+a

()

Information Processing Letters 28 (1988) 61-65
North-Holland

24 June 1988

AN IMPROVED PARALLEL ALGORITHM THAT COMPUTES THE BFS NUMBERING

OF A DIRECTED GRAPH *

Hillel GAZIT and Gary L. MILLER

Department of Computer Science, University of Southern California, University Park, Los Angeles, CA 90089-0782, U.S.A.

Communicated by G.R. Andrews
Received 3 September 1987
Revised 24 February 1988

This paper preséms a parallel algorithm that computes the breadth-first search (BFS) numbering of a directed graph in
O(log?n) time using M (n) processors on the exclusive-read exclusive-write (EREW) parallel random access machine (PRAM)
model, where M(n) denotes the number of processors needed to multiply two n X n integer matrices over the ring (Z, +, X)
in O(log n) time. The best known bound for M(n) is O(n**"®) (Coppersmith and Winograd, 1987). The algorithm presented
in their paper uses fewer processors than the classical algorithm for BFS that employs matrix powering over the semiring
(dioid) (N, min, +), using O(log n) time and O(n?) processors on the concurrent-read concurrent-write (CRCW) model, or
using O(log? n) time and n®/log n processors on the EREW model.

Keywords: Single source, breadth-first search, fast matrix multiplication, parallel algorithm

1. Introduction

The single source breadth-first search (BFS) of
a graph G = (V, E) with respect to a vertex s is an
assignment of labels to the vertices of G such that
the label on vertex v is the distance from s to v.
This problem is also known as the single-source,
shortest-path problem of unit-length edges. With
these labels, a BFS tree of the graph can be built
using | E| processors in O(1) time. BFS is one of
the basic paradigms for the development of effi-
cient sequential algorithms. It can easily be seen
that the sequential time of the problem is O(n +
m), where n and m are the number of vertices and
edges, respectively [1]. On the other hand, a paral-
lel BFS seems to require a substantial number of
processors. The classic naive parallel algorithm
views G as an incidence matrix M over the semi-
ring (N, min, +), where N denotes the set of

* This research was supported in part by the National Science
Foundation under Grant No. DCR-8514961.

natural numbers and repeatedly squares M, re-
turning M". This yields an algorithm using
O(log n) time and n® processors on the concur-
rent-read concurrent-write (CRCW) model. ' A sim-
ilar algorithm in the exclusive-read exclusive-write
(EREw) mode takes O(log? n) time and uses n3/
log n processors. This processor count arises be-
cause all known algorithms for matrix multiplica-
tion over this semiring require n> operations.

If one is able to work over a ring instead of a
semiring, one can use one of many processor-effi-
cient algorithms—at least in the limit as n goes to
infinity. The simple O(n?) sequential algorithm
for matrix multiplication over a ring was first
improved by Strassen [5] to obtain a complexity of
O(n*®"). This upper bound has been progressively
improved upon by the work of many researchers.

! The n min operations can be performed in O(1) time using
n processors, since the size of each value is < n. This fact is
relatively easy to see, but we do not have a proper reference
for it.

0020-0190,88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 61

Volume 28, Number 2

For a good summary on the subject, see [4]. So far,
the best-known result for matrix multiplication is
O(n**7%) obtained by Coppersmith and Winograd
[3]. All of these algorithms can be implemented in
parallel, with optimal speed-up, in O(log n) time.

In this paper, M(n) denotes the number of
processors needed for matrix multiplication over
the integers of two n X n matrices in O(log n)
time. Thus, the best-known value for M(n) is
0(n2.376) [3]

These algorithms use the fact that there exists
an inverse element with respect to a + operator.
Since the semiring (N, min, +) does not have
additive (for min) inverses, these algorithms can-
not be applied directly. This paper shows how to
use the fast matrix multiplication algorithms indi-
rectly.

Our basic algorithm uses the EREw parallel
random access machine (PRAM) model, in which
concurrent reads or writes to the same memory
location are not permitted. It is assumed that
processors can add, multiply, and compare log n
bit integers in unit time.

For the result pertaining to a BFS from more
than one source, the cRcw PRAM model will be
used, in which concurrent writes to the same
memory location are permitted only if all
processors try to write the same value.

Our algorithm replaces log » matrix multiplica-
tions over the semiring (min, +) by log n arith-
metic matrix multiplications over the ring (+, X)
and log n vector-matrix multiplication oper-
ations. Matrix multiplication has an obvious lower
bound of O(n?); therefore, the processor time
product of our BFS algorithm cannot be as good
as the sequential time of O(| E |).

2. Notation

Let G=(V, E) be a directed graph with n
vertices and m edges. Assume that the vertex set is
the set of integers, {1, 2,..., n}. The distance from
vertex u to v is the number of edges in the
shortest directed path from u to v, and equals
infinity (c0) if no path exists between u and wv.
The distance is denoted by d(u, v).

62

INFORMATION PROCESSING LETTERS

24 June 1988

The semiring (N U {0}, min, +) shall be used,
where N denotes the set of natural numbers and
infinity (oc0) satisfies the following natural rules:

o+ k= o0, 00 - k=00, o0 min k= k.

Matrix multiplication over the above semiring is
denoted by *.

3. Computing the BFS of a directed graph

The algorithm presented in this section com-
putes the BFS of a directed graph G(V, E) from
some given vertex s. The algorithm is comprised
of three parts. In the first part, [log n] matrices of
size n X n are computed; the nonzero entries de-
termine those pairs of vertices which are a dis-
tance of at most 2’ apart. In the second part, the
algorithm rewrites the information from the first
part in terms of distances. In the third part, the
actual distances are computed.

These three parts are combined into Procedure
BFS described below. The BFS algorithm takes a
graph G(V, E) and a vertex s as input and com-
putes a vector D of length n such that D[w]
equals the distance from s to w.

Procedure BFS

program BFS(G(V, E), s)
First-Approximation(G(V, E));
Find-Distances(s);

end BFS

3.1. First approximation

In this section, an approximation of the dis-
tance between all pairs of vertices in G is com-
puted. It is well known that Boolean matrix multi-
plication can be reduced to integer multiplication
(see [1, pp. 242-243] and [2]). The model pre-
sented in this paper assumes that log n bit num-
bers can be multiplied in O(1) time. Thus, we
begin by viewing the incidence matrix of G as a
Boolean matrix:

B[u v]={1 if (u,v)€EEoru=uv,
gRT 0 otherwise,

Volume 28, Number 2

By letting B,,, = B?, the first [log n] matrices
can be computed by doubling-up over the Boolean
semiring. This produces B,,..., By,), satisfying

B, u]= {1 distance(u, v) <2,
0 otherwise.

There are [log n] matrix products computed
over the Boolean semiring. Each product requires
at most O(log n) time and M(n) processors. Thus,
O(log?n) time and M(n) processors are needed to
compute these matrices.

New values are substituted into the entries of
each matrix B;, and the resulting new matrices are
viewed over the semiring (N U {00}, min, +). This
computation will gii?re the matrices M, ..., M, .
as defined below:

0 ifu=v,
2" if distance(u, v) <2'

Mi[ua U] ="
and u# v,

oo otherwise,

Given the matrix B;,, M, can be computed in
constant time using at most n* processors. Thus,
the distance between any pair of vertices has been
approximated up to a factor of 2. The next subsec-
tion will show how one can efficiently combine
this information to get the BFS of G.

3.2. Computing the distances

In the previous two parts of the algorithm,
approximation to the distances between any two
vertices in the graph were found. It was shown
that M[u, v]+# oo if and only if the distance
between u and v is at most 2'. The least i can be
found such that M,[u, v] =2, which implies that
the distance between u and v is between 2:71 + 1
and 2'.

In this section, an attempt will be made to try
to improve these estimates for a given vertex s
(the root of the BFS tree). An algorithm will be
presented that computes the distance of s from
any other vertex. In the algorithm, at the begin-
ning of each iteration i, the error in the estimated
distances is at most 2'. At the end of the iteration,
the error is reduced to 2°~!. Suppose that, at the

INFORMATION PROCESSING LETTERS

24 June 1988

end of iteration i, the distance from s to w is
estimated to be k-2'. During the (i — 1)st itera-
tion, it will be determined whether d(s, w) lies in
the range (2k—2)2""'+1 to 2k—1)2""! or in
the range (2k — 1)2° " + 1 to (2k)2' . The former
case holds if and only if 3u such that (k —2)2' <
d(s, u) <(k—1)2', and d(u, w) <2~ If this is
the case, at the end of the ith iteration, the
distance estimates of u from s must be (k — 1)2/,
and M,_,[u, w] # oco. Therefore, if such a vertex u
exists, the distance estimates from s to w are
corrected to the lower half of the range; otherwise,
they are corrected to the upper half of the range.

In the Find-Distances algorithm, D is a row
vector of length n, and * denotes matrix multi-
plication over the semiring (N U {co}, min, +).
All the distances in the graph can be computed
from some vertex s in the following way:

Procedure Find-Distances
for 1 < u < n in parallel do

_ /0 if u=s
BlEl= { oo otherwise

od

for i :==[log n] downto 0 do
D:=Dx M,

od

end Find-Distances

3.1. Lemma. The complexity of Procedure Find-Dis-
tances in the EREW model is performed in O(log’n)
time, using n’/log n processors.

Proof. There are log n iterations in Procedure
Find-Distances, and each of them can be per-
formed on the EREW model in the following way:

Step 1. Make n copies of the vector D.

Step 2. Compute the n? + operations.

Step 3. Compute n min operations, each on a
set of n numbers.

It is obvious that each operation can be per-
formed in log n time using n*/log n processors.
O

3.2. Corollary. The complexity of a BFS from a
single source on the EREW model is O(log? n) time,
using M(n) processors.

63

Volume 28, Number 2

Proof. The first step involves performing log n
matrix multiplications over the Boolean semiring.
Each multiplication takes O(log »n) time and uses
M(n) processors [1,2]. The complexity of the sec-
ond step is bounded by Lemma 3.1. O

The accuracy of the algorithm must still be
proven. The correctness of the Find-Distances al-
gorithm can be proven by induction, by showing
that

(M, M,_,* --- « My)[u, v] =distance (u, v)

for distance(u, v) <2'*!—1. The correctness of
the algorithm is proven by showing that in every
iteration for every {:lcmcnt of D there is at most
one possible improvement. Thus, the time of the
Find-Distances algorithm is reduced to log n using
n? processors. This observation is important if one
desires a BFS of the graph from more than one
source without using more processors.

After iteration i (i decreasing) of Procedure
Find-Distances, the row vector D[w] is denoted by
D'[w]. As defined in Section 2, let d(u, v) be the
distance from u to v.

3.3. Theorem. After every iteration i, for every
wevV,

Di[w] = 2| distance(s, w)/2].

Proof. The theorem is proven by induction on i
for i running from [log n] to 0. Initially,
D' "I(N) is in the sth row of M|, ,,. Thus, the
claim follows from the definition of M,,,, ,;- The
theorem is assumed correct for i + 1 and proven
for i (i decreasing). Note that

Di[w] = 2[d(s, w)/2].

Next, D[w] is proven equal to some D'*![u] +
M [u, w]. By the definition of M[u, w],

M[u, w]=2/[d(u, w)/2].

Therefore,

Di[w]=2"d(s, u)/2"*Y| + 2¢[d(u, w) /2|
>2[[d(s, u) +d(u, w)] /2]
>2'[d(s, w)/2'].

INFORMATION PROCESSING LETTERS

24 June 1988

Next,
Di[w]<2'[d(s, w)/2]

is proven. If d(s, w) = oo, the proof is complete,
so it may be assumed that d(s, w) < co. The next
procedure involves setting

d(s,w)=¢q-2"'+r, where0<r<2*L

Two cases will be examined. In the first case,
r>2'or r=0. In this case,

D'[wl <D™ [w]l=2""d(s, w)/2'*!|
=2/[d(s, w)/2'].

In the second case, 0 <r <2’ In this case there
must exist a vertex u such that d(s, u)=gq-2*!
and' d(u, w)=r. By the induction hypothesis,
D**[u] = g-2"*1, By the definition of M, and the
fact that d(u, w)=r <2’ it follows that M,[u, w]
= 2. Therefore, D'[w] is at most

(2g+1)2"=2/[d(s, w)/2]]. O

3.4. Corollary. After applying Procedure Find-Dis-
tances, d(s, k)= D[k].

Proof. Substitute i =0 in Theorem 3.3 to get
DO[w]=d(s, w). O

3.5. Lemma. For every w € V and every iteration i,
D*1[w]= D'[w] or D'*[w] - D'[w] = 2.

Proof. By Theorem 3.3,

D' [w]=[2"""-d(s, w) /2]

and

D'[w]=[2-d(s, w)/2].

If d(s, w) modulo 2'*! is greater than 2/, then
D'[w]=D'*'[w]; otherwise, D‘[w]=D*'[w]—
2: O

3.6. Corollary. The n min operations in every ma-
trix multiplication can be computed in O(1) time on
the CRCW model using n’ processors.

Proof. The proof immediately follows from Lemma
35. O

Volume 28, Number 2

3.7. Theorem. The Find-Distances algorithm can be
computed on the CRCW model in O(log n) time
using n’ processors.

Proof. In each iteration, n? + and n min oper-
ations are computed. By Corollary 3.6, the claim
of the theorem follows. O

Note that Theorem 3.7 implies that a BFS can
be performed simultaneously from several vertices.
By applying Procedure Find-Distances from each
source vertex, Procedure BFS can be performed
from M(n) log n/n* vertices, in parallel, in
O(log*n) time using |M(n) processors on the CRCW
model. ‘

4. Conclusions and open problems

A reduction of the BFS problem to the matrix
multiplication problem has been demonstrated in
this paper. This method significantly reduces the
processor count without substantially increasing
the running time.

Two related open questions remain:

INFORMATION PROCESSING LETTERS

24 June 1988

(1) Can the algorithm be generalized in the case
where the edges have polynomially bounded in-
teger weights?

(2) Can the algorithm be generalized to solve the
all-pairs, shortest-path problem?

Acknowledgment

The authors would like to thank the referees for
many insightful comments. We are also grateful to
Esther Ashby for her editorial corrections.

References

[1] A.V. Aho, J.E. Hoperoft and J.D. Ullman, The Design and
Analysis of Computer Algorithms (Addison-Wesley, Read-
ing, MA, 1974).

[2] S. Baase, Computer Algorithms: Introduction to Design and
Analysis (Addison-Wesley, Reading, MA, 1983).

[3] D. Coppersmith and S. Winograd, Matrix multiplication
via arithmetic progressions, Proc. 19th Ann. ACM Symp. on
Theory of Computing (May 1987) 1-6.

[4] V. Pan, How to Multiply Mairices Faster (Springer, Berlin,
1984).

[5] V. Strassen, Gaussian elimination is not optimal, Numeri-
sche Mathematik 13 (1969) 354-356.

65

