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Abstract

We investigate a method of dividing an irregular mesh into equal-sized pieces with few interconnecting
edges. The method’s novel feature is that it exploits the geometric coordinates of the mesh vertices. It
is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed that certain classes
of “well-shaped” finite element meshes have good separators. The geometric method is quite simple
to implement: we describe a Matlab code for it in some detail. The method is also quite efficient and
effective: we compare it with some other methods, including spectral bisection.
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1 Introduction

Solving a large problem on a parallel computer with distributed memory usually requires that the data
for the problem be partitioned somehow among the processors. The quality of the partition affects the
speed of solution; a good partition divides the work up evenly and requires as little communication as
possible.

Many problems can be represented as graphs. Examples are both direct and iterative methods for
sparse linear system solution [20, 40], and, more generally, many situations in which partial differential
equations are solved in physical simulation and modeling. Partitioning such a problem typically amounts
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to dividing the vertices of the graph into sets of equal size with few edges joining vertices in different sets.
Graph partitioning has been an active field of research for several years, both theoretically [2, 9, 17, 21,
31, 32, 33|, and experimentally [1, 14, 15, 16, 19, 27, 29, 37, 39, 42]. Optimal partitioning is an NP-hard
problem, and finding good graph partitions in practice can be very expensive.

Graphs from large-scale problems in scientific computing are often defined geometrically. They
are meshes of elements in d-dimensional Euclidean space (typically d = 2 or 3). This paper reports
on experiments with a geometric mesh partitioner, which is based on theoretical work of Miller, Teng,
Thurston, and Vavasis that we summarize in Section 2. The method partitions a d-dimensional mesh by
finding a suitable sphere in d-space, and dividing the vertices into those interior and exterior to the sphere.
The cutting sphere is found by a randomized algorithm that involves a conformal mapping of the points
on the surface of a sphere in d + 1-space. If the mesh elements are well-shaped in a suitable sense, the
theoretical algorithm provides a strong guarantee on the quality of the partition it generates [34, 35, 41].
In practice, our implementation produces partitions that are better than the theoretical guarantees and
are competitive with those produced by other modern methods.

The goal of this paper is to convince the reader of three things. First, though the theory behind
the geometric partitioner is fairly complicated, the algorithms themselves are quite simple and easy to
implement. Second, the implementation can be made quite efficient. Third, the partitions produced
are quite good. As evidence for the first point, Section 3 discusses the engineering that makes the
theoretical algorithm efficient in practice, and describes a Matlab implementation in some detail. We
present experimental evidence for the second and third points in Section 4.

2 Theory of Geometric Partitioning

We now briefly review Miller, Teng, Thurston, and Vavasis’s theoretical work on separators in geometri-
cally defined graphs. For details and proofs, see their papers [34, 35].

The partitioning algorithm maps the d-dimensional mesh into a d + 1-dimensional space. Our de-
scriptions (and code) are correct for any d > 2, but our terminology corresponds to d = 2. Thus “circle”
and “disk” mean “sphere in IR?” and “ball in IR?”, while “sphere” and “plane” mean “sphere in IR4+1”
and “d-dimensional hyperplane”.

2.1 Overlap graphs

Computational meshes are often composed of elements that are well-shaped in some sense, such as having
bounded aspect ratio or having angles that are not too small or too large. Miller et al. define a class of
so-called overlap graphs to model this kind of geometric constraint.

An overlap graph starts with a neighborhood system, which is a set of closed disks in d-dimensional
Euclidean space and a parameter k that restricts how deeply they can intersect.

Definition 1 A k-ply neighborhood system in d dimensions is a set {Dy,..., D,} of closed disks in RY,
such that no point in R is strictly interior to more than k of the disks.

A neighborhood system and another parameter a define an overlap graph. There is a vertex for each
disk. For @ = 1, an edge joins two vertices whose disks intersect. For a > 1, an edge joins two vertices if
expanding the smaller of their two disks by a factor of @ would make them intersect.



Definition 2 Let a > 1, and let {D1, ..., D,} be a k-ply neighborhood system. The (o, k)-overlap graph
for the neighborhood system is the graph with vertex set {1,...,n} and edge set

{(5,7): (Din (@ Dj) # 0) and ((a- Di) N Dj # 0)}.

We make an overlap graph into a mesh in d-space by locating each vertex at the center of its disk.

Overlap graphs are good models of computational meshes because every mesh of bounded-aspect-
ratio elements in two or three dimensions is contained in some overlap graph (for suitable choices of
the parameters a and k). Also, every planar graph is an overlap graph. Therefore, any theorem about
partitioning overlap graphs implies a theorem about partitioning meshes of bounded aspect ratio and
planar graphs.

2.2 Separators for overlap graphs

The central theorem about overlap graphs is that they have good separators, that is, small sets of vertices
whose removal divides them approximately in half. A regular cubic mesh in d-space, with n vertices in

an array n'/% on a side, can be divided in half by removing the n(@=1/d vertices on a d — 1-dimensional
slice through the middle of the array. Up to a constant factor that depends on a, k, and d, an overlap

graph in d dimensions has as good a separator as the cubic mesh.

Theorem 1 (Geometric Separators [35]) Let G be an n-vertex (o, k)-overlap graph in d dimensions.
Then the vertices of G can be partilioned inlo three sets A, B, and C, such that

e no edge joins A and B,
o A and B each have at most (d+ 1)/(d + 2) vertices,

o C has only O(ak'/?n(d=1/?) yertices.

Miller et al. gave a randomized algorithm to find the separator in the theorem, which runs in linear
time on a sequential machine or in constant time on a PRAM with n processors. The separator is defined
by a circle (that is, a sphere in IRd). The algorithm chooses the separating circle at random, from a
distribution that is carefully constructed so that the separator will satisfy the conclusions of Theorem 1
with high probability. The distribution is described in terms of a stereographic projection and conformal
mapping on the surface of a sphere one dimension higher, in IR,

Here is an outline of the algorithm. Figures 1 to 6 show the steps in partitioning the 2-dimensional
mesh in Figure 1.

e Project Up. Project the input points stereographically from IR? to the unit sphere centered at
the origin in R, Point p € IR is projected to the sphere along the line through p and the “north
pole” (0,...,0,1). (See Figure 3.)

e Find Centerpoint. Compute a centerpoint of the projected points in IR4T!. This is a special
point in the interior of the unit sphere, as described below. (See Figure 3.)

e Conformal Map: Rotate and Dilate. Move the projected points in IR”! on the surface of
the unit sphere in two steps. First, rotate the projected points about the origin in IR**! so that
the centerpoint becomes a point (0,...,0,7) on the d 4+ 1-st axis. Second, dilate the points on the
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Figure 1: The input mesh.
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Figure 2: The mesh points.
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Figure 3: Projected mesh points. The large dot is the centerpoint.

Conformally Mapped Projected Points

11

Figure 4: Conformally mapped points, with separating great circle. The centerpoint is now at the origin.



Mesh Points in the Plane

Figure 5: The separating circle projected back to the plane.

Partition of the Original Mesh

42 cut edges

Figure 6: The edge separator induced by the separating circle. A vertex separator can also be extracted,
as explained in the text.



surface of the sphere so that the center point becomes the origin. The dilation can be described as
a scaling in R?: project the rotated points stereographically down to IR%: scale the points in R?
by a factor of \/(1 — 7)/(1 + r); and project the scaled points up to the unit sphere in R again.
(See Figure 4.)

e Find Great Circle. Choose a random great circle (i.e., d-dimensional unit sphere) on the unit
sphere in R?*1. (See Figure 4.)

¢ Unmap and Project Down. Transform the great circle to a circle in R? by undoing the dilation,
rotation, and stereographic projection. (See Figure 5.)

¢ Convert Circle to Separator. The vertex separator C is the vertices whose disks in the neigh-
borhood representation (in IR?) either (i) intersect the separating circle, or (ii) are smaller than the
separating circle and would intersect it if magnified by a factor of a. The two sets A and B are
the remaining vertices whose disks lie inside and outside the circle respectively. (Figure 6 shows an
edge separator rather than a vertex separator.)

A centerpoint of a given set of points is a point (not necessarily one of the given points) such that
every (hyper)plane through the centerpoint divides the given points approximately evenly (in the ratio
d : 1 or better, in IRd). Every finite point set in IR? has a centerpoint, which can be found by linear
programming [13, Section 4]. After the projection and conformal mapping, the origin of R is a
centerpoint for the mesh points. Therefore the mapped points are divided approximately evenly by every
plane through the origin—that is, by every great circle on the unit sphere in R,

Every great circle determines a separator C' that satisfies all the conclusions of Theorem 1 except the
last one, on the size of the separator. Miller et al. show that the average size of the separators determined
by all the great circles is as stated in the theorem, and therefore that a randomly chosen great circle
probably gives a separator within a constant factor of the desired size.

3 Practical implementation

3.1 The mesh and its separators

The geometric separator theorem guarantees the quality of a partition if the mesh satisfies a geometric
condition such as a bound on the aspect ratio of its elements. However, the geometric conditions only
appear in the guarantee, not in the algorithm itself. The algorithm can be run on any mesh, with no
requirements on its geometry. In practice, we observe that it generates good partitions even for meshes
with badly-shaped elements. Somewhat surprisingly, it even does a reasonably good job of partitioning
“2%—dimensional” meshes, which are meshes of triangular elements that approximate the surface of an
object in 3-space.

The theorem describes a vertex separator in terms of the disks of a neighborhood system that defines
the mesh. The implementation takes a simpler approach that doesn’t require the neighborhood system. it
just divides the vertices into those inside and those outside the separating circle. Such a vertex partition
(or an edge separator, which is the set of edges that cross the cut) is often the goal in applications to
parallel computation.

For applications like nested dissection that require a vertex separator, we compute the vertex separa-
tor from the edge separator as follows. Consider the graph G consisting only of the separating edges and



their endpoints. Any vertex cover of G (that is, any set of vertices that includes at least one endpoint of
every edge in () is a vertex separator for the mesh. Since G is bipartite, we can compute the smallest
vertex cover efficiently by bipartite matching [12].

The algorithm can be used to find other kinds of separators as well (though our software only includes
vertex separators and edge separators). A separating set of mesh elements can be found directly from the
separating circle. A partition of the mesh elements into two equal-size sets with small boundary can be
found either from the separating circle, or by applying the geometric separator algorithm to a geometric
dual of the mesh.

The separating circle does not necessarily split the mesh exactly in half. In theory, the centerpoint
construction guarantees a splitting ratio no worse than d 4 1 : 1; as described in Section 3.3, we actually
use an approximate centerpoint construction with an even weaker guarantee. However, we observe that
our approximate centerpoints nearly always lead to splits much better than the theory predicts. We
almost never see splits as bad as 2 : 1 in three dimensions, and most splits are less than 20% away from
even.

We modify the splits to be exactly even, within one vertex. We do this by shifting the separating
plane (in ]Rd‘H) away from the origin, in the direction normal to the plane, until it evenly splits the
mapped points on the sphere. Thus the separator is a circle, but not a great circle, on the unit sphere
in IR™1; this still projects back to a circle in IR?. Our experiments show that this balancing usually
affects the separator size very little. Intutitively, this is because the local geometry of a well-shaped mesh
changes relatively smoothly, so a small change in the cut does not dramatically change the number of
edges that cross it.

3.2 Representations

Our implementation uses very simple data structures. We never need to represent the neighborhood
system or the overlap graph per se, nor do we ever use the overlap-graph parameters & and a. Most of
the algorithm does not even need to know the edges of the mesh, but just manipulates the coordinates
of the vertices as points in IR? and IR ! (that is, as vectors). The original input points in IR? are scaled
(isotropically) and translated to have coordinates between —1 and 1.

The implementation never actually computes a separating circle, line, or hyperplane (except to draw
pictures). Rather, we represent a separating plane by its unit normal vector (in IR? for line separators,
in R4 for separating hyperplanes of the mapped points). There are infinitely many planes normal to
a given vector, but the one we intend is always the one that divides the points evenly. If v is the normal
vector and py, ..., p, are the points (as row vectors), then the partition is into those points for which
the inner product vp;fr is less than its median value and those for which it is greater.

We do keep a representation of the graph (as a sparse adjacency matrix), but we only use it to measure
the quality of a partition (which is the number of edges that cross the even cut), and to construct an
explicit edge separator or vertex separator from a separating circle.

3.3 Centerpoints

The proof that every finite point set has a centerpoint yields a linear-programming algorithm that the-
oretically finds one in polynomial time, but would be very slow in practice. Instead, we use a version of
a heuristic that was suggested by Miller and Teng [36] and was later analyzed by Clarkson et al. [10].



Figure 7: Radon points in two and three dimensions. The small point is the Radon point of the large
points.

The heuristic uses randomization and runs in linear time in the number of sample points. It finds an
approximate centerpoint by repeatedly finding Radon points of small point sets.

Point ¢ is a Radon point [11] of a set P of points in IR? if P can be partitioned into two disjoint
subsets P; and P, such that ¢ lies in the intersection of the convex hull of P; and the convex hull of P;.
Such a partition is called a Radon partition. Figure 7 shows examples of Radon points in two and three
dimensions.

Every set of d + 2 points in IR? has a Radon point. Moreover, it can be found efficiently, as follows.
Let P = {p1, ..., par2}, where p; = (p}, ..., p?). Consider the system of d 4 1 homogeneous linear equations

d+2 d+2

Sar=0=Yap! (1<j<d)
=1 =1

in the variables aj, ..., agy2. Since there are more variables than equations, there is a nonzero solution
(o1,...,0442). Let U = {i : a; > 0} be the set of indices of the positive a;’s, and let ¢ = 3",y a; =
2 igu(—ai). Then we can express a single point ¢ as a convex combination of two disjoint subsets of P:

q="> (ai/c)p; =D (—ai/c)pi.

iU igU

Finding ¢ just requires computing a null vector a of the d+ 1 by d + 2 matrix of the homogeneous linear
system.

The idea of the centerpoint heuristic is to repeatedly replace randomly chosen groups of d 4+ 2 points
with their Radon points. Eventually the set is reduced to a single point, which is the approximate
centerpoint. (Since a d-dimensional mesh uses a centerpoint in d 4+ 1 dimensions, the Radon reduction
actually uses groups of d 4+ 3 points.) We implement a simple version of this; some alternatives are
discussed in Section 3.8.

3.4 Geometric sampling

We use geomelric sampling to reduce the size of the centerpoint problem for efficiency. That is, we run
the centerpoint heuristic on a randomly chosen sample of the input points. Theoretically, the size of
the sample necessary for a good approximation should depend on the dimension but not on the number
of mesh points [35]. We find empirically that a sample of about a thousand points suffices in two or
three dimensions. We find separators for a few different approximate centerpoints, derived from different
random samples, and keep the best one. Since our centerpoint approximation seems very good in practice,



and since it is an expensive part of the computation, we let the number of approximate centerpoints grow
only logarithmically with the total number of random separator trials.

3.5 Great circles

After the points in IR? are mapped to the surface of the sphere in IR¥*!, we expect a random great circle
to induce a good partition. In fact, it pays to spend some effort looking for an above-average circle. For
each approximate centerpoint, we generate several circles at random and use the best one. A convenient
way to generate great circles uniformly at random is to choose normally distributed random coefficients
for the vector orthogonal to the plane of the great circle [30].

A special case of a separating circle is a separating line: a line in IR? is the projection of a circle
through the north pole of the unit sphere in IR*'. Our implementation searches explicitly for a separating
line as well as for a separating circle; this improves its performance on some regular meshes. The
coordinate bisection methods of Heath, Raghavan, and others [24, 39, 42] also use separating lines.
Teng [41, Section 5.4] gives an example of a mesh that has a good separating circle but no good separating
line.

We let the user specify how many randomly generated separators to try. Of the specified number ¢ of
trials, we allocate a number proportional to t%/(4+1) to separating lines and the rest to separating circles.
We allocate the circle trials among a number proportional to logt of approximate centerpoints. The
default is to use 30 trials, which includes (in two dimensions) 6 lines and 2 centerpoints with 12 circles
each.

3.6 Inertial weighting

The random choice of a separating circle or line can be improved by biasing the normal vector in the
direction of the moment of inertia of the points. The idea of inertial weighting (in one form or another) has
been suggested in conjuction with geometric coordinate bisection by several people [14, 42]. Gremban,
Miller, and Teng [23] proved that one version of inertial weighting reduces the expected size of the
separators in Theorem 1. We use inertial weighting (much more aggressively than the version analyzed
by Gremban et al.) in choosing both the separating great circles in IR%*! and the separating lines in IR%.
For great circles, we simply weight our random choice of normal vector by a power (actually the square)
of the inertial matrix PT P, where P is the matrix whose rows are the coordinates of the points after
conformal mapping on the unit sphere in R*! Thus we generate a random unit vector u, and take our
separating hyperplane to be normal to (PTP)2u. For separating lines in IR?, we weight according to a
power of the matrix of coordinates that goes as the inverse of the number of choices we make—if we
choose only one line, it is exactly normal to the moment of inertia, which is the first singular vector of
the coordinate matrix.

3.7 Matlab implementation notes

Most of our partitioner’s basic operations are from linear algebra, which makes Matlab a natural choice
of language for experimental implementation. Matlab’s interpreted environment and visualization tools
make it easy to experiment with variations of the algorithm. The code is written in a data-parallel
“vectorized” style for efficiency (since explicit loops are slow in the interpreter); this also simplifies the
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Table 1: Subroutines of the geometric partitioner.

geopart Geometric separator for a mesh.
stereoup Stereographic projection from plane to sphere.
centerpoint Approximate centerpoint of a set of points.
radon Radon point of a set of d 4+ 2 points.
conmap Conformal map on the surface of the sphere.
reflector Orthogonal transform to put point on axis.
stereodown  Stereographic projection from sphere to plane.
stereoup Stereographic projection from plane to sphere.
sepcircle Separating great circle.
sepquality  Number of edges cut by separator.
partition Partition points by a plane or line.
sepline Separating line.
sepquality  Number of edges cut by separator
partition Partition points by a plane or line.
vtxsep Convert partition to vertex separator.

process of porting the code to a parallel machine. Versions of this code have been translated to NESL [6]
and Connection Machine Fortran.

To illustrate how the pieces of the partitioner fit together, and to assist the experimentally inclined

reader, we discuss some of the details of the code in this section. The Appendix includes a short version
of the code, and describes how to obtain the complete code by anonymous ftp.
Outline of subroutines. The top-level call p = geopart(A,xy) returns a list of the vertices on one
side of the cut for a mesh whose adjacency structure is A and whose vertex coordinates are zy. Optional
input arguments specify the number of random trials to make, and some visualizations and statistics.
Optional return values are the separating circle or line, and the set of edges that cross the cut. Table 1
shows the tree of subroutines called by geopart.

Data structures (geopart). A point in IR? is a row vector, and a set of n points is an n x d matrix.

? are in the d-dimensional mesh space, and names that begin “zyz” are in the

Names that begin “zy
d + 1-dimensional mapped space.

A partitioning line or plane is represented by its normal vector; this is not ambiguous because, among
the family of parallel planes, we always intend the one that divides the points evenly.

The mesh edges are represented by the adjacency matrix A of the graph. This symmetric matrix
has A(%,7) # 0 if (¢,7) is an edge, and A(7,j) = 0 otherwise. Matlab supplies sparse data structures
and operations for this matrix invisibly to the user [22]. The adjacency matrix is only used in routines
sepquality and vtxsep (and for visualization).
Matrix arithmetic (stereoup, stereodown). Most of the manipulations of point sets are done with-
out loops, using matrix arithmetic. The stereographic projection and its inverse are examples.
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Null vectors (centerpoint, radon). FEach Radon reduction computes a null vector of a small matrix.
The null vector comes from the built-in Matlab function null, which computes a null space basis by
singular value decomposition.

Householder matrices (conmap, reflector). The conformal mapping on the sphere in d + 1-space
consists of an orthogonal transformation to move the centerpoint onto the axis, a stereographic projection
down to d-space, a scaling, and a stereographic projection back up to d 4+ 1-space. The orthogonal
transformation is a Householder reflection, computed by Matlab’s @ R factorization. The rest is matrix
arithmetic.

Random directions, inertial weighting, and SVD (sepcircle, sepline). Separating lines and
planes are represented by their normal vectors. We generate uniformly distributed random normal vectors
(or directions) by generating vectors with independent normally distributed components, using Matlab’s
randn. We implement inertial weighting by multiplying the random direction by a power of the inertia
matrix M = PT P, where P is the matrix whose rows are the points. For separating planes in d + 1-space
(in sepcircle), we use the second power and compute M? directly. For separating lines in d-space (in
sepline), the exponent depends on the number of trial lines. In this case we compute a fractional power
of M from the singular value decomposition of P.

Sparse matrix manipulation (partition, sepquality). The sparse adjacency matrix A enters the
partitioning computation only when we compare the quality of the randomly generated trial separators.
(If we only made one trial, we wouldn’t need A at all.) Subroutine sepquality calls partition to divide
the points about the median of their inner products with the normal vector into sets @ and b. Then the
only reference to A is the one-liner that counts the crossing edges by counting nonzeros in rows from a
and columns from b, namely “cutsize = nnz(A(a,b))”.

From edge to vertex separators (vtxsep). This function converts the partition from geopart (or
any partition, for that matter) into a vertex separator for the graph by finding a minimum bipartite cov-
ering as described in Section 3.1. We compute the covering from Matlab’s built-in Dulmage-Mendelsohn
decomposition, dmperm.

3.8 Possible improvements

Finally, we list some ideas that could lead to further improvement of the geometric partitioner.

Variants of fast centerpoint. Our Matlab experiments suggest that the simplest implementation of
approximate centerpoint is the method of choice both for speed and quality. We choose a random sample
of the input points (without repetition), place them onto a queue, and then repeatedly remove the first
d+ 3 points from the queue and add their Radon point to the end of the queue. This performs a d+ 3-ary
tree of Radon reductions, with the sample points at the leaves and the approximate centerpoint at the
root. The sample size is at most (d + 3)* (that is, 625 for d = 2 or 1296 for d = 3), and is congruent to 1
(modulo d + 2).

The theoretical results of Clarkson et al. [10] suggest that the probability of returning a bad center-
point decreases double-exponentially in the number of levels of Radon reduction. We use (approximately)
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four levels. A five-level reduction would need 3125 points for d = 2 or 7776 points for d = 3. We experi-
mented with a variant (suggested by Clarkson et al.) that allows more levels of reduction without using
more sample points. The idea is to reduce according to a directed acyclic graph instead of a complete
d + 3-ary tree. Let Py be a sample of L points. To construct Py, choose L random (d 4 3)-tuples from
Py, (with replacement) and let P, be the set of Radon points of these L tuples. We can parameter-
ize the centerpoint algorithm by L and h; the total complexity is O(LA®). Our experiments suggest
1000 < L < 1200 and 4 < h < 8 work well. While this doesn’t seem to beat the simpler method in
Matlab, it may be useful in some settings.

From sorting to median finding. To force an even partition, we need to find the median of the
dot products of the points with the normal to the partitioning plane. Our implementation uses Matlab’s
built-in median function, which is based on sorting. Theoretically, this is overkill; sorting takes O(nlogn)
time and a median can be found in linear time. In some settings (especially on parallel machines), it
may be best to use a randomized median-finding algorithm [18, 28]. Indeed, one can even find an
approximate median by using the one-dimensional version of the approximate centerpoint algorithm [10],
which amounts to repeated median-of-three reduction.

Faster quality testing. We measure the quality of a trial separating sphere by counting the number of
graph edges that cross the cut it induces. This is the only phase of the algorithm that needs to manipulate
the edges (as opposed to the vertex coordinates), and it typically takes about half to two thirds of the
total time.

One idea for speeding this up is to use geometric sampling again. For example, instead of examining
all the edges we could look only at a random sample of |E|/(¢t1]og |E| of them. This idea could be
used in both sequential and parallel implementations.

A second possibility is to preprocess the mesh to represent the graph more compactly, for example,
as a neighborhood system. Since a simplicial mesh has about 3 times as many edges as vertices in two
dimensions or 7 times as many in three dimensions, the neighborhood system is significantly smaller than
the mesh, and a quality test could be implemented by just counting intersections between neighborhood
disks and the separating sphere.

Local optimization for great circles. Once the centerpoint is determined and the points are con-
formally mapped on the unit sphere in IR%*!, each trial separating circle is selected independently at
random (from an inertially biased distribution). Instead, one can imagine trying to improve each trial
circle locally. Consider the quality of a trial circle, as a function of its normal vector. This is a real-valued
function defined on the surface of the unit sphere in d + 1-space. The function is not smooth—in fact,
it is piecewise constant—but it might be possible to smooth it on a fine scale and then use continuous
optimization methods to find a local minimum on a coarser scale. Qur preliminary experiments show
that this idea often improves the quality of a partition, sometimes by a significant amount.

Relaxing the 50-50 split. Most applications do not require the vertex partition to be exactly even.
It may be worthwhile to search in the vicinity of an exact cut—for example, by shifting the cutting
hyperplane or dilating the separating circle—for a cut whose balance is slightly uneven but whose overall
quality is higher. The user would probably have to supply the definition of “overall quality”, since the
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tradeoff between load balancing (even partition) and communication cost (small cut) depends on the
application.

4 Experimental results

To assess the quality of the geometric algorithm’s partitions, we compared them to coordinate bisec-
tion [24, 39, 42] and to spectral bisection [3, 25, 37] on several sample meshes.

Table 2 lists the meshes. TAPIR is a test case from a 2D mesh generation algorithm of Bern, Mitchell,
and Ruppert [5] that produces triangles with sharp angles but no obtuse angles. We expect this to be
a difficult mesh for the geometric algorithm, because it has many triangles with large aspect ratios.
AIRFOIL2 and AIRFOIL3 are highly graded meshes of well-shaped 2D triangles around cross sections of
airfoils, from Barth and Jesperson [4]. TRIANGLE is a 2D mesh of equilateral triangles, all the same size,
generated by gridt in Matlab. PwT is a mesh of 3D elements that discretize a thin shell. We expect
this to be difficult for the geometric algorithm to separate well, because its best separators should be like
those of a 2D mesh but the algorithm treats it as a 3D mesh. BoDy is another 3D mesh with some “thin
shell” parts. We obtained these two meshes from Horst Simon at NASA. WAVE is a highly graded mesh
that fills the space around an object in 3D, which we obtained from Steve Hammond at NCAR.

Table 3 shows the number of edges cut for a balanced two-way split, as found by each of the three
methods. We used Matlab to implement coordinate bisection, and we used Hendrickson and Leland’s
Chaco package [26] to find the spectral bisections. (Chaco also implements several other bisection methods
that we did not use here.) A parameter to the geometric algorithm is the number of random trials of
great circles to make. The “default geometric” column reports results for 30 trials, which is the default of
our Matlab code; “best geometric” reports the results for 7000 trials. (Each “default geometric” number
is actually the median result of 31 separate experiments of 30 trials each.)

The results indicate that the geometric cuts are consistently smaller than the coordinate-bisection
cuts. In most cases, the geometric cuts are also smaller than the spectral ones. The significant exceptions
are PwT and Bobpy, the thin shells in 3D. These may be difficult cases for the geometric algorithm
because they really should be treated as two-dimensional meshes in some sense.

It is hard to make meaningful comparisons of the running times of the various algorithms, since
there are many different versions and choices of parameters for all of them, and also because the Matlab
implementation runs in an interpreted environment. For a rough comparison, we note that finding a 2-way
partition for the AIRFOIL3 mesh takes 46 seconds with the default Matlab geometric code, 5.9 seconds
with a similar C geometric code, 0.83 seconds with a C geometric code that only computes one cutting
circle, and 10.1 seconds with a good C spectral code.!

We do not mean to suggest that the geometric algorithm is the last word in mesh partitioning; several
researchers have proposed refinements to spectral partitioning [7, 8, 25], and some purely combinatorial
methods such as Hendrickson and Leland’s multilevel Kernighan-Lin [27] look very promising. However,
we believe this data shows that geometric partitioning is at least competitive with other modern graph
partitioning methods.

!The Matlab code used the default 30 trials, including two centerpoints. The “similar® C code also used 30 trials with
two centerpoints. The spectral time is from Chaco, using its multilevel RQI/Symmlq eigensolver and no Kernighan-Lin
postprocessing. The experiments were run on an unloaded Sparc-10. All times are the median of three runs, and do not
include input/output.
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Mesh Description Mesh Type Grading | Vertices | Edges

TAPIR Cartoon animal 2-D triangles, sharp angles | 8.5 x 104 1024 2846
AIRFOIL2 | Three-element airfoil 2-D triangles 1.3 x 10° 4720 13722
TRIANGLE | Equilateral triangle 2-D triangles, all same size | 1.0 x 10° 5050 14850
AIRFOIL3 | Four-element airfoil 2-D triangles 3.0 x 10* 15606 45878
Pwr Pressurized wind tunnel | Thin shell in 3-space 1.3 x 102 36519 | 144794
Boby Automobile body 3-D volumes and surfaces | 9.5 x 102 45087 | 163734
WAVE Space around airplane 3-D volumes and surfaces | 3.9 x 10° | 156317 | 1059331

Table 2: Test problems. “Grading” is the ratio of longest to shortest edge lengths.

Relative Cut Size

Mesh Spectral | Coordinate | Default Best
Bisection Geometric | Geometric
TAPIR 59 55 37 32
AIRFOIL2 117 172 100 93
TRIANGLE 154 142 144 142
AIRFOIL3 174 230 152 148
Pwt 362 562 529 499
Bopy 456 953 834 768
WAVE 13706 9821 10377 9773
Table 3: Cut size for two-way partitions.
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Figure 8: Improvement in relative cut size with increasing number of trials.
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Mesh After After Last
10 Trials | 100 Trials | Improvement

TAPIR 1.28 1.00 49
AIRFOIL2 1.22 1.04 1636
TRIANGLE 1.07 1.01 109
AIRFOIL3 1.20 1.00 58
Pwr 1.06 1.05 4927
Boby 1.14 1.02 2989
WAVE 1.16 1.06 498

Table 4: Improvement in relative cut size with increasing number of trials.

Mesh Spectral | Coordinate | Default
Bisection | Geometric

TAPIR 1278 1387 1239
AIRFOIL2 2826 3271 2709
TRIANGLE 2989 2907 2912
AIRFOIL3 4893 6131 4822
Pwr 13495 14220 13769
Bobpy 12077 22497 19905
WAVE 143015 162833 145155

Table 5: Cut size for 128-way partitions.

Mesh Minimum | Sparspak | Spectral | Coordinate Default Partial
Degree Bisection | Geometric | Geometric
TAPIR 7786 15402 12214 12282 10314 10094
AIRFOIL2 103207 146894 102248 124075 96901 103163
TRIANGLE | 130587 128995 127785 122539 123560 130106
AIRFOIL3 409392 657687 418840 472222 389232 405918
Pwt 1424987 | 1631592 | 1441153 1545975 1503498 1576271
Table 6: Nested dissection: Fill.
Mesh Minimum | Sparspak | Spectral | Coordinate Default Partial
Degree Bisection | Geometric | Geometric
TAPIR 66 103 82 83 66 68
AIRFOIL2 319 415 189 287 192 201
TRIANGLE 383 269 233 223 226 231
AIRFOIL3 526 837 346 440 321 329
Pwt 960 822 618 713 651 668

16

Table 7: Nested dissection: Height.




The data in Table 3 suggest that 30 random trials are usually enough to get close to the best separator
that the geometric method will find. Table 4 and Figure 8 explore this in more detail. For each mesh,
we ran 6000 random trials. The table reports the smallest cut seen in the first 10 trials, the smallest cut
seen in the first 100 trials, and the number of the trial in which the smallest cut of all was first seen (“last
improvement”). The cut sizes are normalized so that the smallest geometric cut seen for each mesh had
size 1. Figure 8 plots the smallest cut size against trial number for two of the meshes. (Note the different
scales in the two plots.) The geometric algorithm’s difficulty with PwT, the thin shell in 3D, is evident
here: though the improvement between 10 and 6000 trials is only 6%, small improvements continue to
occur almost to the very end. On the other hand, most of the meshes “settle down” within at most a few
hundred trials, and all of them are within 6% of the 6000-trial minimum after 100 trials.

Table 5 shows the total number of edges cut by using the three algorithms recursively to split the
mesh into 128 pieces. For the geometric algorithm, we used the default of 30 random trials. It is striking
that, for most of the problems, the cuts from the various methods differ much less in quality for 128-way
than for 2-way partitions. The geometric and spectral algorithms give extremely similar sizes for all but
the Bopy mesh (for which we don’t have an explanation of the difference).

Tables 6 and 7 illustrate “geometric nested dissection,”

which uses balanced 2-way geometric parti-
tioning recursively to order a symmetric, positive definite matrix for Cholesky factorization. We tabulate
both the fill, which measures the amount of storage needed for the Cholesky factor, and the height in
vertices of the elimination tree, which is the number of parallel elimination steps to compute the factor
with an unlimited number of processors. “Default geometric” uses the geometric algorithm to partition
the graph all the way down to fragments of 3 vertices or less; “partial geometric” uses the geometric
algorithm down to fragments of 100 vertices and then uses minimum degree on the fragments. We also
tabulate fill and height for Sparspak’s nested dissection routine [19], for Matlab’s minimum degree rou-
tine [22], and for nested dissection with separators from spectral partitioning as described by Pothen et
al. [38]. Sparspak’s nested dissection routine uses a fast but fairly simple partitioning algorithm, which
generally does not perform as well as the newer methods for either height or fill. For most of the large
geometric problems there is little to choose between minimum degree and nested dissection in terms of
fill, but nested dissection with the newer partitioners usually gives better height than minimum degree.
Among the various spectral and geometric partitioners there is no clear winner for either height or fill.

5 Conclusions

We have described a geometric partitioning algorithm that is fairly simple to implement and seems to give
excellent results on meshes from graded finite-element discretizations of 2- and 3-space. Qur reference
implementation is in Matlab, which makes experimenting with different versions of the algorithm quite
easy. We have also implemented versions of the geometric partitioner in C and Fortran.

A chief application of graph partitioning is to distribute a computational mesh across a distributed-
memory parallel machine. Can the partition itself can be found in parallel? This is challenging because
most partitioners make heavy use of the edges of the graph, and therefore require a lot of communication
unless most adjacent vertices share the same processor—that is, unless a good partition is already known.
We expect the geometric partitioner to be reasonably eflicient in parallel, because almost none of the
data manipulation involves the edges. (Coordinate bisection shares this desirable property, as Heath and
Raghavan’s parallel implementation shows [24].) We have implemented parallel versions of the geometric
partitioner in NESL [6] and Connection Machine Fortran.
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An open problem is how best to handle such 2%—dimensional meshes as our example PwT. One
possibility is to combine the geometric and spectral partitioning methods, as recently suggested by Chan,

Gilbert, and Teng [7].

Appendix: Obtaining the Codes

A slightly simplified version of the Matlab geometric separator code is given below. The complete version
of the Mesh Partitioning Toolbox also contains Matlab implementations of spectral bisection [37] and
geometric spectral bisection [7]. It includes both edge and vertex separators, recursive bipartition, nested
dissection ordering, visualizations and demos, and some sample meshes. Table 8 lists the main routines
in the toolbox. The complete toolbox is available by anonymous {tp from machine ftp.parc.xerox.com
as file /pub/gilbert/meshpart.uu.
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Table 8: Mesh Partitioning Toolbox.

Partitioning methods.

geopart
specpart
coordpart
gspart

Multiway partitions.
dice
geodice
specdice
gsdice

Vertex separators
vtxsep
geosep
specsep

Nested dissection.
ndperm
geond
specnd
gsnd
analyze

Meshes and graph generators.

meshes.mat
gridb
grid7
grid9
gridt
grid3d
grid3dt
badmesh

Visualization and graphics.

Geometric.

Spectral.

Coordinate bisection.
Geometric spectral.

Use any 2-way partitioner to get a multiway partition.
Recursive geometric partitioning.

Recursive spectral partitioning.

Recursive geometric spectral partitioning.

Convert a 2-way partition to a vertex separator.
Vertex separator from geometric partitioning.
Vertex separator from spectral partitioning.

Use any 2-way partitioner for nested dissection.
Geometric nested dissection ordering.

Spectral nested dissection ordering.

Geometric spectral nested dissection ordering.
Predict fill, opcount, etc. for an elimination ordering.

Three sample meshes with coordinates.
2D square 5-point mesh.

2D square 7-point mesh.

2D square 9-point mesh.

2D triangular mesh.

3D cubical mesh.

3D cubical simplicial mesh.

A mesh that has no good straight-line cut.

gplotpart Draw a 2-way partition.

gplotmap Draw a multiway partition.

highlight Draw a mesh with some vertices highlighted.

gplotg Draw a 2D or 3D mesh (replaces Matlab’s gplot).

etreeplot Draw an elimination tree (replaces Matlab’s etreeplot).
Utilities.

components Connected components of a graph.

cutsize Find or count edges cut by a partition.

other Other side of a partition, or change representations.

intersection Intersection of two sets.

union Union of two sets.

ranks Replace matrix elements by their ranks.

fiedler Fiedler vector of a graph.

laplacian Laplacian matrix of a graph.
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function [partil,part2] = geopart(4,xy,ntries)

% GEOPART : Geometric partition of a finite element mesh.

A

% [parti,part2] = geopart(A,xy,ntries) returns a vertex partition of

% the mesh whose structure is A and whose coordinates are the rows of xy.

% ntries (optional, default 30) is the number of separating circles to try.

[npoints,dim] = size(xy);
if nargin < 3, ntries = 30; end;

% The "ntries" tries will include "nouter'" centerpoint computations,
% each with "ninner'" hyperplanes;

% and also "nlines" cut planes in the dim-dimensional mesh space.

% The following division is ad hoc but seems about right.

nlines = floor((ntries/2) ~ (dim/(dim+1)));

nouter = ceil(log(ntries-nlines+1)/log(20));

ninner = floor((ntries-nlines) / nouter);

% Size of sample for approximate centerpoint computation.
csample = min(npoints, (dim+3)°4);

% Scale points to have mean zero and max coordinate magnitude 1.
Xy = xy - ones(npoints,1)#*mean(xy);
xy = xy / max(max(abs(xy)));

% Project points stereographically up to the sphere.
xyz = stereoup(xy);

circlequality = Inf;
for i = 1l:nouter
cpt = centerpoint(xyz,csample);
xyzmap = conmap(cpt,xyz);
[greatcircle,gcquality] = sepcircle(A,xyzmap,ninner);
if gcquality < circlequality
circlequality = gcquality;
bestcircle = greatcircle;
bestcpt = cpt;
end;
end;

% Also try separating with a straight line in mesh space.
[bestline,linequality] = sepline(A,xy,nlines);

if linequality <= circlequality
[partl,part2] = partition(xy,bestline);
else
[partl,part2] = partition(conmap(bestcpt,xyz),bestcircle);

end
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function xyz = stereoup(xy)
% STEREOUP : Stereographic projection from plane to sphere.

% xyz = stereoup(xy):

% Project points xy stereographically from the dim-1 dimensional space
% onto the unit sphere in dim dimensions.

% The number of dimensions of the mesh is the number of columns of xy.
% This is the inverse of stereodown.

[n,dim] = size(xy);
dim = dim+1; % dim is the number of dimensions of the sphere.

edim = [zeros(n,dim-1) ones(n,1)];
normsquared = [(xy."2) ones(n,1)] * ones(dim,dim);

% Each row of "edim" is the dim-dimensional unit vector [0 O ... 0 1].
% "normsquared" is the square of the norm of (xy - edim), if we think
% of xy as embedded in dim dimensions.

% Thus xyz = edim + 2*(xy - edim) ./ normsquared.

xyz = edim + 2 * [xy -ones(m,1)] ./ normsquared;

function xy = stereodown(xyz)

% STEREODOWN : Stereographic projection from sphere to plane.

h

% xy = stereodown(xyz):

% Project points xyz stereographically from the unit sphere in dim dimensions
% to the dim-1 dimensional space.

% The number of dimensions of the mesh is the number of columns of xyz minus 1.
% This is the inverse of stereoup.

[n,dim] = size(xyz); % dim is the number of dimensions of the sphere.

xy = xyz(:,1:dim-1) ./ ((ones(n,1)-xyz(:,dim)) * ones(1,dim-1));
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function ¢ = centerpoint(xyz,n)

% CENTERPOINT : Approximate centerpoint in any number of dimensions.

h

% ¢ = centerpoint(xyz,n) uses repeated Radon reduction to compute

% an approx centerpoint for the points in xyz, using a sample of size n.

% Determine sample size n, and round it to be congruent to 1 mod d+1.
[npoints,d] = size(xyz);

n = min(n,npoints);

n = (d+1) * floor((n-1)/(d+1)) + 1;

% Sample points without replacement.
xyzsize = ceil(n*(1+1/(d+1)));

xyzs = zeros(xyzsize,d);

sample = randperm(npoints);

sample = sample(1:n);

xyzs(1l:n,:) = xyz(sample,:);

% Perform Radon reduction according to a full d+2-ary tree.
queuehead = 1;
queuetail = n;
while queuehead < queuetail
queuetail = queuetail+l;
xyzs(queuetail,:) = radon(xyzs(queuehead:queuehead+d+1,:));
queuehead = queuehead+d+2;
end;

¢ = xyzs(queuetail,:);

function r = radon(xyz)
% RADON : Radon point of d+2 points in d dimensiomns.

h
% r = radon(xyz);
% Each row of xyz is the coordinates of a point.

[dplus2, d] = size(xyz);

% Express zero as a homogeneous linear combination of the input points.
nullvec = null([ones(d+2,1) xyz]’);
nullvec = nullvec(:,1);

% The positive coefficients identify the Radon point.

positives = find(nullvec>0);
r = nullvec(positives)’ * xyz(positives,:) / sum(nullvec(positives));
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function [xyzmap,xymap] = conmap(c,xyz)

A

CONMAP : Conformal map for geometric partitioning.

[xyzmap,xymap] = conmap(c,xyz):

Input is points xyz on a unit sphere in d-space

(one point per row of matrix xyz),

and a point ¢ in d-space represented as a row vector.

We compute the following conformal mapping:
First reflect the sphere so that c¢c is on the last axis.
Second stereographically map the xyz points onto the d-1 - space.
Third scale the xy points so that ¢ stretches to the origin.
Fourth stereog’y map the xy points back to the sphere.

The first output argument is the new points on the sphere in d-space;
the second output argument is the new points in the d-1 - space.

Compute the reflection and stretch.

[Q,r] = reflector(c);
alpha = sqrt((1+r)/(1-r));

A

Reflect.

xyzref = xyz * Q;
xyref = stereodown(xyzref);

A

Stretch.

xymap = xyref / alpha;

xyzmap = stereoup(xymap);

function [Q,r] = reflector(c)

A
A
A
A
A
A

d
p

REFLECTOR : Orthogonal transformation to put point on last axis.

[Q,r] = reflector(c):

Given a point c¢ in d-space (as a row vector),

return an orthogonal Q such that c*Q is on the last axis,
and has magnitude r. Q is a Householder reflection.

= length(c);
= d:-1:1;

[Q,r] = qr(c(p)’);

Q

r

= Q(p,p);
=r(1);
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function [gc,gcquality] = sepcircle(A,xyz,ntries)
% SEPCIRCLE : Good great circle for geometric partitioning.

% [gc,gequality] = sepcircle(A,xyz,ntries)

% Generate a great circle on the unit sphere in d dimensions,

% trying to find one that gives a good edge separator of the graph A.

% "xyz" is the input points, conformally mapped on the unit sphere

% in d-space so that the approximate centerpoint is at the origin.
% We return the best of ntries attempts.

% The circle is returned only as a direction, a d-vector normal to its plane.
% The second output is the partition quality as measured by sepquality.

[npoints,d] = size(xyz);

% For inertial weighting, we weight the randomly chosen great circles
% according to a power (say 2) of the inertial matrix of the points.

M = (xyz’ * xyz) ~ 2;

% Now choose all ntries random great circles.

% Each circle is represented by a vector normal to its plane.

% Normally distributed points give vectors with uniformly distributed
% directions, which we then weight by the matrix M from above.

vv = randn(ntries,d) * M;

quality = Inf * ones(ntries,1);
for i =1 : size(vv,1)
v =vv(i,:);
if norm(v) "= 0
quality(i) = sepquality(v,4,xyz);
end;
end;

[gcquality,i] = min(quality);
gec = vv(i,:)’;
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function [bestline,linequality] = sepline(A,xy,ntries)
% SEPLINE : Good separating line (or plane) for geometric partitioning.

% [bestline,linequality] = sepline(4,xy,ntries)

% Generate cutting planes in the d-dimensional mesh space,

% trying to find one that gives a good edge separator of the graph A.

% "xy" is the input points, in the mesh space (not conformally mapped).
% "ntries" is the number of planes to try.

% We generate the planes at random, weighted toward the first
% singular vector of the matrix of coordinates. The weighting
% becomes weaker as the number of tries goes up.

% "bestline'" is returned as a vector normal to the best line/plane.
% "linequality" is the quality of its partition as measured by '"sequality".

[npoints,d] = size(xy);
[U,s,V] = svd(xy,0);

if ntries ==
% With only one try, use the singular vector.
vv = V(:,1)7;
else
% "exponent" determines the weighting.
% This formula is ad hoc, but seems pretty good.
exponent = 2%(d+1)/(ntries-1);
s = diag(S). exponent;
W = (V * diag(s) * V’);
vv = randn(ntries,d) * W;
rownorms = sqrt(sum((vv.*vv)’));
vv = diag(1l./rownorms) * vv;
end;

quality = Inf * ones(ntries,1);

for i = 1 : ntries
v =vv(i,:);
quality(i) = sepquality(v,A,xy);
end;

end;

[linequality,i] = min(quality);
bestline = vv(i,:)’;

25



function cutsize = sepquality(v,A,xyz)

% SEPQUALITY : Separator quality.

h

% cutsize = sepquality(v,A,xyz)

% Return the number of edges crossing a partition of the vertices of A,
% at positions xyz, by the plane described by v.

[a,b] = partition(xyz,v);
if min(length(a),length(b))
cutsize = nnz(A(a,b));
else
cutsize = 0;
end

function [a,b] = partition(xyz,v)
% PARTITION : Partition points by a plane.

% [a,b] = partition(xyz,v):

% Each row of xyz is an input point in d-space.

% Input v is a vector, giving a direction normal to the partitioning plane.
% The output is two vectors of integers,

% the indices of the points on each side of the plane.

% Points on the plane are assigned to balance the cut.

[n,d] = size(xyz);

v = v(:); % Make v a column vector

dotprod = xyz * v;
split = median(dotprod);

a = find(dotprod < split);
b = find(dotprod > split);
¢ = find(dotprod == split);

nc = length(c);
if nc
na = length(a);
nca = max([ceil(n/2)-na, 0]);
nca = min(nca,nc);
if nca > 0
a = [a; c(1:nca)l;
end;
if nca < nc
b = [b; c(nca+il:nc)];

end;
end;
a = a’;
b =b’;
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function [sep,parta,partb] = vtxsep(A,a,b)
% VTXSEP : Convert an edge separator (or node partition) to a vertex separator.

% sep = vtxsep(4,a,b):

% A is a symmetric 0-1 matrix representing an undirected graph.

% a and b partition the vertices of A.

% This function returns a vertex separator sep of minimum size

% such that a-sep and b-sep are in different components of A-sep.

% Optional outputs: [sep,parta,partb], where sep is as above
% and parta = a - sep, partb = b - sep.

% We use dmperm to find a maximum matching on the bipartite subgraph

% of A induced by the edges joining a to b, and then use the matching
% to construct a minimum vertex cover of that subgraph, which is the

% desired vertex separator.

A = spones(4);
aborder = a(find(max(A(b,a)))); % points of a adjacent to b
bborder = b(find(max(A(a,b)))); % points of b adjacent to a

if length(aborder) ==

% The parts are disconnected, so the separator is empty.
sepa = [];
sepb = [];

else

% Use dmperm to find a matching of the birpartite graph.

% The separator is points of a in the horizontal subgraph,
% plus points of b not in the horizontal subgraph.
[p,q,r,s] = dmperm(A(aborder,bborder));

sepa = aborder(p(r(1):(r(2)-1)));
bborder(q(s(2):(s(length(s))-1)));

sepb
end;
sep = [sepa sepb];

t = zeros(1,length(4));

t(a) = ones(size(a));
t(sepa) = zeros(size(sepa));
parta = find(t);

t = zeros(1,length(4));

t(b) = ones(size(b));
t(sepb) = zeros(size(sepb));
partb = find(t);
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