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Abstract

Graphs that arise from the finite element or finite difference methods often include geometric information such
as the coordinates of the nodes of the graph. The geometric separator algorithm of Miller, Teng, Thurston, and
Vavasis uses some of the available geometric information to find small node separators of graphs. The algorithm
utilizes a random sampling technique based on the uniform distribution to find a good separator. We show that
sampling from an elliptic distribution based on the inertia matrix of the graph can significantly improve the
quality of the separator. More generally, given a cost function f on the unit d-sphere U, we can define an elliptic
distribution based on the second moments of f. The expectation of f with respect to the elliptic distribution is
less than or equal to the expectation with respect to the uniform distribution, with equality only in degenerate
cases. We also demonstrate experimentally that the benefit gained by the use of the additional geometric
information is significant. Some previous algorithms have used the moments of inertia heuristically, and suffer
from extremely poor worst case performance. This is the first result, to our knowledge, that incorporates the
moments of inertia into a provably good strategy.

1. Introduction

Many problems in computational science and engineering are based on unstructured
meshes of points in two or three dimensions. The meshes can be quite large, often
containing millions of points. Typically, the size of the mesh is limited by the size of the
machine available to solve the problem, even though, in many problems, the accuracy of
the solution is related to the size of the mesh. As a resuit, methods for soiving problems
on large meshes are becoming increasingly important.
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One method is to partition the mesh and assign the pieces to separate processors of a
parallel machine. For maximum efficiency, each processor should be responsible for
pieces of roughly the same size, and communication between pieces should be minimized.
Mesh partitioning is the process of decomposing a mesh into two or more pieces of
roughly equal size. A mesh consists of nodes (vertices) and undirected edges connecting

tha nadag Tn gnme rocng additianal infarimmatinm in tha farima af tha ganmatrine anardinatoag
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of the vertices mav also be available. Meshes are snecial cases of oranhs. and mes

ol the vertices may also be available. Meshes are special cases ot graphs, and mesh

partitioning is a special case of the more general problem of graph partitioning.

The graph partitioning problem can be defined as follows. Given a graph G = (V, E)
where V is the set of vertices of G and E is the set of edges of G, find a set partition 4 U
B = TV such that the size of 4 is approximately equal to that of B and the number of edges
between 4 and B is small. The set of edges between 4 and B is known as an edge

separator. A collection of vertices whose removal induces a partition of the graph is

g
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In this paper, we shall be concerned with vertex separators, which are formalized in the
following definition.
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an f(n)-senarator that 8-enlite if [l < f(1) and the vertices of (G—( can he nartitioned into
an f(n)-separator that 8-splits if |C] = f(») and the vertices of G—C can be partitioned into
two sets 4 and B such that there are no edges from A to B, |4|, |B| = dn, where f is a

function and 0 = & = 1.

Not every graph has a small separator; for example, consider the complete graph on n
points. A significant amount of research has gone towards answering the question of
which families of graphs have small separators
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improved an earlier one by Ungar [37]. Some extensions of their work have been made [5,
3, 29} Gl]b t Hutchinson, and Tarjan showed that all graphs with genus bounded

Graph partitioning is the basis for a number of techniques for solving problems involv-
ing large graphs. For example: solution of a finite e]ement problcm on a distributed
memory parallel proccssor equlres partmonmcr the Urap 51gn rougmy equal num-
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Many different approaches to graph partltlonmg have been developed. Graph partition-
ing algorithms can be classified as being either: combinatorial or geometric. A combina-
torial partitioning algorithm only makes use of the graph connectivity. Examples of
combinatorial partitioning algorithms inciude: iterative improvement [23, 20], simulated
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annealing [32, 38], spectral partitioning [7, 19, 21, 34, 35], the greedy method [9], and
multicommodity flow [25]. Geometric approaches to graph partitioning make use of the
spatial coordinates of the vertices of the graph. Examples of geometric partitioning al-
gorithms include: recursive coordinate bisection [18, 35, 38], inertia-based slicing algo-

rithms [9], and the sphere separator algorithm [30, 31}, However, all of the above ap-
proaches, excluding the multicommodity flow algorithm of Leighton and Rao [25] and the
sphere separator algorithm of Miller, Teng, Thurston and Vavasis [30], fail to provide any
performance guarantees.

In this paper, we explore an extension to the sphere separator algorithm of Miller, Teng,
Thurston, and Vavasis [30]. In particular, we show that the moments of inertia of the
population of graph vertices can be used to improve a random sampling technique em-
ployed in the algorithm. Our improved method has a provably good bound on well-shaped
meshes and geometric graphs.

Some previous graph partitioning algorithms have used the moments of inertia heuris-

tically, and suffer from extremely poor worst case performance. In contrast, we present a
technique that takes advantage of the moments of inertia, while avoiding the problems that
can lead to poor performance. We believe that this is the first result to show how moments
of inertia can be incorporated into a provably good strategy. While we apply moments of
inertia to the problem of graph partitioning, the technique is generalizable to other prob-
lems.

This paper is organized as follows. First, we present an overview of geometric graph
partitioning and a brief, intuitive explanation of the original sphere separator algorithm.
Next, we present an abstract version of graph partitioning and state two related optimi-
zation problems. We then prove that the expected cost of sampling from an elliptic
distribution based on the moments of inertia is less than that from a uniform distribution;
this is first proved in one dimension, and then extended to higher dimensions. Then, we
show how this result can be incorporated into the sphere separator algorithm. Finally, we
present experimental resuits that demonstrate that dramatic improvement that can resuit
from making use of the moments of inertia to partition graphs.

2. Geometric partitioning

Geometric partitioning is only applicable to the class of graphs for which geometric
information such as the coordinates of the vertices is known. Most of the geometric
partitioning algorithms are heuristic in the sense that no bounds on performance have
been proved. The sphere separator algorithm is distinct in that bounds on both the ex-
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2.1. Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordinate bisection (RCB) [35,
38]. In the RCB algorithm, the vertices of the graph are projected onto one of the
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coordinate axes, and the vertex set is partitioned around a hyperplane through the median
of the projected coordinates. Each resulting subgraph is then partitioned along a different
coordinate axis until the desired number of subgraphs is obtained.

because of the simplicity of the algorithm, RCB is very quick and cheap, but the
1 vary maumuuau_y, ut;pt:uuiug &)
the grapt graph that is “+”-shaped.
( smallest) seoarato c0'151sts of the vertices lying along a diagonal cut through th center
of the graph. RCB, however, will find the largest possible separators, in this case, planar

cuts through the centers of the horizontal and vertical components of the graph.

2.2, Inertia-based slicing
Williams [38] noted that RCB had poor worst case performance, and suggested that it
could be improved by slicing orthogonal to the principal axes of inertia, rather than
orthogonal to the coordinate axes. Farhat and Lesoinne implemented and evaluated this
heuristic for partitioning [9]

In three dimensions, let v = (v,, v,, v,)' be the coordinates of vertex v in R°. Then the
inertia matrix / of the vertices of a graph with respect to the origin is given by
/I,‘(X ]X‘v' IX' \
I= ‘I_vx ]yy ]_vz ]
\I:x I;v I:' /
where,
PN 2.2 7 202 7 N 2
Iy = 2V T Vo Ly 2 Ve TV = 2,V TV
veV vev veEV
and, for i, j € {x, y, z}, i # J,
T =7 = _\ .
ll:/ - lji - L VIV
vev
The eigenvectors of the inertia matrix are tne pr1nc1p al axes of the vertex distribution
The eigenvalues of the inertia matrix are the principal raments of inertia. Together, the
principal axes and principal moments of ma define the mertia ellipse; the axes of the
ellipse are the principal axes of inertia, and the axis lengths are the square roots of the

corresponding principal moments. Physically, the size of the prlncipal moments reflect
how the mass of the system is distributed with respect to the corresponding axis—the
larger the principal moment, the more mass is concentrated at a distance from the axis.

Let 7,, 15, and I; denote the principal axes of inertia corresponding to the principal

moments o; = «, = «5. Farhat and Lesoinne projected the vertex coordinates onto /,, the
axis about WhiCh the mass of the system is most tightly clustered, and partitioned using a
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planar cut through the median. This method typically yielded a good initial separator, but
did not perform as well recursively on their test mesh—a regularly structured “T”-shape.

Farhat and Lesoinne did not present any results on the theoretical properties of the
inertia slicing method. In fact, there are pathological cases in which the inertia method can
be shown to vield a very poor separator. Consider, for example, a “+"-shape in which the
horizontal bar is very wide and sparse, while the vertical bar is relatively narrow but
dense. I, will be parallel to the horizontal axis, but a cut perpendicular to this axis through
the median will yield a very large separator. A diagonal cut will yield the smallest

separator, but will not be generated with this method.

2.3. The sphere separator algorithm

The geometric partitioning algorithms outlined above both employ heuristics for finding
separators, and utilize cuts defined by hyperplanes through the graph. Pathological cases
were described for which the heuristics would yield extremely poor performance. The
sphere separator algorithm is unique in that it is not heuristic; proofs exist for bounds on
expected performance. Additionally, it can be shown that planar cuts are not sufficiently
robust to yield good separators for ail types of graphs; the sphere separator algorithm uses
spherical cuts, which can be shown not to suffer from the inadequacies of planar cuts [36].

This subsection presents an intuitive overview of the sphere separator algorithm. The
full algorithm can be found in [17, 30]; the relevant theoretical background is contained
in [3, 8, 17, 36]. The following definition is needed.

Definition 2.1. (Center Points) Let P be a finite set of points in RY. Foreach 0 < & < 1,
a point ¢ € R is a 3-center point of P if every hyperplane containing ¢ 3-splits P.
The basic algorithm is stated in Figure 1. In the basic algorithm, stereo-up is the

)
]G C

Figure 1. The basic sphere separator algorithm.
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standard stereographic projection mapping which can be described as follows. Assume the
graph is embedded in R coordinate plane, and let U, be the sphere in R?"! centered at
the origin. For each vertex v in the graph, construct the line passing through v and the
north pole of U,. The line intersects U, at g, which is the stereographic projection of v.

Essentially, the algorithm operates by finding a conformal mapping of the set of vertices
V of the graph in R? onto U, such that origin is a center point, and the “mass” of V is
spread out more-or-less evenly over the surface of U, in the sense that every hyperplane
through the origin of U, partitions ¥ into two sets of roughly equal size. Since any
hyperplane through the origin defines a great circle on U, an equivalent statement is that
any great circle of Ud partitions V appropriately. Any great circle therefore defines a

sphere separator S in RY. The vertices of the graph that lie “near” S then comprise a vertex

separaior of G. Because any great circie of U, defines a oalancea separator, the aigorithm
chooses great circles randomly. In Section 7, i he theoretical results of [30].
The only information used in the deter conformal mapping is the

location of an approximate center point of the set of points. Hence, the mapping only
approximately distributes the points evenly across the sphere. This observation is the key
to using moments of inertia. As will be shown in the next section, the moments of inertia
of the point set reveals important information about the distribution of the points on the
sphere, and can be used to guide the selection of a great circle to reduce the size of the
resultant vertex separator.

3. The abstract problem

g In two dlmensmns 7y can be 1suahzed as representlng a sheet of matenal w1th varying
density g. To make the connection to the graph G, consider that g reflects the density of
the vertices in G.

The abstract partitioning problem consists of finding a cut S through -y such that v is
partitioned into two sets of approximately equal size, and the size of the cut is small. The

sphere separator algorithm outlined above, transforms the abstract partitioning problem
into a simpler one. The conformal mapping of v ontc U, in effect spreads vy out, and

are approxunately equal Thus the proble duces to that of finding a great circle GC
such that the integral of g over GC is small.

Two related problems can now be defined.
obiem 3.1. (primal probiem) Given a density function f: U, — R™, find a point u of
f small cost where t of u is f(u).

FRY)
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Problem 3.2. (dual problem) Given a density function f: U, — R, find a great circle C
of U, of small cost, where the cost of C is [ e f(v)ds?"', the integral along the great
circle C.

4. One dimension

To illustrate the method and introduce concepts and notations, we start with one dimen-
sion. That is, assume that we are given a nonnegative real function f: U, — R™, which is
defined on the unit circle. In other words, f(6) is a nonnegative real for an angle 6. The
goal of the primal problem is to find a solution angle 8, such that f(8) is minimal.

This problem can naturally be viewed as a mathematical optimization problem. But, in
some applications, either f is not explicitly given, or the gradient of f is too expensive to
compute. Further, in some cases, such as geometric separators, the average value of f is

reasonably small, and the determination of the exact minimum is unnecessary.

One simple method for finding a solution 8 is to choose an angle randomly from a
uniform distribution. This is essentially the approach taken in the sphere separator algo-
rithm. The expected cost (normalized by multiplying a factor of 2m) of the solution,
denoted by UC(f), is clearly UC(f) = é“ f(8)d6.

Given a random sampling approach, the question naturally arises as to whether infor-
mation exists about the distribution of f that can improve the expectation. In particular, is
there an efficiently computable probability distribution with an expectation less than or

equal to that of the uniform distribution?

4.1. Distribution as an angle updating function

One way to describe some probabilistic distributions in one dimension is to use an angle
updating function. Suppose 8(8) is an angle function. A new distribution defined by 8(8)
can be constructed as follows: choose a uniform random angle 6 and return 8 + 8(8). The
expected cost (again, normalized by a factor of 21) of the new distribution, denoted as

KC(f, ), is then given by KC(f, 8) = [57 f(6 + 8(8))d6.
Lemma 4.1. If 3(0) = 82m) = 0 and for all 0 = 6 < 2w, 6 + 8(0) = 27 then
27
A/(8) = UC(f) — KC(£,8) = [ [£(8 + 5(8))5'()1db.
Proof: We can prove the lemma by Taylor’s expansion and integration by parts. The

following proof is a more intuitive one. Because 8(0) = 8(2w) = O and forall 0 < 6 =
2m, 6 + 3(0) = 2m, by changing of variables, we have
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veg) = [ feas = [ 0 + s(@dce + 5(6)
= [ o + s@dce + 50))

= [ 6+ 8(6))d0 + 5'(0)do]
7 50+ (o] + [ [, 10 + 565 (0)do]

= KC(f,3) + [ f z" (6 + 3(6))3' (6)d0].

4.2. Inertia based distribution by angle updating

Again, suppose f(0) is the cost function on the unit circle. Define
2m
1) = [ s@ds

1 (f) = f z“ £(8) sin® 040 1,(f) = f z“ £(8) cos’ 6d0

The quantities /. and /.., are called the moments of inertia of f with respect to the x and
y axes, respectively. Clearly, for all f, I(f) = I.(f) + I.(f), because sin® 6 + cos® 6 =
1, and the expected cost of the uniform distribution, UC(f), is equal to I(f) = I..(f) +
L.(f).

" Let A = 1 be a constant (independent of 8) to be specified later. We construct a new
distribution based on A. In particular, we define an angle updating function §,(0) as
following:' 8(8) = tan™! [ tan 8] — 6. Geometrically, 8(8) is the angular difference of
the vector (cos 6, A sin 8) and the vector (cos 6, sin 6).

It is easy to check that d(kw/2) = 0 for all k € {0, 1, 2, 3, ...}. So it satisfies the
condition of Lemma 4.1. The equation cos” 8 + A* sin® 6 = 1 defines an ellipse with axes
of lengths 1 and 1 / A, so sampling points uniformly from the unit circle and applying the
angle updating formula is equivalent to sampling points uniformly from the boundary of
the corresponding ellipse.

Theorem 4.2. If N = V[, /I, then the expected cost of the distribution defined by 8, is
equal to 2VI.J,,. Hence, A(3,) = (\/[: — \/};)2, which is positive as long as I, # I,,.

Proof: Let B = 0 + 3(8). We have tan § = tan(6 + d(8)) = \ tan 0. Hence, we have

'For simplicity, we use 8(8) instead of §,(6).
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cos’ B
cos’ B + sin® B/A?

M

cos’ 9 =

By differentiating both side of tan(8 + 3(6)) = A tan 6 (with respect to 0, of course), we
have

1+8'(6) \ 1
cos’(8 + 3(0)) cos’ §

)

Therefore,

cosi(B + d(0
1 +93'(0)= )\—(—4())
cos’ 0

cos’ B

=\
cos’ §

= Ncos’ B + sin® B/A%)
2 _

=)\1f)\ 1sin28

We now calculate the cost discrepancy of this distribution over the uniform distribution.
By Lemma 4.1, we have

A®)
= [771r0) - 6 + 5(0))1a8
= [ 10 + 565’ 0)d0

(Change of variable, B = 6 + 3(0))

= [ e~ ]+8(e))d8

(Using Equation (3))
- [Tye (1L
0 A 2 _

1 - sin’ B

)\2

(Using L S, for0 <x<1)
— X



(Using sin” 6 =< sin® 6 fori = 1)

1 = =1V 5 T
=), f®{ -1 Z T sin’ B |
nL =1\ A"/ 17
_ rz‘" £/O0N /1 __lr< LoN2 1y Zn‘l\ 1
= Jo ]kp)\l )\l_l T A L)sm DJ}GL’)
S L. A IITIEN
=l T, 7X(1,r,\""1_\(1,-"‘(/\__ D)

=L+ 1, — LA — AL,

If X = VI /I, (such that the last quantity is maximized), then A,3,) = (VI,

VI O
,\'\”) N

Theorem 4.2 proves that the use of an angle updating function corresponding to an
ellipse yields an improvement in the expected cost. Moreover, the axes of the ellipse are

>_.

proportional to the principal moments of inertia of the cost distribution. In the next
section, we generalize this result to higher dimensions
5. Two and higher dimensions

In the previous section, we defined the moments of inertia of a cost function defined on
U,. The principal axes and principal moments of the cost function define an ellipse, which
in turn defines an elliptic probability distribution. The expected cost of sampling from the
elliptic distribution is less than or equal to that obtained by sampling from the uniform
distribution. The moments of inertia of a function defined on U/, have an intuitive physical

bttt min Tzt Tand b n AILO A 16 o £ sl nd Amne b mcciler mamarnlicoa
l WCIPITLdUOIL, DUL Jedd 1O d dlIcull prool uldt docs not Cdbll_y gCIlCIdULC
In this section. we consider the nrimal nroblem. startine initiallv in two dimensions. and
In this section, we consider the primal problem, starting mmtially in two dimensions, and
then extending the results to higher dimensions. Rather than using moments of inertia, we

instead use a dual concept—the second moments with respect to the origin. On the unit
sphere in d + 1 dimensions, U, the second moments are related to the moments of inertia
(see Section 6), and the use of the second moments lead to cleaner proofs.

5.1 Two dimensions

To find a Sphe parator for a two-dimensional gr € St ereoglaph call ly pI‘O]eCI the
mntimte AF tha granh At~ 7T it anhore jn D3 ’TL‘A agrnl Af tha waianl swenhlasa o o
points o1 tne grapn Onto U,, tne uit spnere in R’. The goal of the primai prooiem is to
find a noint ¥ € /. that minimizes f{i). the cost of u
ondg a pomt ¥ & U5 that minimmizes f(u), the cost of u
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One simple method for finding u is to repeatedly choose a point randomly from U,
based on a uniform distribution. The expected cost per choice with this distribution is
denoted p(f), and is given by

uh) == [ foyds

TR

where |U,| is the surface area of U,. A point on the unit sphere can be uniquely repre-
sented by three parameters (a, B, <) satisfying o? + B? + y* = 1. For example, in
spherical coordinates, «(8, &) = sin & cos 6, B(8, &) = sin ¢ sin 6, y(6, d) = cos ¢. For
each point w on the unit sphere, let (a(w), B(w), y(w)) be its three coordinates. Define for
1€ 1o, By,

r

wif) === [ fowitw)’da

iyl ¥ wel,

Then, p,(f) is the second moment of f with respect to the i axis. We call the following
matrix the moment matrix of f.

//uotct :u(x[?; /uot'y \
M(f) = | “po Hep Hpy
\/uya ILL"\/B Auyy /

Notice that the inertia matrix of f, I(f), is defined as following:

[Hep + Hyy T Hap T Hay \
[(f) = [ - #[30( Moo + /‘Ly'y - /uB'y J
\ - /u'yzx - /u'yﬁ Moo + IUBB /

Since o + B? + v* = 1 and integration is linear, we have that

M) = paol ) + wpa(f) + 1y (f)-

Lemma 5.1. For all density functions f on U,,

where 7, denotes the d X d identity matrix.

5.2. Elliptic distribution

Uniform sampling of points on U,, the unit circle, is equivalent to sampling angles 8

‘e 1.5 moA_N A P il Alcieitiiti o o Altaiiad o wmialer a noint » ount
unirormiy Irom [U, Z77). An 1aentical distribution 1S O0tdiniCd vy PICRUlg a pUllin g7 utii=
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formly from B,, the unit ball, and if p # 0 normalizing p to unit length, i.e., projecting p
onto U,. If we are so unlucky as to pick p = 0 then we repeat the process until we get a
p # 0.

We define our elliptic distribution, denoted dist(E), with respect to an ellipse or ellip-
soid E of dimension d and unit sphere U, _, via the following random process:

Process 5.2. While p = 0 pick a random point p € £ and if p # 0 return the projection
of p onto U,_;.

As an example consider the ellipse £, defined by
Eab = {(X, )’) | XZ/aZ + yZ/bZ = l}

Clearly, the sample is biased by the shape of the ellipse. The associated probability
density function is given by the following lemma:

Lemma 5.3. The probability density function for dist(£,;) over U, is

1 1
2mab Lz/a2 + yz/bz]

Proof: Let p = (x, y) be a point on U,. Further let L be the distance from 0 through p to
the boundary of E_,, i.e., a scalar L = 0 such that the point L-p = (Lx, Ly) lies on the
boundary of E,,. Thus L satisfies L*x*/a*> + L**/b* = 1. For each small line segment ds
on U, we must determine the area of £, mapped to ds. In the limit as ds goes to zero this
will be a triangle of area (1/2)L*ds. Now the integral over U, will give us the area of the

ellipse, i.e.:

E | = f r'w
abl ™ xeU, 2 §

Thus the probability density is L*/(2|E,,|). Using the fact that |E,,| = mab the Lemma
follows O

We next compute the probability density function for the distribution dist(£,,.) where
E ;. 1s the ellipsoid given by:

Eabc = {(X, Y, Z) | XZ/aZ + yz/bz + 22/C2 = 1}

Lemma 5.4. The probability density function for dist(E,,_.) over U, is, where |B;] is the
volume of B,



31B3labe \xg? + Vb + 2

Proof: Let ds® be a small square patch on U,. As in the proof of Lemma 5.3 we will
determine that part of £, which is projected onto U,. Normalizing this volume will then
give us our probability density function.

Let p = (a, B, ¥) be a point on U, in the patch ds® and L be the distance from from 0
through p to the boundary of £,,_. It follows that L = («*/a® + B*/b* + v*/c*)~ 2. The
preimage of ds® is a pyramid shaped object as ds goes to zero with volume £° / 3 ds’. As

At oral rar TT af tha srmianeanlioa A dAangity Hinetion

lll Lcuuua J J, lllC uut":guu OVer U, Ul UlIc uuuuuuauLcu UCllblty JUurictivil lb

3
L

~

n

\Vd

~

1E e = ,n ds’

—rr 2
v o pEU, 3

Thus, the probability density is L*/(3| E,,./). Using the fact that | E,,.| = (4/3)mabc =

| B3| abc the Lemma follows O
Before we estimate the expectation of dist(E,,.) we will give some inequalities to

simplify the integrals. We will use the following lemma in several of the proofs.

Lemma 5.5. Suppose a, b, a, 3 are nonnegative reals, and « + B =< 1. Then (aa + bB)"
= dfo + b*B.

Proof: We prove it by induction on k. The lemma is clearly true for £ = 1. Now assume
it is true for & — 1, we prove for k.

(ao + bR
= (aa + bB)' (ac + bP)
=@ o+ b B) (ax + HB)

=da+ P
— [d" a(l —a) + P B(1 — B)]

Nt N NI FE el
L« oxp T ouo Pl
k 1
=da+bB—apd ! =N (@a—b)
=d'a+pp
O
Lemma 5.6. Let o2 + B2 + ~2 = 1 then
U L oW T [ T 1 ulivil
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Proof: Here we consider the special case when ¢ = 1. Substituting I — o + B2 for ¥2 and
rearranging terms we get that the LHS equals (1/(1 — (ua? + vB?)))*? where u = (a® —
1)/a* and v = (b* — 1)/b>. Since ua® + vp? < 1 we can expand 1/(1 — (uo?® + vB?) as
Taylor series about zero. Since the constant term in this series is one we can expand the
square root of this series. There are two expansions and we take the positive one, with
1e. We now take the cube of this series. This gives a series of the form

S il + VB

=S+ DV R+ (1 - o - p)
i=0 i=0
= (/1 — w)*? o+ (1/(1 =) B2+ +°
= n3 rvz —+ ]‘73 Q2 + «/2
b Y M ! H

By the way we generated the #s we get the second equality. O
We let Expect(E, f) denote the expected cost (normalized by 3|B;|) when sampling

from the elliptic distribution given by ellipsoid £ and using cost function f. Now the

expectation of the distribution of dist(£,,,., f) is given by the following integral:

r N
Expect(E,,., ) = (3IB3I)J v fp) ———L"dA

where L = (o’/a* + B*/b* + v*/c*)” 2. Combining with Lemma 5.6 we get the following
inequality:

| S s N o s 3 13 , 3 \ 7
Lemma 5.7. Expect(E ., [) = (@foo + blgg + 'y )/abe
If we now minimize the right hand side of Lemima 5.7 we get the following Theorem:

Theorem 5.8. If a = (1/u,,)""”, b = (1/ugp)'”, and ¢ = (1/u,,)""?, then the expected cost

(ele ¥ s

of sampling from the elliptic distribution is,

Expect(E e, f) = 3(/1M,ugg/zw)l‘/3

12

Moreover, by [4] 3(Kaabpgtyy) = = Moo T Hpg T My, We have
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Expect(E ., f) = UC(f),

where UC(f) is the normalized (by a factor 3|B;]) cost when the distribution is uniform.
If we divide both the uniform cost and the elliptic cost by three, then the uniform cost

the arltnmetlc mean of [, Hgp, Hyy, and the elliptic cost is bounded from above by the
; Wo 1

0 of i, Hpgs lyy We S ometric mgsm is minimized
U, is rotated so that the covariance matrix of f is

Y3 Towaltl a 1

arithmetic mean is unchanged.

=
0
[4)°]
)
5
=
b
=
=
(¢}
o~
=
(¢}

5.3. Higher dimensions

The general version of Lemma 5.5 is the following.

Lemma 5.9. Suppose a,, a,,..., dg @, Os,..., 0, aie Nonnegative reals, and oy + +
~ < 1 Than
L(d — 1. 1i1ell

( Kk K k

(a0 + ... tapy) =g+t any

Proof: Prove by induction on & and using the condition o= 1.
k
(ayo, + ...+ agoy)

- k-1
= (ay; + ... +amy) (@ + . F )

= [a/foz1 + ...+ a{,‘}ad]

| I—
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O

In d dimensions, the second moments of f on U, with respect to the coordinate axes are
given by

wlp) === [ st s

iUd_]] v wel,

where i(w) is the ith coordinate of point w on U,_,. Note that E‘f:x i*(w) = 1 for all w on

a—i i

U,_,. The expected cost of sampling from the uniform distribution is given by

Theorem 5.10. If @, = (1/u,)"? (1 = i = d), then the expected cost of the elliptic
distribution

we have

Expect(E;, ) < UC(f)

6. Great circles and duality

The preceding sections have dealt with using the second moments to guide the solution to
the primal problem. For application to geometric separators, we need to deal with the dual
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wn

problem, in which the cost of a given point w (on the unit sphere) is not f(w), but instead
is the sum (integration) of the points on the great circle normal to w (that is, [ c e
f(»)ds“™!). For presentation, we focus on the two dimensional problem.

For a density function f on the unit 2-sphere, let M{f) be the moment matrix (3 X 3
matrix) of f, defined by

(o o Mo\
Moo Hop Moy \

M(f) = | Hpo Hpp Hay
Hyo g Hyy

where

wy == fonionjonda, i.j € {o B, 4}

1]«

1,
Let g/(w) = 1/ T [,ccc f(v)ds denote the dual cost of f, and D(f) = M(g,) be the

moment matrix of the dual cost g, of f. Let u(f) = UC(f) = Jweu, f(w)dA denote the

expected cost from sampling f with the uniform distribution on U,. Let /, denote the d X
d identity matrix.

Tln AT ot o Ve wnlndbng thn s ntmnnend srantriy ~AF +tha ariman 7}
The following lemma relates the moment matrix of the primal to that of the dual, and
is interesting in its own right.

Lemma 6.1. (Primal & Dual) For all density functions f on U,, M(f) + D(f) = p(f)L;.
In the proof Lemma 6.1, we will use the following propositions. These propositions
follows directly from the definitions.

Proposition 6.2. (Linearity) Let f, and f, be two density functions on U,, then M(f, +

f2) = M(f) + M(f,) and D(f, + fr) = D(f) + D(f>)-

Proposm n 6.3. (Primal Rotation) Let f be a density function on U, and R a 3 X 3
P 3 3 £ < - ’e T 1

unitary matrix. Let /# be the resulting density function when applying R to U,, ie,
mapping point (&, B, ¥) to (&, B, Y)R. Then

M(h) = RTM(FR

Mh) = REM(f)R

Proposition 6.4. (Dual Rotation) Let f be a density function on U, and R a 3 X 3 unitary
matrix. Let 4 be the resuiting density function when applying R to U, i.e., mapping point
(@, B, ¥) 10 (@, B, Y)R. Then
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In order to motivate the proof of Lemma 6.1, we first give a proof to the point-density
version of the lemma. The point-density version is the one often used in the practical
application of the moments of inertia. Let P = {p,, p»,..., p,,} be a set of n points of
weights {w,, ws,..., w, }, respectively, on U,. Assume that p, = (x,, v,, z;)". The moment
matrix of P is given by

széM@

X5 XY X

Ta

1
) Yizi
Xz ViEi oz

I
Il S

where (pp]) is the outer-product of the vector p,.

To define the dual moment matrix, we use the duality between great circles and points
on the unit sphere: Each great circle GC can be identified with a pair of points p and
gee on U, that lie on the normal to GC. (See Figure 2). Simply from the definition,

Proposition 6.5. (Duality) For each pair of great circles % and 4’ of U,, % contains pg
(and hence g as well) if and only if 4’ contains p (and hence g.).

Let p = (x, y, z) be a point of density w on U,. By Proposition 6.5, a great circle passes
through p if its normal points are on the great circle normal to p. Hence, the density at p
defines a density function in the dual space: The dual-density of a point is w if it is on the
great circle normal to p; otherwise its dual density is equal to 0. Note that there are infinite
number of points with non-zero dual-density. We need to properly define the dual moment
matrix based on the concepts of calculus. To motivate, we relate a point-density to a
continuous density function. Notice that a point is an object of zero dimension, whereas
the sphere U, is a two dimensional object. The basic idea to make a point-density con-

o

GC

Figure 2. A great circle and its normal points.
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tinuous, in the view of calculus, is to treat a point p as an infinitely small patch d4 of area
ds* and the value of the continuous function in d4 is w/(ds?). Let ¢, be such a continue
function. Then the moment matrix of &, M(d,), is equal to the moment matrix of p,
M(p).

In the dual space, each great circle has dimension one. Based on the same observation
as in tne paragraph above we snould glve a great c1rcle a width ds. The duai-density

2 T ~thar vwarde we iniforedy digirihiitn tha st A 1t -+ +h +
p. 1 Olner woras, we uniiorminy aisirioute tne point acnsity Over ui€ poiiiis on the great
circle normal to it. The term 7 in the denominator is the perimeter of a great circle. We

= (0, 0, 1). The primal moment

~
-
o
@
=3
)
w
~—+
o
o8]
wn
a
»
—
=
oS}
-
e}
=
©
"O
E
=
o
2
=]
w
‘5

Mp) = ‘ 000 |
\0Ow/
The dual-density would be w/(mds) at every point on the great circle (of width ds) on
the xy-plane (that is, normal to (0, 0, 1)), since the great circle normal to each such point

would pass through (0, 0, 1). Let G be the great circle normal to p. The dual moment
matrix is

[
=
E)

—.

Ii
o
=
o

- 2 ~—

N—

—_
—
Q
=
0
—
—-
Q
=
o
=~

Since R also maps the great c1rclc of(O 0, 1) to that of (a, B, ), we have that the dual
moment matrix is, by Proposition 6.4, R” D(m)R = wl; — w(«, B, v («, B, v). Lemma
6.1 is again true here.

By the linearity of the moment matrix (Proposition 6.2), we have,
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mmzéﬁw

n

2 (wly — wll(p,)

i=1

WL, + M(P),

where W = >"_ w, Therefore, we have proved the following version of Lemma 6.1 for
a collection of point densities on U,.

Lemma 6.6. (point primal & dual) Let P = {p,, p,,..., p,} be a set of n points of weights
{wi, wa,..., w,}, respectively, on U,. Then M(P) + D(P) = W5, where W = Z_,| w,

Lemma 6.6 also has another interesting interpretation, that is, Z(P) is exactly the same
as the inertia matrix of P. (See Section 2.2 for the definition of the inertia matrix.)

To prove Lemma 6.1, we discretize U, into a collection of infinitely small patches and
use summation to approximate the integration. We then reduce the continuous case to the
point-density case. Lemma 6.1 shows that the dual-moment matrix is the same as the
Inertia matrix defined in Section 5.1.

We now have the following lemma, which follows directly from Lemma 6.1.

Lemma 6.7. Let f, and f, be two density functions on U,. If M(f,) = M(f,), then D(f,)

= D(f).
Following from Theorem 5.8 and Lemma 6.1, we obtain a theorem for the Dual Prob-
lem of Section 3.

Theorem 6.8. If
a = (1u = )"
b= (1/(u _/‘BB))IB
¢ = (U = )"
then the expected dual cost for the elliptic distribution is
DECabC = 3[(/'1 - 'Ll(m)(/,t - #Bﬁ)(/l - ,u'yy)]ln’
compared with the expected dual cost for the uniform distribution of

DUC = [(1t = foo) + (1 — pgg) + (w0 — 1)} = 2u.

Therefore, DEC,,. = DUC.

The theorem above can be generalized to higher dimensions.
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Theorem 6.9 If g, = (1/(1 — p,))"", (1 =< i = d), then the expected dual elliptic cost is
DEC, = d[J]%, (u — 1;)]" compared with the expected dual uniform cost of DUC =
[EE{:J (u — ;)] = (d — Du. Therefore, DEC; = DUC.

7. Applications in Geometric Graph Separators

As shown in [30], all well-shaped finite element meshes and some graphs from compu-
tational geometry, such as A-nearest neighbor graphs have a geometric characterization.
We now review this characterization and show how to apply second moments to improve
the sphere separator algorithm.

7.1. Neighborhood systems and their separator

The characterization is based on the notion of a neighborhood system. A d-dimensional
neighborhood system & = {B,..., B,} is a finite collection of balls in R”. Let p, be the
center of B, (1 =i < n)and call P = {p,,..., p,} the centers of &. For each point p € R?,
let the ply of p, denoted by ply,(p), be the number of balls from & that contains p. ¢ is
a k-ply neighborhood system if for all p, ply,(p) = k.

Each (d — 1)-dimensional sphere S in R? partitions ¢ into three subsets: dAS), &x(S),

and &,(S), which are the balls that are in the interior of S, in the exterior of S, and that
intersect S, respectively. The cardinality of &b,(S) is called the intersection number of S,
denoted by /,(S).

Notice that the removal of b(S) splits ¢ into two subsets: bAS) and bg(S), such that
no ball in $AS) intersects any ball in ¢bz(S) and vice versa. In analogy to separators in

graph theory, ¢,(S) can be viewed as a separator of .

Definition 7.1. (Sphere Separators) A (d — 1)-sphere S is an f(n)-separator that d-splits
a neighborhood system & if /,(S) < f(n) and |GAS), [d(S)| = dn, where f is a positive
function and 0 < 8 < 1.

Simply by definition, each f(n)-sphere separator that 8-splits also naturally induces a
vertex separator of the intersection graph. So, we will just focus on the sphere separators
of neighborhood systems. The following theorem is proved in [30]:

Theorem 7.2. (Sphere Separator Theorem) Suppose & = {B,,..., B,} is a k-ply neigh-
borhood system in RY Then there is a (d — I)-sphere S intersecting at most O
(K “n9t 9 balls from ¢ such that both [bAS)| and |b(S)| are at most =d +
1/d+ 2n, where &/S) and ¢&(S) are those balls that are in the interior and in the
exterior of S, respectively.

We now review the construction of [30] to show where the second moments can be
used. To find a small cost sphere separator with balanced splitting ratio, we first map the
neighborhood system ¢ conformally onto the unit sphere U, so that each d-dimensional
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hyperplane containing the center of U, &-splits & = {B,,..., B,} d+1/d+2 <8<
0. This step can be performed in random constant time using a randomized center point
algorithm [3, 36]. Now, each B, is mapped to a patch D, on U, whose boundary C, has the
shape of a (d-1)-sphere. Each great circle 1nduces a balanced sphere separator and the cost
of a great circle is the number of patcne it intersects. Therefor
a great circl i i

ircle
identifv Bi with D

....... Y W e 1 wuill il

o
-
5=

7.2. Exact moment by duality

lie on the normal to GO (See Ficure 2)
11V Ul ulv 1iviiiial wWwouUC, \;)\4\4 1 lsul L}

Define a great belt to be the set of points of U, that lie between a pair of parallel
hyperplanes located symmetrically about the center of U,. The next lemma follows from

the definition. See [8, 36] for a proof.

Lemma 7.3. Suppose & = {B,,..., B,} is a neighborhood system on U,. Then for each 1
=i =n, there Is a great belt R, such that a great circle % intersects B, iff py and g is

’ ore. t
gre . t
sphere U,, for Wthh the densrtv of a point is the number of great belt that cover it. In
other words, each point of each great belt has a unit local density and the global density

2r,
/ “i N\

‘M\\\\\Q\\}'
. Rk
\ /

Figure 3. A ball on the sphere and its dual great belt.
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is the sum of the local densities. Hence we reduce the sphere separator problem to the
primal case of the optimization problem discussed in Section 3. We can first compute the
great belts and use them to find the moment matrix. Then the construction and results of
Section 5 can be applied directly. We refer to this construction as the dual-primal method,
because we first use duality to find great belts and then compute the moment matrix.

7.3. Approximation by dual moments and geometric sampling

A more efficient way of applying second moments is to use the primal-dual method, which
finds the moment matrix using the primal information, rather than great belts, and then
applies the construction of Section 6.

The advantages of this method are twofold: (1) we do not need to compute great belts
and (2) we can use geometric sampling to approximate the moment matrix.

We use the following observation made in [30, 36]. Because & = {B,,..., B, } is a k-ply
neighborhood system on U, then there exists a constant C such that the number of balls
from ¢ whose radius is at least v is bounded from above by Cki~?. Therefore, the radii of
most of the balls are small, so that they can be treated as points, given by their centers.
Formally, the weight of each point should be the diameter of its corresponding ball. Now,
our input becomes a set of points Q = {g, ... ¢,} on U, and weights w, ... w,. The
moment matrix is then M = D7 w,(qq), where (g.47) is the outer product of the vector
g, We can then use geometric sampling to approximate the moment matrix. This leads to
the algorithm in Figure 4. Note that in the algorithm we have set the weights to one.

In Figure 4, stereo-up is the standard stereographic projection. For more detail on other
steps such as finding center points, finding a good conformal map, and finding a vertex
separator from a sphere separator, see [30, 31].

Theorem 7.4. The algorithm above finds a sphere separator whose expected cost is less
than or equal to that found by the algorithm of [30] which returns a random great circle.

Figure 4. The moment-based sphere separator algorithm.
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Table 1. Separator sizes obtained from 7 trials on airfoill, a 2D mesh with 4253 nodes and 12289 edges.

method separator size
Moment 62 60 64 73 64 69
Uniform 114 155 145 133 1 278 1

Table 2. Separator sizes obtained from 7 trials on airfoil2, a 2D mesh with 4720 nodes and 13722 edges.

method separator size
Moment 99 96 94 94 96 103 93
Uniform 178 188 129 190 154 132 211

Table 3. Separator sizes obtained from 7 trials on airfoil3, a 2D mesh with 15606 nodes and 45878 edges.

method separator size
Moment 168 154 176 190 174 174 160
Uniform 174 276 181 191 207 232 219

Table 4. Separator sizes obtained from 7 trials on brack2, a 3D mesh with 62631 nodes and 335240 edges.

method separator size
Moment 752 746 719 712 768 715 770
Uniform 1083 2761 5724 1740 4401 1784 2285

8. Experimental results

We implemented the moment-based method by modifying the existing Mat-lab geometric
partitioning code of Gilbert and Teng [17] to sample sphere separators from an elliptic
distribution based on the second moments. To compare the results of the original and
modified algorithms, implementation was performed by angle updating. Hence, in each
trial, a random angle was selected from the uniform distribution, and the angle was

mw At ~ ~ P anralae Frin a a1l PSS PR, e o sm o A A P T TaTa v
updated to yield an angle from the elliptic distribution. The parameters used were more
aggressive than th redicted by theory

o
g 1
senarator algorithm for well shar)ed meshe in both two and three dimensi
from the uniform distribution.
Tables 1-4 give the sizes of edge-separators found in first seven trials of the sphere
separator algorithm when the moment-based distribution (moment method) and the uni-

form distribution (uniform method) were used, respectively. In all cases, the best separator
was found using the moment-based distribution.



MOMENTS OF INERTIA AND GRAPH SEPARATORS 103

Acknowledgments

We would like to thank John Gilbert, Bruce Hendrickson, and Horst Simon for references
to the work of Nour-Omid.

References

Alon, N., P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In Proceedings of the 22th
Annual ACM Symposium on Theory of Computing, Maryland, May 1990. ACM.

Blelloch, G., A. Feldmann, O. Ghattas, J. Gilbert, G. Miller, D. R. O’Hallaron, E. Schwabe and J. Schewchuk,
S.-H. Teng. (1996). Automated parallel solution of unstructured PDE problems. CACM, invited submission, to

appear.

Clarkson, K., D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center point with iterated
radon points. In Proceedings of 9th ACM Symposium on Computational Geometry, pp. 91-98, San Diego,
May, 1993.

Crawford, G. E. Elementary proof that the arithmetic mean of any number of positive quantities is greater than
the geometric mean. Proc. Edinburgh Math. Soc., 17:2-4, 1899-1900.

Djidjev, H. N. On the problem of partitioning planar graphs. SIAM J Alg. Disc. Math., 3(2):229-240, June 1982.

Donath, W. E. (1988). Logic partitioning. In B. T. Preas and M. J. Lorenzetti, eds., Physical Design Automation
of VLSI Systems, pp. 65-86. Benjamin/Cummings.

Donath, W. E., and A. J. Hoffman. (1972). Algorithms for partitioning of graphs and computer logic based on
eigenvectors of connection matrices. IBM Technical Disclosure Bulletin, 15:938-944.

Eppstein, D., G. L. Miller, and S.-H. Teng. (1993). A deterministic linear time algorithm for geometric separators
and its applications. In Proceedings of 9th ACM Symposium on Computational Geometry, pp. 99-108, San
Diego, May.

Farhat, C., and M. Lesoinne. (1993). Automatic partitioning of unstructured meshes for the parallel solution of
problems in computational mechanics. Int. J. Num. Meth. Eng. 36:745-764.

Farhat, C., and H. Simon. (1993). TOP/DOMDEC—a software tool for mesh partitioning and parallel process-
ing. Technical Report, NASA Ames Research Center.

Frieze, A. M., G. L. Miller, and S.-H. Teng. (1992). Separator based parallel divide and conquer in computational
geometry. In 4th Annual ACM Svmposium on Parallel Algorithms and Architectures, pp 420-430.

Gazit, H. (1986). An improved algorithm for separating a planar graph. Manuscript, Department of Computer
Science, University of Southern California.

Gazit, H., and G. L. Miller. A paraliei aigorithm for finding a separator in planar graphs. In 285t Annual
Svmposium on Foundation of Computation Science, IEEE, 238-248, Los Angeles, October 1987.

George, J. A. (1973). Nested dissection of a regular finite element mesh. SIAM J. Numerical Analysis,
10:345-363.

George, A, and J. W. H. Liu. (1981). Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall.

Gilbert, J. R, J. P Hutchinson, and R. E. Tarjan. (1984). A separation theorem for graphs of bounded genus. J
Algorithms, 5:391-407.

Gilbert, I. R., G. L. Miller, and S.-H. Teng. (1995). Geometric mesh partitioning: Implementation and experi-
ments. In International Conference of Parallel Processing, pp 418-427.

Heath, M., and P. Raghavan. (1994). A cartesian parallel nested dissection algorithm. To appear in S/4AM Journal
on Matrix Analvsis and Applications.

Hendrickson, B., and R. Leland. (1993). Multidimensional spectral load balancing. Technical Report, Sandia
National Laboratories, SAND93-0074.

Hendrickson, B., and R. Leland. (1993). A multileve! algorithm for partitioning graphs. Technical Report
SAND?93-1301, Sandia National Laboratories, Albuquerque, NM.



,_d
<D
X

9]

Hendrickson, B., and R. Leland. (1993) The Chaco user’s guide, Version 1.0. Technical Report SAND93-2339,

andia Natianmal alhAsataes T ey ANINA
Saudm letlU UUldLUllCD, ."\lUl.lk.ll.lCll..lLlC7 INIVL.
ur le:

onai
Jordan, C. (1869). es assemblages de lignes. Journal Reine Angew. Math, 70:185-190.
Kernighan B. W,, and S. Lin. (1970). An efficient heuristic procedure for partitioning graphs. Bell Svs. Tech. J.,
49: 291-307.
Leighton, F. T. (1983). Complexity Issues in VLSI. Foundations of Computing. MIT Press, Cambridge, MA.
Leighton, F. T, and S. Rao. (1988). An approximate max-flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation algorithms. In 29th Annual Svmposium on Foundations of

Computer Science, pp 422-431.

Leiserson, C. E. (1983). Area Efficient VLSI Computation. Foundations of Computing. MIT Press, Cambridge,
MA.
Lipton, R . J. Rose, and R. E. Tarjan. (1979). “Generalized nested dissection”. SIAM J. on Numerical

Azl 2 Q
ﬂ’lull’d . O.
Lipton, R. J., and R. E. Tarjan. (1979). “A separator theorem for planar graphs”. SIAM J. of Appl. Math.,

36(April), 177 189.

Miller, G. L. (1986). Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer
and Svstem Sciences, 32(3)(June), 265-279.

and System Sciences, 32(3)(June), 265-27

Miller, G. L., S.-H. Teng, W. Thurston, and S. A. Vavasis. (1996). “Automatic Mesh Partitioning.” In A. George,
J. Gilbert, and J4 Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms, IMA
Volumes in Mathematics and its Appiications. Springer-Veriag.

Miller, G. L., S.-H. Teng, W. Thurston, and S. A. Vavasis. (1996). Finite element meshes and geometric
separators. SIAM J. Scientific Computing, to appear.

Nour-Omid, B., A. Raefsky, and G. Lyzenga. (1987) Solving finite element equations on concurrent computers.
in A. K. Noor, ed., Parallel Computations and Their Impact on Mechanics, The American Society of Me-
chanical Engmcers, AMD-Vol. 86, 209-228.

Pan, V,, and J. Reif. (1985). Efficient parallel solution of linear systems. In Proceedings of the 17th Annual ACM
Svmposium on Theory of Computing, pages 143-152, Providence, RI, May ACM
then, A., H. D. Simen, and K.-P. Liou. (1990). Partitionin

Po o gna
rothen, A, H. Simeon, and K- Liou. (1970). Fartiticning spa

J. Mat. Anal. Appl., 11(3):430-452.
Simon, H. D. (1991). Partitioning of unstructured problems for parallel processing. Computing Systems in

Engineering 2(2/3):135-148.

Teno S.-H.. (1991) Points, Tnhﬁrpv and Separnfm'v a unlﬁ ed o geometric gppr@gch to grmh pgr{[g‘j@ning. PhD.

Thesis, Carnegie Mellon University, CMU-CS-91-184.
Ungar, P. (1951). A theorem on planar graphs Journal London Math

HP, SN pinia T A cing aleorithms for . mech calerlatione
Williams, R. D. {(1991). Performance of dynamic load balancing ulguuuu 1s for unstructured mesh calculations

%’
o
N
)
)
?T"
o
[oN)
I

Concurrency: Practice and Experience, 3(5):457-481.



