log ny processors for all matchings for each edge g;. Steps A21
and A22 use the preprocessing information obtained for H and G, as well as the
Imbed matrix, to set up the adjacency matrices for the bipartite graphs.

e Similarly, for step All, i.e., steps A24-A28, for each edge g;, we find mat-
chings in parallel for at most my(ng — 2) bipartite graphs, each with at most Ay —2
girls. Thus step A28 takes O(logan} time and mHn}'{M(nH)log log ng; processors
for all matchings for each edge gi.

e Step Al9 can be done in O(1) time and My Processors using concurrent write.,

By Lemma 2.4, there will be Odlog myg) iterations of the WHILE loop. Not
counting steps A8 and All, the algorithm runs in O(log mglog my) time on a
CRCW PRAM with mgM(my)/log my processors. The time for the steps above
that have been described using concurrent write is only O(log m;). Thus using a
standard simulation of a CRCW PRAM by a CREW PRAM (see [11]) on each of
the steps involving concurrent write yields an O(log mglog mg) time algorithm
with the same number of processors. By Lemma 2.6, step A8 or step All will be
executed at most once for each & - It follows that Algorithm A runs in
O(log nglog®ny) time on a CREW PRAM with ngnyM(ng)log log ny, processors,
i.e. o(ncn:é}“) processors. In Section 4, we show how the processor count can be
significantly reduced. Given two trees G and H such that G is not isomorphic to a
subtree of H, Algorithm A will correctly determine this fact. Given two trees G and
H such that G is isomorphic to a subtree of H, Algorithm A4 will correctly determine
this fact with probability =1-1/n. The algorithm solves fewer than n* bipartite
matching problems, and so this success probability can be achieved using the MVV
algorithm with @=4 (i.e., perform each matching computation 4 log n times in
parallel).
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Algorithm A (enhancements): These steps are added to algorithm A.

10a. and for all its children gi (except g;),
set gg.remainingsibling to g;
14a. and set Save_Imbed|g;, hy] to hz
’ 16a. and set g;.child_when_deleted to g
17a. and set Save_Unary[g;, hw, h:] to hs
18a. and save the “time” and “type” (i.e. R1, R2, R3, or C)

of deletion. Set g;.parent_when_deleted to g;

23a. and save the matching M as follows: if § is matched
with hy in M, set Save Imbed|g, hy] to hy

28a. and save the matching M: if g is matched with hy
in M, set Save_Unary|[gk, hw, hz] to hy

PROCEDURE Expand_Tree: This procedure is run after G has been con-
tracted to one edge 1. Let L(h;) be the home for L(g1), i.e. let hy be gi.home.

29. Let t step by —1 from the number of contract phases down to 1
30. IN PARALLEL for each edge g; in G DO:

31 [F g; was deleted at time 1 {

/* Let h,, be (g;.parent_when_deleted).home *f
32. splice g; back into G
33. IF g; was marked for deletion by statement R1 or R3
34. g;.home «— Save Imbed[g;, hu]
35. ELSE IF g; was marked for deletion by statement R2
36. g;j.-home — Save_Unary|g;, hw, hz],

where h, is (gj.remaining_sibling).home

ELSE  /* g; was marked for deletion by statement Sy
37. gj.-home — Save_Unarylg;, hw, h:],
where h, is (gj.child_when_deleted).home

Fig. 8. Together with Algorithm 4, these instructions construct an isomorphic ma pping from G to a sub-
tree of H (if one exists).
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Constructing an isomorphism. In order to exhibit an explicit isomorphism of G to
a subtree of H, we make the following enhancements to Algorithm 4. While con-
tracting the tree, count the number of contract phases applied so far, in order to
save the “‘time’’ each edge was deleted from G, Depending on the “type’’ of the
deletion (i.e., R1, R2, R3, or C), also save the name of its parent when the edge
was deleted, the name of its child when deleted, and/or the name of the nonleaf
sibling. Save all perfect matchings constructed, and for each matrix entry which is
set to one in a new unary or leaf mark, save the name of a corresponding home for
the deleted edge. The precise instructions added to Algorithm A4 are listed in Fig.
8 (shown properly indented to fit into Algorithm A). Save_Imbed is an MG X My
matrix and Save_Unary is an Mg X Mg X My matrix.,

Given the above enhancements to Algorithm A4, Procedure Expand_Tree shown
in Fig. 8 can be used to exhibit the mapping. After G has been contracted, we
reconstruct G by an expansion process which reverses the contraction process, with
each expand phase splicing back into & all edges deleted at the corresponding
contract phase. At the conclusion of each expand phase, we will have computed the
home for each limb L(g;) in G corresponding to an edge & in the current G.
Because they are associated with limbs in G, these home edges typically will be
scattered throughout A prior to the final expand phase. During the expansion
process, new homes are computed based on both the matchings performed during
the contraction process and the homes of existing edges in G.

Clearly the time and processor count for Procedure Expand_Tree is bounded by
the time and processor count for Algorithm A.

4. Processor efficiency

We have recast the subtree isomorphism problem as a problem on limbs, in order
to save having to try out all possible roots for the trees. In this section, we describe
techniques for further reducing the number of processors used by our algorithm.
First, we will show how to use an algorithm for deciding whether a perfect matching
exists while contracting G, and an algorithm for constructing the matching while ex-
panding G. This reduces the number of processors used since (1) the fastest known
parallel decision algorithm for bipartite matching uses fewer processors than the
fastest known parallel search algorithm, and (2) the expansion process needs fewer
matching problems solved (in parallel) than the contraction process. (There are,
however, certain advantages to constructing the matchings as we contract G: see
Section 6.) Second, we will show how the solution to a single bipartite matching
problem can yield the solution to a group of related matching problems.

In analyzing the processor bounds for our algorithm, we will often use the follow-
ing (common) approach. First, describe the algorithm using a convenient (but
perhaps wasteful) number of processors. Then determine the work of the algorithm,
where the work of an algorithm is defined to be the sum over all processors p;of
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the number of PRAM instructions executed by p, during the course of the
algorithm. Finally, apply Brent’s scheduling lemma [2] to determine the actual
number of processors needed. The scheduling lemma states that an algorithm run-
ning in time ¢ with work w can achieve time O(7) using only w/f processors, provided
that there is negligible overhead in both determining the amount of work to be done
at each step of the original algorithm and scheduling this work among the w/t
processors. Typically, this allocation of work to processors is predetermined and
thus creates no overheads to the algorithm.

4.]. Constructing the matchings while expanding G

We can use a decision algorithm for the matching problems in steps A23 and A28,
if we make the following modifications to Expand_Tree. We will construct any
necessary matchings while expanding the tree. As before, we will maintain the in-
variant that the home is known for every edge currently in G. At the beginning of
each expand phase, if (decision) bipartite matching problems were solved for edge
g, at the corresponding contract phase, construct the appropriate matching
(described below) and save the results in Save_lmbed and Save_Unary. There are
two cases to consider. (1) If step A8 was performed for g;, then the home L(h,) of
&;is known, so it suffices to solve only one (search) bipartite matching problem for
g;: the matching problem between the child edges of §; and the child edges of Ah,,.
(2) If step All was performed for §;, then both the home h,, for §; and the home
h, for the remaining child g; of & are known, so it suffices to solve only one
(search) bipartite matching problem for §;: the matching problem between the
child edges of g; other than g; and the child edges of h,, other than A,.

Lemma 4.1. Let L(h,) be a home for L(g,). During the expansion process, there
is at most one bipartite matching constructed for each edge in L(h,,) with more
than one child, and no bipartite matchings constructed for any other edge in H.

Proof. By Lemma 2.6, for each edge g;, either step A8 is performed once, step
A1l is performed once, or neither are performed. Thus by the remarks above, there
will be at most one bipartite matching problem solved for each edge g; during the
expansion process, and hence at most one solved for the home edge for g;. Further-
more, if an edge in A has fewer than two children, then it is not involved in any
bipartite matching problems. il

The running time for expanding the tree as described above is O(log ng log?ng),
using the MVV algorithm for constructing perfect matchings. Clearly the work to
expand the tree is dominated by the work to construct the matchings. From Section
3.2, we see that the work to construct one perfect matching in a bipartite graph

with n boys and n girls using the MVV algorithm is O(n>M(n)log®n log log n).
Let {h;, hy,...,h;} be the edges in L(h,), the home for L(g), and let d; be
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the number of child edges of h; in L(h,). By Lemma 4.1, the work is at most
Lj- 1 d’M(d)log’djloglogd,, i.e., the work is O(n}; M(n)log?nylog log ny,).
Thus the work to expand the tree is, to within a constant factor, the same as the
work done by the MVV algorithm to solve one matching problem on a bipartite
graph with ny nodes on each side. The algorithm solves fewer than 11 bipartite
matching problems while expanding the tree, and so we will use the MVV algorithm
with @ =2 (recall from Section 3.2 that we perform « log n trials of the matching
algorithm in parallel). Thus with probability =1—1/2n, the algorithm will correctly
construct an isomorphic mapping between G and a subtree of H.

4.2. Contracting G using fewer processors

We will now describe and analyze a method for contracting the tree G using a
factor of Q(n?) fewer processors than the method described in Section 3. First, we
will use the following decision algorithm for bipartite matching while contracting
G. Given a bipartite graph B with n boys and »n girls, the adjacency matrix for B
is an n X n matrix C such that the element in row i, column ;j of C is one if there
is an edge between boy / and girl j, and zero otherwise. Let C’ be the matrix obtained
from C by replacing each nonzero entry of C with a unique indeterminate x;;. Then
the determinant of C’is nonzero if and only if there is a perfect matching in B [5].
If B has a perfect matching, then the determinant is a degree-n polynomial Jonup
to n? variables, where f is not identically 0. If we plug in for each indeterminate in
C’ an integer chosen uniformly at random from the range (0,...,xn%), then the
determinant of C’ will be nonzero with probability 1 —1/x [22]. For our purposes,
it suffices to let k be polynomial in n. Based on this fact, Borodin, von zur Gathen
and Hopcroft [1] developed a randomized algorithm for deciding if a bipartite graph
has a perfect matching that runs in O(log?#) time on a CREW PRAM. An im-
proved version of their algorithm computes determinants over Z,, the integers
modulo some suitable prime p of magnitude O(xn*) [21]. This can be done with
O()/nM(n)) work on a CREW PRAM, using the Preparata and Sarwate algorithm
[20] for computing the adjoint and the determinant of a matrix, since all operations
involve O(log n)-bit numbers. (Galil and Pan [6] have an algorithm for inverting
matrices over Z, with slightly less work). Let Algorithm S be this improved method
for deciding if a bipartite graph has a perfect matching.

While contracting the tree, we can further save processors by solving groups of
related matching problems at once. In particular, we can efficiently test, by solving
only one matching problem, whether §;in G is imbeddable in each of the limbs
associated with a node v in H, i.e., those limbs L(h,,) where h,, is directed our of
v. (Recall that H is unrooted.) Matula [15] showed how to perform such tests
efficiently on a sequential machine. In what follows, we present a parallel im-
plementation which results in additional processor savings for our algorithm. Con-
struct a bipartite graph B in which the boys are the child edges of ¢; in G and the
girls are the (directed) edges 4, in H directed into v. Add extra boys in order to
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equal the number of girls, as was done for step A23 (see Section 3.2). Run
Algorithm S on the graph B to compute the appropriate adjoint matrix D. Each
entry of D contains the determinant of some minor of D (a cofactor). In particular,
the entry in row i, column j contains the determinant of the submatrix of D that
results from removing row j and column i from D. Thus by testing whether a co-
factor is nonzero, we can determine if a perfect matching exists when §; and any
one edge directed into v are left out of the bipartite graph. Let r be an extra boy
in B (there is at least one such boy since the number of edges directed into v must
be larger than the number of children of in order for L(g;) to be imbeddable in
a limb directed out of v). L(g,) is imbeddable in L(h,) (a limb directed out of v)
if and only if the cofactor associated with girl h., (an edge directed into v) and boy
r is nonzero. From Rabin and Vazirani [21], it follows that this holds even when
the adjoint is computed over Z,.

We now analyze the work for contracting the tree using the above approach. Let
{vy, Vg -.+, Uy, } be the nodes in H and let d; be the degree of node v;. Then for
each edge g;, step A8 contributes at most ny bipartite matching problems (one per
each v;in H), each with at most d; girls. The work for solving these matching prob-
lems is at most ng LY, Vd;M(d)), i.e., the work is O(ng VnyM(ny)). The cofactor
technigue can be applied to step All as well, where the parent edges §; and A, are
left out of the graph entirely and the cofactors are used to determine if a perfect
matching exists when the remaining child g; and any one edge directed into v are
ignored. Then for each edge g;, step All contributes my, bipartite matching prob-
Jems, each with fewer than ny girls. Thus the work for solving all step All mat-
ching problems is O(nGmH]/EM(nH}). The algorithm solves fewer than mgmpy
bipartite matching problems while contracting the tree, and so we will use Algorithm
S with x =4n>. Thus with probability =1—1/2n, the algorithm will correctly deter-
mine if G is isomorphic to a subtree of H.

4.3. Analysis of the improved version of our algorithm

From the previous sections, we seé that the work for our algorithm is dominated
by the work for expanding the tree, which is within a constant multiple of the work
for solving a single bipartite matching problem using Algorithm MVV. Given this
analysis of the work, we can apply Brent’s scheduling lemma to determine the
number of processors needed. Before each phase i, the algorithm can determine the
operations to be done during the phase and allocate the processors accordingly in
time O(log ny) using ngnff processors. Since there are O(log ng) phases, this
overhead increases the running time and work by less than a factor of two. Let
Algorithm A’ be the improved version of Algorithm A which uses the above steps
to save processors and to construct an isomorphic mapping from G to a subtree of
H. Then the following theorem follows from Theorem 3.1, the correctness and
analysis of the matching algorithms, and inspection of the cases involved in ex-
panding the tree.
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Theorem 4.2. Given two trees G and H such that G is not isomorphic to a subtree
of H, Algorithm A’ will correctly determine this fact. Given two trees G and H such
that G is isomorphic to a subtree of H, Algorithm A’ will correcily construct an ex-
plicit isomorphism of G to a subtree of H with probability =1 —1/n. Algorithm A’
runs in O(log* n) time on a CREW PRAM with n’ M(n)log log n/log n processors,
where n is the number of nodes in H.

5. Reducing matching to subtree isomorphism

In this section we show that bipartite perfect matching is log-space reducible to
subtree isomorphism. Let B=(X, Y,E') be a bipartite graph, where X={x,,x,,. ey}
and Y={y,,»,,...,y,}. We will construct trees Ty, Ty corresponding to the vertex
sets X and Y, such that every imbedding of Ty in Ty yields, in a natural way, a
perfect matching in B. It is convenient to view Tx and Ty as rooted at Ry and Ry
respectively. This creates no obstacle since our construction forces Ry to be
mapped to Ry in any imbedding. The structure of the trees is as follows:

Tx:Ryhasn+2 children—X,, X,, ..., X,, V1, V2. X; corresponds to vertex Xx; in
B. V, and ¥, have no children. For 1 =i=n, X, is the parent of j children, X;, each
of which is a root of a path of length n—j+1.

Ty:Ry has n+2 children—Y,, Y,,..., ¥,, Uy, U,. Y; corresponds to vertex Y in
B. U, and U, have no children. For I=i=<n, Y; is the parent of n children, Y,

[j 3

Iy Y
T2 Y2
T3 R’
Ty Yy

(a) (b) (c)

Fig. 9. A log-space reduction from bipartite perfect matching to subtree isomorphism. (a) A bipartite

graph B. (b) The tree Ty when n=4. (c) The tree Ty derived from B. The solid lines in Ty are present

for any bipartite graph with four boys and four girls. For each particular edge in B, a dashed line is added

as shown. By construction, tree Ty is imbeddable in tree Tyif and only if B has a perfect matching. In

this example, Ty is imbeddable in tree Ty with X imbedded in ¥;, X3in Y5, X;in Y,, and X4in Y5,
which corresponds to a perfect matching in B.
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where Yj; is the root of a path of length n—j+1 if {y,,x;}€E and length n—j
otherwise.

An example is given in Fig. 9. Note that this reduction can clearly be performed in
logarithmic space.

Lemma 5.1. The subtree rooted at X; can be imbedded in the subtree rooted at Y,
if and only if {x;,y;} €E.

Proof. By construction, the trees rooted at Yjj,..., ¥ji— are paths of length at
least n—i+1, and the trees rooted at ¥j;iq,---s ¥jn a1€ paths of length less than
n—i+ 1. Furthermore, the tree rooted at ¥j; has length at least n —i+1 if and only
if {x;,y;} €E. Now, since the children of X; are roots of paths of length n—i+1
and there are i of them, the claim follows. [

Lemma 5.2. In any imbedding of Ty in Ty, Ry is mapped to Ry.

Proof. The degrees of Rx and Ry are n+2. All the other vertices in Ty have
smaller degree. [J

Theorem 5.3. Ty is imbeddable in Ty if and only if B has a perfect matching.

Proof. Let M= {{X1, Yoy }s --+» {X,» Yo(m )} e @ perfect matching of B. By Lemma
5.1, the subtree rooted at X is imbeddable in the subtree rooted at Y, for all i.
It follows that Ty is imbeddable in Ty.

Conversely, assume there is an imbedding of Ty in Ty. By Lemma 5.2, Ry is
mapped to Ry, and it follows that X, is mapped to some Y, for each i. By Lem-
ma 5.1, {x; Yo} € E for all , and thus the set of edges {{X1, Yo} - {Xps Yoy} }
constitutes a perfect matching of B. [

Corollary 5.4. The problem of deciding if a bipartite graph has a perfect maiching
is log-space reducible to the problem of deciding if a tree is isomorphic to a subtree
of another tree.

Corollary 5.5. The problem of constructing a perfect matching in a bipartite graph
is log-space reducible to the problem of constructing an imbedding of a tree into
another tree.

Theorem 5.6. The number of imbeddings of Ty in Ty is2nt (n—-1'(n—-2)!---2!
times the number of perfect matchings of B.

Proof. A perfect matching, M = {{X1, Yoy}s s $Xn> Yo}, of B induces a unique
mapping of X; to Y;. The subtree rooted at X; can be imbedded in exactly i! ways
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into the subtree rooted at Ysiy- The vertices V,, V,

can be mapped in two ways to
U,, U,. The theorem follows. [J

Corollary 5.7. The probiem of determining the number of imbeddings of a tree in
another iree is # P-complete.

6. Remarks

Applying the standard simulation of uniform PRAM programs by uniform
Boolean circuit families [23] to our O(log?n) algorithm yields a uniform family of
unbounded fan-in circuits (with random inputs) of depth O(log*n) for subtree

isomorphism, and hence a uniform family of bounded fan-in circuits (with random

inputs) of depth O(log*n) for the problem. Since our algorithm uses a polynomial
[number of processors, the resulting circuit family is of polynomial size, and hence

we have placed subtree isomorphism in RNC*, However, with appropriate im-
plementation of our algorithm, we can place subtree isomorphism in RNC3, To see
this, first observe that without the matchings, our algorithm runs in O(log?n) time,
and thus the standard simulation yields an RNC? circuit family. Second, the bipar-
tite matching algorithms used are known to be in RNC?, and we apply them in at
most O(log n) phases. It follows that our algorithm is in (Boolean) RNC?,

The case where G (or H) has bounded maximum degree d can be done deter-
ministically in O(d log d log n) time on a CRCW PRAM. Simply solve each bipartite
matching problem in our algorithm using d applications of a parallel augmenting
path algorithm (an augmenting path can be constructed using a breadth first search
calculation on the graph that results from directing all matched edges from boys to
girls and all unmatched edges from girls to boys). Each such application requires
only O(log d) time (using concurrent write) since there are at most d boys in the
graph and hence any path is at most 2d long.

A number of variants on our basic subtree isomorphism algorithm are possible,
These differ principally in various implementation details used for solving bipartite
matching problems during the course of the algorithm. The full details are given in
[9].

Throughout this paper, we have made the reasonable assumption that the PRAM
word size is O(log n). If we consider arithmetic PRAM'’s, which can perform addi-
tion, subtraction, multiplication, and division of arbitrary length numbers in one
step, then the Mulmuley, Vazirani, Vazirani algorithm uses M (n) work. This yields
a randomized subtree isomorphism algorithm that use
and runs in O(log®#n) time.

We can extend our algorithm to a Las Vegas algorithm, i.e., an algorithm that
runs in expected time ¢ and always produces the correct answer, as follows. While
contracting the guest tree, we use a version of the Mulmuley, Vazirani, Vazirani
algorithm which constructs a maxinum matching [17] with high probability, We test

s nM(n)/log’n processors
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whether the matching constructed is indeed a maximum matching by testing for an
augmenting path. We repeat until the randomized algorithm yields a correct
maximum matching. This Las Vegas version of our algorithm runs in expected time
O{lcag3 n) with n*M(m)log log n/log n processors, since we must construct the
matchings while contracting the tree.

Finally, we discuss two variations on the subtree isomorphism problem that occur
in practice. In the area of pattern recognition, the two trees are often rooted and
labeled with attributes at each node. For all nodes v in a rooted tree T, other than
the root, associate the label at v with the edge directed out of v in 7. The algorithm
presented in this paper can be trivially extended to this labeled problem. When com-
puting the first (unary or leaf) mark for a limb g in G (i.e., steps A2, A8, All, or
A17 in Algorithm A), consider the additional restriction that a limb L(h) in H can
be a home for L(g) only if g and h have compatible labels. Another version of the
problem that arises in practice is the case where the trees have a fixed planar orien-
tation, i.e., the trees are rooted and the children at each node v have a fixed ordering
(U1 Ugs -+ Ug)- We wish to determine whether there is a subtree of H that is iso-
morphic to G such that the isomorphic mapping preserves the orientation. In par-
ticular, if ge G with ordered children (g;, ..., &) is mapped to h € H with ordered
children (h,, ..., h;), then each child g, is mapped to A,y where l=so()<o(2)<
o(3)< -+ <a(k)=l. Recently, Gibbons, Miller and Teng [10] developed a
deterministic algorithm for this oriented version of the subtree isomorphism
problem. Their algorithm runs in O(log?n) time on an EREW PRAM with
n?/log?n processors.
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