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Graphs that arise from the finite element or finite difference methods often include geometric information such

as the coordinates of the nodes of the graph. The geometric separator algorithm of Miller, Teng, Thurston. and
Vavasls uses some of the available geometric information to find small node separators of graphs. The algorlthm

utilizes a random sampling technique based on the uniform distribution to find a good separator. We show that

sampling from an elhptic distribution based on the inertia matrix of the graph can s[gnlficantly improve the

quality of the separator. More generally, given a cost function f on the umt d-sphere U<,,we can define an elllptic

distribution based on the second moments of ~. The expectation of ~ with respect to the elliptlc distribution is

less than or equal to the expectation with respect to the uniform distribution, with equahty only in degenerate

cases. We also demonstrate experimentally that the benefit gained by the use of the additional geometric

information 1s significant. Some previous algorithms have used the moments of inertia heurlst]cally, and suffer

from extremely poor worst case performance. This is the first result. to our knowledge, that incorporates the

moments of inertia into a provably good strategy.

1. Introduction

Many problems in computational science and engineering are based on unstructured
meshes of points in two or three dimensions. The meshes can be quite large, often
containing millions of points. Typically, the size of the mesh is limited by the size of the
machine available to solve the problem, even though, in many problems, the accuracy of
the solution is related to the size of the mesh. As a result, methods for solving problems

on large meshes are becoming increasingly important.
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Onemethod istopartition themesh andassign the pieces to separate processors ofa
parallel machine. For maximum efficiency, each processor should be responsible for
pieces ofroughly the same size, and communication between pieces should beminimized.
Mesh partitioning is the process of decomposing a mesh into two or more pieces of
roughly equal size. A mesh consists of nodes (vertices) and undirected edges connecting
the nodes. In some cases, additional information in the form of the geometric coordinates
of the vertices may also be available. Meshes are special cases of graphs, and mesh

partitioning is a special case of the more general problem of graph partitioning.
The graph partitioning problem can be defined as follows. Given a graph G = (V, E)

where V is the set of vertices of G and E is the set of edges of G, find a set partition A U
B = P’such that the size of J is approximately equal to that of B and the number of edges
between ~ and B is small. The set of edges between A and B is known as an edge
separator. A collection of vertices whose removal induces a partition of the graph is
known as a vertex separator. The goal of graph partitioning is to find small separators.

In this paper, we shall be concerned with vertex separators, which are formalized in the
following definition.

De$nition 1.1. (Vertex Separators) A subset of vertices C of a graph G with n vertices is
an f(n) -separator that S-splits if ICl < f(n) and the vertices of G–C can be partitioned into
two sets A and B such that there are no edges from A to B, 1A1, IBI s 13n,where f is a
function and O s S s 1.

Not every graph has a small separator; for example, consider the complete graph on n

points. A significant amount of research has gone towards answering the question of
which families of graphs have small separators.

Two of the most well-known families of graphs that have small separators are trees and
planar graphs. Every tree has a single vertex separator that 2/3-splits [22]. Lipton and

Tarjan [28] proved that every planar graph has a i’8n-separator that 2/3-splits. Their result

improved an earlier one by Ungar [37]. Some extensions of their work have been made [5,
12, 13, 29]. Gilbert, Hutchinson, and Tarjan showed that all graphs with genus bounded

by g have an O(\’~)-separator [16], and Alon, Seymour, and Thomas proved that all—
graphs with an excluded minor isomorphic to the h-clique have an 0(k3’’2P’n)-separator

[1].
Graph partitioning is the basis for a number of techniques for solving problems involv-

ing large graphs. For example: solution of a finite element problem on a distributed

memory parallel processor requires partitioning the graph to assign roughly equal num-
bers of nodes to each processor, while minimizing the communication requirements be-
tween processors [2, 9, 32, 35, 36, 38]; efficient node ordering for solving linear systems
is related to finding good partitions [15, 27, 33]; optimizing the physical layout of the
components of a VLSI circuit involves graph partitioning [6, 24, 26].

Many different approaches to graph partitioning have been developed. Graph partition-
ing algorithms can be classified as being either: combinatorial or geometric. A combina-
torial partitioning algorithm only makes use of the graph connectivity. Examples of
combinatorial partitioning algorithms include: iterative improvement [23, 20], simulated
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annealing [32, 38], spectral partitioning [7, 19, 21, 34, 35], the greedy method [9], and
multi commodity flow [25]. Geometric approaches to graph partitioning make use of the

spatial coordinates of the vertices of the graph. Examples of geometric partitioning al-
gorithms include: recursive coordinate bisection [18, 35, 38], inertia-based slicing algo-
rithms [9], and the sphere separator algorithm [30, 31]. However, all of the above ap-
proaches, excluding the multicommodity flow algorithm of Leighton and Rao [25] and the
sphere separator algorithm of Miller, Teng, Thurston and Vavasis [30], fail to provide any
performance guarantees.

In this paper, we explore an extension to the sphere separator algorithm of Miller, Teng,
Thurston, and Vavasis [30]. In particular, we show that the moments of inertia of the
population of graph vertices can be used to improve a random sampling technique em-
ployed in the algorithm. Our improved method has a provably good bound on well-shaped
meshes and geometric graphs.

Some previous graph partitioning algorithms have used the moments of inertia heuris-
tically, and suffer from extremely poor worst case performance. In contrast, we present a
technique that takes advantage of the moments of inertia, while avoiding the problems that
can lead to poor performance. We believe that this is the first result to show how moments
of inertia can be incorporated into a provably good strategy. While we apply moments of
inertia to the problem of graph partitioning, the technique is generalizable to other prob-
lems.

This paper is organized as follows. First, we present an overview of geometric graph
partitioning and a brief, intuitive explanation of the original sphere separator algorithm.
Next, we present an abstract version of graph partitioning and state two related optimi-

zation problems. We then prove that the expected cost of sampling from an elliptic
distribution based on the moments of inertia is less than that from a uniform distribution;
this is first proved in one dimension, and then extended to higher dimensions. Then, we
show how this result can be incorporated into the sphere separator algorithm. Finally, we
present experimental results that demonstrate that dramatic improvement that can result
from making use of the moments of inertia to partition graphs.

2. Geometric partitioning

Geometric partitioning is only applicable to the class of graphs for which geometric
information such as the coordinates of the vertices is known. Most of the geometric

partitioning algorithms are heuristic in the sense that no bounds on performance have
been proved. The sphere separator algorithm is distinct in that bounds on both the ex-
pected running time and the expected quality of the separator can be proved.

2.1. Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordinate bisection (RCB) [35,
38]. In the RCB algorithm, the vertices of the graph are projected onto one of the
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coordinate axes, and the vertex set is partitioned around a hyperplane through the median
of the projected coordinates. Each resulting subgraph is then partitioned along a different
coordinate axis until the desired number of subgraphs is obtained.

Because of the simplicity of the algorithm, RCB is very quick and cheap, but the
quality of the resultant separators can vary dramatically, depending on the embedding of
the graph in Rd. For example, consider a graph that is “+’’-shaped. Clearly, the best
(smallest) separator consists of the vertices lying along a diagonal cut through the center
of the graph. RCB, however, will find the largest possible separators, in this case, planar
cuts through the centers of the horizontal and vertical components of the graph.

2.2. Inertia-based slicing

Williams [38] noted that RCB

could be improved by slicing
had poor worst case performance, and suggested that it
orthogonal to the principal axes of inertia, rather than

orthogonal to the coordinate axes. Farhat and Lesoinne implemented and evaluated this
heuristic for partitioning [9].

In three dimensions, let v = (vX,v,,, v=)’be the coordinates of vertex v in R3. Then the
inertia matrix 1 of the vertices of a graph with respect to the origin is given by

rx,rIxv1X2

[.1I = I,x I;, I,Z

Izx Iiv I,z

where,

The eigenvectors of the inertia matrix are the principal axes of the vertex distribution.
The eigenvalues of the inertia matrix are the principal moments of inertia. Together, the
principal axes and principal moments of inertia define the inertia ellipse; the axes of the
ellipse are the principal axes of inertia, and the axis lengths are the square roots of the
corresponding principal moments. Physically, the size of the principal moments reflect
how the mass of the system is distributed with respect to the corresponding axis—the
larger the principal moment, the more mass is concentrated at a distance from the axis.

Let II, 12, and 13 denote the principal axes of inertia corresponding to the principal
moments u ~ s a~ < us. Farhat and Lesoinne projected the vertex coordinates onto II, the
axis about which the mass of the system is most tightly clustere~ and partitioned using a
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planar cut through the median. This method typically yielded a good initial separator, but
did not perform as well recursively on their test mesh—a regularly structured “T’’-shape.

Farhat and Lesoinne did not present any results on the theoretical properties of the

inertia slicing method. In fact, there are pathological cases in which the inertia method can
be shown to yield a very poor separator. Consider, for example, a “+ “-shape in which the
horizontal bar is very wide and sparse, while the vertical bar is relatively narrow but

dense. 11 will be parallel to the horizontal axis, but a cut perpendicular to this axis through
the median will yield a very large separator. A diagonal cut will yield the smallest

separator, but will not be generated with this method.

2.3. The sphere separator algorithm

The geometric partitioning algorithms outlined above both
separators, and utilize cuts defined by hyperplanes through

employ heuristics for finding
the graph. Pathological cases

were described for which the heuristics would yield extremely poor performance. The

sphere separator algorithm is unique in that it is not heuristic; proofs exist for bounds on
expected performance. Additionally, it can be shown that planar cuts are not sufficiently
robust to yield good separators for all types of graphs; the sphere separator algorithm uses
spherical cuts, which can be shown not to suffer from the inadequacies of planar cuts [36].

This subsection presents an intuitive overview of the sphere separator algorithm. The
fill algorithm can be found in [17, 30]; the relevant theoretical background is contained
in [3, 8, 17, 36]. The following definition is needed.

Definition 2.1. (Center Points) Let I’ be a finite set of points in Rd. For each O <5< 1,
a point c G Rd is a S-center point of P if every hyperplane containing c S-splits P.

The basic algorithm is stated in Figure 1. In the basic algorithm, stereo-up is the

Figure 1. The basic sphere separator algorithm.
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standard stereographic projection mapping which can be described as follows. Assume the

graph is embedded in Rid coordinate plane, and let Ud be the sphere in Rd+ 1 centered at
the origin. For each vertex v in the graph, construct the line passing through v and the
north pole of Ud. The line intersects Ud at q, which is the stereographic projection of v.

Essentially, the algorithm operates by finding a conformal mapping of the set of vertices
V of the graph in R? onto U~ such that origin is a center point, and the “mass” of P’ is

spread out more-or-less evenly over the surface of Ud, in the sense that every hyperplane
through the origin of Ud partitions V into two sets of roughly equal size. Since any
hyperplane through the origin defines a great circle on U~, an equivalent statement is that
any great circle of Ud partitions P’ appropriately. Any great circle therefore defines a

sphere separator S in I@. The vertices of the graph that lie “near” S then comprise a vertex
separator of G. Because any great circle of U~ defines a balanced separator, the algorithm
chooses great circles randomly. In Section 7, we will review the theoretical results of [30].

The only information used in the determination of the conformal mapping is the
location of an approximate center point of the set of points. Hence, the mapping only
approximately distributes the points evenly across the sphere. This observation is the key
to using moments of inertia. As will be shown in the next section, the moments of inertia
of the point set reveals important information about the distribution of the points on the
sphere, and can be used to guide the selection of a great circle to reduce the size of the
resultant vertex separator.

3. The abstract problem

To prove the utility of the moments of inertia, it is useful to abstract away from the
discrete set of points that define a graph G, and instead consider a continuous analog. Let
g: Rd - R+ be a density finction with compact support. Let y represent the support of
g. In two dimensions, y can be visualized as representing a sheet of material with varying
density g. To make the connection to the graph G, consider that g reflects the density of
the vertices in G.

The abstract partitioning problem consists of finding a cut S through y such that y is

partitioned into two sets of approximately equal size, and the size of the cut is small. The
sphere separator algorithm outlined above, transforms the abstract partitioning problem
into a simpler one. The conformal mapping of y onto Ud in effect spreads y out, and
ensures that for any great circle GC, the integrals ofg over the hemispheres defined by GC
are approximately equal. Thus, the problem reduces to that of finding a great circle GC

such that the integral of g over GC is small.
Two related problems can now be defined.

Problem 3.1. (primal problem) Given a density function f: U~ -+ R+, find a point u of
Ud of small cost where the cost of u is f(u).
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Problem 3.2. (dual problem) Given a density function ~: U~ e R+, find a great circle C
of U~ of small cost, where the cost of C is JVGC~(v)d.sd– 1, the integral along the great
circle C.

4. One dimension

To illustrate the method and introduce concepts and notations, we start with one dimen-

sion. That is, assume that we are given a nonnegative real function ~: U1 + R‘, which is
defined on the unit circle. In other words, f(d) is a nonnegative real for an angle f3.The
goal of the primal problem is to find a solution angle f3, such that ~(f3) is minimal.

This problem can naturally be viewed as a mathematical optimization problem. But, in

some applications, either ~ is not explicitly given, or the gradient of ~ is too expensive to
compute. Further, in some cases, such as geometric separators, the average value of ~ is
reasonably small, and the determination of the exact minimum is unnecessary.

One simple method for finding a solution 6 is to choose an angle randomly from a
uniform distribution. This is essentially the approach taken in the sphere separator algo-
rithm. The expected cost (normalized by multiplying a factor of 2T) of the solution,

denoted by UC(j), is clearly UC(f) = Jim f(8)d6.
Given a random sampling approach, the question naturally arises as to whether infor-

mation exists about the distribution of ~ that can improve the expectation. In particular, is
there an efficiently computable probability distribution with an expectation less than or
equal to that of the uniform distribution?

4.1. Distribution as an angle updating function

One way to describe some probabilistic distributions in one dimension is to use an angle
updating function. Suppose S(6) is an angle function. A new distribution defined by 8((3)
can be constructed as follows: choose a uniform random angle 0 and return 6 + S(6). The
expected cost (again, normalized by a factor of 27) of the new distribution, denoted as
KC(~, 8), is then given by lKC(~, 8) = J~T ~($ + 8(0))d9.

Lemma 4.1. If 8(0) = 8(2r) = O and for all O s O s 27r, 6 + 8(6) s 27 then

Af(8) = UC(f) – KC(f, 8) = f:m[f(O + S(0)) 8’(0)]d6.

R-ooj We can prove the lemma by Taylor’s expansion and integration by parts. The

following proof is a more intuitive one. Because 5(0) = S(2T) = O and for all O ~ 0 ~

2m, 0 + 8(0) s 2m, by changing of variables, we have
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Uc(f) = J:” j((l)dl = J:” f($ + s(f3))d(fl+ s(0))
——

J2=f(El + a(()))d(fl + S(6))
o

—
-J 2=f(fl + S(o))[dl+ S’(c)de]

o

= Kc(f, 8) + [J:mf(f) + 8(6)) 8’(6)6W]I
❑

4.2. Inertia based distribution by angle updating

Again, suppose j($) is the cost function on the unit circle. Define

The quantities <,, and {,,, are called the moments of inertia off with respect to the x and
y axes, respectively. Clearly, for all f, I(f) = <,,(f) + [,,,.(f), because sin’ 6 + COS2O =
1, and the expected cost of the uniform distribution, UC(f), is equal to I(f) = lYY(f) +
11,,(f).

Let A a 1 be a constant (independent of 0) to be specified later. We construct a new
distribution based on A. In particular, we define an angle updating fhnction S~(6) as
following: 1 S(6) = tan-1 [h tan 0] – 6. Geometrically, 8(0) is the angular difference of
the vector (COS6, A sin 6) and the vector (COS(3, sin 6).

It is easy to check that 8(kT/2) = O for all k E {O, 1, 2, 3, . ..}. So it satisfies the
condition of Lemma 4.1. The equation COS2fl + A2 sin’ 0 = 1 defines an ellipse with axes
of lengths 1 and 1 / & so sampling points uniformly from the unit circle and applying the
angle updating formula is equivalent to sampling points uniformly from the boundary of
the corresponding ellipse.

Theorem 4.2. If k = ~lV,/[y,, then the expected cost of the distribution defined by 8A is

equal to 2~~,. Hence, “Af(8J = (fi – fi)’, which is positive as long as {,}. # 1,,.

Proof Let (3 = (3 + ~(~). We have tan ~ = tan((l + S(6)) = h tan 6. Hence, we have

‘For simplicity, we use 8(f3) instead of Sh(f3)
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COS2p
COS2$ =

COS2~ + sin2 (3/h2

(1)

By differentiating both side of tan((3 + 8(6)) = h tan O (with respect to 0, of course), we

have

1 + s’(0) 1
“A—. (2)

cos2(0 + s(e)) COS20

Therefore,

1 + S’(6) = h
COS2(6+ 8(0))

COS20

COS2(3
=A—

COS20

= h(cos2 ~ + sin2 ~/A2)

We now calculate the cost discrepancy of this distribution over the uniform distribution.
By Lemma 4.1, we have

J
*T

——
, [f(~) - f(~ + a(o))]do

—— J2=f(fl+ s(0))s’(6)d6
o

(Change of variable, (3 = 6 + 5(6))

(Using Equation (3))

(Using * “ l+~~=lxi,foro<~<l)

I
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(Using sin2’ O s sin’6 for i > 1)

= ~~m.f(p)(1- ~[1+(A2- l)sin’ 13])@

==1,, + 1,, – ~ (1,, + Iv,,+ (h’ – 1)I,J

= 1,, + I,, – I,Jh – MYY

If A = ~l,,/l,Y (such that the last quantity is maximized), then Af(5J = (~ –

~IJ2. •1

Theorem 4.2 proves that the use of an angle updating fi.mction corresponding to an
ellipse yields an improvement in the expected cost. Moreover, the axes of the ellipse are

proportional to the principal moments of inertia of the cost distribution. In the next
section, we generalize this result to higher dimensions.

5. Two and higher dimensions

In the previous section, we defined the moments of inertia of a cost function defined on

Ul. The principal axes and principal moments of the cost function define an ellipse, which
in turn defines an elliptic probability distribution. The expected cost of sampling from the

elliptic distribution is less than or equal to that obtained by sampling from the uniform
distribution. The moments of inertia of a function defined on Ul have an intuitive physical
interpretation, but lead to a difficult proof that does not easi Iy generalize.

In this section, we consider the primal problem, starting initially in two dimensions, and
then extending the results to higher dimensions. Rather than using moments of inertia, we
instead use a dual concept—the second moments with respect to the origin. On the unit
sphere in d + 1 dimensions, U~, the second moments are related to the moments of inertia
(see Section 6), and the use of the second moments lead to cleaner proofs.

5.1 Two dimensions

To find a sphere separator for a two-dimensional graph, we stereographically project the
points of the graph onto Uz, the unit sphere in R3. The goal of the primal problem is to

find a point u E U2 that minimizes j(u), the cost of u.
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One simple method for finding u is to repeatedly choose a point randomly from Uz

based on a uniform distribution. The expected cost per choice with this distribution is
denoted p(~), and is given by

where U2 is the surface area of U2. A point on the unit sphere can be uniquely repre-

sented by three parameters (a, ~, y) satisfying Q2 + ~2 + y2 = 1. For example, in
spherical coordinates, CY(O,~) = sin @ cos 8, (3(6, $) = sin @ sin 0, v(6, ~) = cos $. For
each point w on the unit sphere, let (a(w), ~(w), y(w)) be its three coordinates. Define for
i e {a, (3, y},

flit(f) = & J.,,=uf(w)(i(w))2d4
2

Then, p,,(~) is the second moment off with respect to the ~ axis. We call the following

matrix the moment matrix off.

N

/% Pap Pay
.J1/t(f)= Pp. Ppp /Jpy

/Jy. Pyp Pyy

Notice that the inertia matrix off, I(f), is defined as following:

(

Ppp + Pyy – Pup – %7
l(f) = – pp. Pa. + P,, – Ppy

– Py. – /’q3 la.. + Ppp )

Since a2 + ~2 + 72 = 1 and integration is linear, we have that

P(f) = J%.(f) + J@(f) + LJyy(f).

Lemma 5.1. For all density functions f on U2,

M(f) + l(f) = /Jf)Ij,

where Id denotes the d X d identity matrix.

5.2. Elliptic distribution

Uniform sampling of points on Ul, the unit circle,
uniformly from [0, 2T). An identical distribution is

is equivalent to sampling angles 6

obtained by picking a point p uni-

1
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formly from 13z, the unit ball, and if p # O normalizing p to unit length, i.e., projecting p
onto U1. If we are so unlucky as to pick p = O then we repeat the process until we get a
p#o.

We define our elliptic distribution, denoted dist(E), with respect to an ellipse or ellip-

soid E of dimension d and unit sphere U~_ ~ via the following random process:

Process 5.2. While p = O pick a random point p E E and if p # O return the projection

of p onto Ud– ~.

As an example consider the ellipse Ea~ defined by

Eab = {(x, y) I x2/a2 + y2/b2 s 1.}

Clearly, the sample is biased by the shape of the ellipse. The associated probability

density function is given by the following lemma:

Lemma 5.3. The probability density function for dist(E’J over UI is

1

[

1

2~ab x21a2 + y2/b21
Proofi Let p = (x, y) be a point on UI. Further let L be the distance from O through p to

the boundary of Eab, i.e., a scalar L 2 0 such that the point Lop = (Lx, L,v) lies on the

boundary of Ed~. Thus L satisfies L2x2/a2 + L2y2/b2 = 1. For each small line segment ds

on iYl we must determine the area of Eah mapped to ds. In the limit as ds goes to zero this

will be a triangle of area ( l/2)L2ds. Now the integral over U1 will give us the area of the

ellipse, i.e.:

s L2(x)
lEahl= ~ ds

YEu,

Thus the probability density is L2/(2 lEd~l). Using the fact that lEa~l = nab the Lemma

follows ❑

We next compute the probability density function for the distribution dist(li’a~c) where
E~bCis the ellipsoid given by:

E~,, = {(x, y, z) I x2/a2 + y2/b2 + z2/c2 s 1}.

Lemma 5.4. The probability density function for dist(Ea~C) over U2 is, where IB3I is the
volume of Bs,
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1

(

1

1

3/2

31B31abc ~l/aI + ~2/b2 + ~l/cI

Prooj7 Let ds2 be a small square patch on Uz. As in the proof of Lemma 5.3 we will

determine that part of Ea~c which is projected onto Uz. Normalizing this volume will then

give us our probability density function.

Let p = (a, 13,y) be a point on U2 in the patch ds2 and L be the distance from from O

through p to the boundary of Ea~c. It follows that L = (u2/a2 + ~2/b2 + y2/c2)- 1’2.The

preimage of ds2 is a pyramid shaped object as ds goes to zero with volume L3 / 3 ds2. As
in Lemma 5.3, the integral over tJ2 of the unnormalized density fimction is:

J
L3(P)ds~

IEa/J = —
pEu2 3

Thus, the probability density is L3/(3 I Eabcl). Using the fact that IEabcl = (4/3)mabc =

I B31 abc the Lemma follows •1
Before we estimate the expectation of dist(Eahc) we will give some inequalities to

simpli~ the integrals. We will use the following lemma in several of the proofs.

Lemma 5.5. Suppose a, b, a, ~ are nonnegative reals, and a + ~ s 1. Then (au + b(3)k
5 akcx + bk(3.

Proof We prove it by induction on k. The lemma is clearly true for k = 1. Now assume

it is true for k – 1, we prove for k.

(aci + b~)’

Lemma 5.6. Let U2 + (32 + 72 = 1 then

•1

1 ,
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(

1

)

312
sa3~2+~3~2+c3-y2

a21a2 + (321b2+ y21c2

GREMBAN/MILLER/TENG

Prooj! Here we consider the special case when c = 1. Substituting 1 – a2 + (32for 72 and

rearranging terms we get that the LHS equals (1/(1 – (ucr_2+ v~2)))3’2 where u = (a2 –

1)/a2 and v = (b2 – 1)/b2. Since ua2 + V(32 < 1 we can expand 1/(1 – (UCK2+ v~2) as

Taylor series about zero. Since the constant term in this series is one we can expand the

square root of this series. There are two expansions and we take the positive one, with

constant term one. We now take the cube of this series. This gives a series of the form

below with tO = 1. Using Lemma 5.5,

~ f+1(ua2+ v(32)’
,=0

= (1/(1 - U))3’2CY2+ (1/(1 - V))3’2(32+ 72

=a3a2+b3~2+y2

By the way we generated the tis we get the second equality. ❑

We let Expect(E, ~) denote the expected cost (normalized by 3IB31) when sampling
from the elliptic distribution given by ellipsoid E and using cost fimction f. Now the
expectation of the distribution of dist(Ea,,C, f) is given by the following integral:

Expect(~,,b., f)= (31BsI)~PGu, f~) 31B~abc L3 dA
3

where L = (ci2/a2 + (32/b2 + y2/c2)– “2. Combining with Lemma 5.6 we get the following
inequality:

Lemma 5.7. Expect(EabC, f) s (a3pua + b3pPP + c3pvv)/abc

If we now minimize the right hand side of Lemma 5.7 we get the following Theorem:

Theorem 5.8. If a = (1/pJl’3, b = (1/pPP)l’3, and c = ( l/pYV)1’3,then the expected cost
of sampling from the elliptic distribution is,

‘wM~c7bc,f) = %J@#vy)”3

Moreover, by [4] 3(p~apPPpyv)l’3 ~ pa~ + pPP + PVY,we have
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Expect(Eabc, j) ~ Uc(f),

where UC(f) is the normalized (by a factor 3 B3I) cost when the distribution is uniform.
If we divide both the uniform cost and the elliptic cost by three, then the uniform cost

is the arithmetic mean of yaa, pPP, pYY,and the elliptic cost is bounded from above by the

geometric mean of pa~, pPP, ~VY.We can also show that the geometric mean is minimized

when the ball U2 is rotated so that the Covariance matrix Of f iS diagonal while the

arithmetic mean is unchanged.

5.3. Higher dimensions

The general version of Lemma 5.5 is the following.

Lemma 5.9. Suppose al, a2,..., ad, CIl, ~2,..., u~ are nonnegative reals, and ~ I + . . . +

CYds 1. Then

(ala, + . . . + a~~)k 5 a~al + . . . + a~~

Prooj Prove by induction on k and using the condition x~. ~a, ~ 1.

(ala, + . . . + a@Jk

= (ala, + . . . + a~,)k-’(alal + . . . + a~~)

I
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sc$ll + . . . + a~~

❑

In d dimensions, the second moments off on Ud with respect to the coordinate axes are
given by

JMf) = & ,,=u,_, f(@(i(@)2dA
d]

where Z(W)is the ith coordinate of point w on U~_ ~.Note that ~~= ~i2(w) = 1 for all w on
U~_ ~. The expected cost of sampling from the uniform distribution is given by

Uc(f) = ,~ p,,(f)

Let Eti denote the d dimensional ellipsoid defined by

Similar to Theorem 5.8, we have,

Theorem 5.10. If ai = ( l/Pil)l’d (1 5 i s d), then the expected cost of the elliptic

distribution

()
Expect(Eti, f) s d fi ~il “~

,=1

Moreover, since [4]

()
d ,j, /4, “d s i /,,1=1

we have

Expect(Eti, f) ~ Uc(f)

6. Great circles and duality

The preceding sections have dealt with using the second moments to
the primal problem. For application to geometric separators, we need

guide the solution to
to deal with the dual
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problem, in which the cost of a given point w (on the unit sphere) is not ~(w), but instead
is the sum (integration) of the points on the great circle normal to w (that IS, ~v~ GC(~.,

f(v)&- l). For presentation, we focus on the two dimensional problem.

For a density function ~ on the unit 2-sphere, let M(j) be the moment matrix (3 X 3
matrix) of ~, defined by

where

1

J_— ~Gu,f(w)i(w)j(w)dA, i,j G {a, ~, y}J% = IU21

Let gf(w) = 1 / ~ fvGGC(w) f (v)ds denote the dual cost off, and ‘2h(f)= At(g~)be the

moment matrix of the dual cost gf off. Let p(f) = UC(f) = JM.=~, f (w)dzl denote the

expected cost from sampling f with the uniform distribution on Uz. Let Id denote the d X

d identity matrix.
The following lemma relates the moment matrix of the primal to that of the dual, and

is interesting in its own right.

Lemma 6.1. (Primal & Dual) For all density functions f on Uz, M(f)+ ~(f) = p(f)13.
In the proof Lemma 6.1, we will use the following propositions. These propositions

follows directly from the definitions.

Proposition 6.2. (Linearity) Let f ~and f ~be two density functions on U2, then A(f ~+
fJ = JUfl) + WfJ andQKfl+ fJ = ~(f,) + 9(f2).

Proposition 6.3. (Primal Rotation) Let f be a density function on U2 and R a 3 X 3
unitary matrix. Let h be the resulting density function when applying R to U2, i.e.,
mapping point (u, (3, y) to (u, (3, y)l?. Then

M(h) = R~M(f)R

Proposition 6.4. (Dual Rotation) Let f be a density function on U2 and R a 3 X 3 unitary
matrix. Let h be the resulting density function when applying R to U& i.e., mapping point
(a, ~, y) to (a, ~, ~)R. Then

Qb(h) = RTQl(f)R

+ I
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In order to motivate the proof of Lemma 6.1, we first give a proof to the point-density
version of the lemma. The point-density version is the one often used in the practical

application of the moments of inertia. Let P = @l, p2,..., pn} be a set of n points of
weights {wl, W2,.... w.}, respectively, on U2. Assume that p, = (x,, y,, Zi)’. The moment
matrix off’ is given by

M(P) = ~ At(p)
1=1

where (p~~) is the outer-product of the vector p,.
To define the dual moment matrix, we use the duality between great circles and points

on the unit sphere: Each great circle GC can be identified with a pair of points pGC and
q~c on UL that lie on the normal to GC. (See Figure 2). Simply from the definition,

Proposition 6.5. (Duality) For each pair of great circles % and %’ of U~, % contains p%

(and hence q% as well) if and only if%’ contains p% (and hence q%).
Let p = (x, y, z) be a point of density w on U2. By Proposition 6.5, a great circle passes

through p if its normal points are on the great circle normal top. Hence, the density at p

defines a density fi.mction in the dual space: The dual-density of a point is w if it is on the
great circle normal top; otherwise its dual density is equal to O.Note that there are infinite
number of points with non-zero dual-density. We need to properly define the dual moment
matrix based on the concepts of calculus. To motivate, we relate a point-density to a
continuous density function. Notice that a point is an object of zero dimension, whereas
the sphere U2 is a two dimensional object. The basic idea to make a point-density con-

Figure 2, A great circle and its normal points.

I I
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tinuous, in the view of calculus, is to treat a point p as an infinitely small patch cL4of area

ds2 and the value of the continuous function in dA is w/(ds2). Let ~1, be such a continue

function. Then the moment matrix of $11, .M(@J, is equal to the moment matrix of p,

J@).

In the dual space, each great circle has dimension one. Based on the same observation

as in the paragraph above, we should “give” a great circle a width ds. The dual-density

induced by a point-density w at p is then w/(mds) at points on the great circle normal to

p. In other words, we uniformly distribute the point density over the points on the great

circle normal to it. The term r in the denominator is the perimeter of a great circle. We

now calculate the moment matrix of the dual-density.

The simplest case is that of a point density w at p = (O, O, 1). The primal moment

matrix is

H
000

At(p)= 000
Oow

The dual-density would be w/(mds) at every point on the great circle (of width ds) on

the xy-plane (that is, normal to (O, O, 1)), since the great circle normal to each such point

would pass through (O, O, 1). Let G be the great circle normal to p. The dual moment

matrix is

~(p) = fqEG(w/(~ds))(qq~)ds2

u100
010 ds= (WITT) ~qEG () 00

u

woo
= Owo

000

= wI~ – A@)

Lemma 6.1 is true in this case for a point density.

Now we look at the discrete case where we have a

y) of U2. The moment matrix of the point density is

point-density w at point p = (m, (3,

W(cl, (3, ‘y)= (% P>7).

Let R be a unitary matrix that transforms the point (O, O, 1) to (a, ~, y) (rotation or

reflection). Then (a, (3, y) = (O, O, l)R.
Since R also maps the great circle of (0, O, 1) to that of (u, (3, ~), we have that the dual

moment matrix is, by Proposition 6.4, R~ D(nz)R = wI~ – W(GX,~, y)T (cY_,~, y). Lemma
6.1 is again true here.

By the linearity of the moment matrix (Proposition 6.2), we have,
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93(P) = ~ ‘3(p)
j=l

11

= ~ (W,13- W,JW(J7,))
,=[

= W’IM,+ Jt’t(P),

where W = ~~=, w,. Therefore, we have proved the following version of Lemma 6.1 for
a collection of point densities on Uz.

Lemma 6.6. (point primal & dual) Let P = {Pi, P2, . . .,P,,} be a set of n points of weights
{Wl, W2,..., w~}, respectively, on U2. Then M(P) + ~(~) = W_-3,where W = X:.1 w,.

Lemma 6.6 also has another interesting interpretation, that is, 53(P) is exactly the same
as the inertia matrix of P. (See Section 2.2 for the definition of the inertia matrix.)

To prove Lemma 6.1, we discretize Uz into a collection of infinitely small patches and
use summation to approximate the integration. We then reduce the continuous case to the

point-density case. Lemma 6.1 shows that the dual-moment matrix is the same as the
inertia matrix defined in Section 5.1.

We now have the following lemma, which follows directly from Lemma 6.1.

Lemma 6.7. Let ~1 and ~z be two density functions on U2. If .M(~l) = .~(~2), then ~(~1)

= ‘9(fJ.
Following from Theorem 5.8 and Lemma 6.1, we obtain a theorem for the Dual Prob-

lem of Section 3.

Theorem 6.8. If

a = (l/@ – pJ)I’3

b = (l/@ – @))”3

c = (l/(u – /J#

then the expected dual cost for the elliptic distribution is

compared with the expected dual cost for the uniform distribution of

Therefore, DECC,,,Cs DUG’.

The theorem above can be generalized to higher dimensions.
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Theorem 6.9 If a{ = (1/(~ – pl,))l’d, (1 = i s d), then the expected dual elliptic cost is

DEC: = d [~~., @ – pli)]l’~ compared with the expected dual uniform cost of DUC =

[Z=] @ -d] = (d- l),uTherefore, D~Cti ~ Duc

7. Applications in Geometric Graph Separators

As shown in [30], all well-shaped finite element meshes and some graphs from compu-
tational geometry, such as k-nearest neighbor graphs have a geometric characterization.
We now review this characterization and show how to apply second moments to improve
the sphere separator algorithm.

7.1. Neighborhood systems and their separator

The characterization is based on the notion of a neighborhood system. A d-dimensional
neighborhood system @ = {Bl,..., B,, } is a finite collection of balls in Rd. Let p, be the
center oflli (1 s i s n) and call~ = @l ,..., p~) the centers of ~. For each point p E R~,

let the ply of p, denoted by ply+(p), be the number of balls from @ that contains p. $ is
a k-p@ neighborhood system if for all p, ply+(p) s k.

Each (d – 1)-dimensional sphere S in Rd partitions $ into three subsets: $~s), +E(s),
and +.(S), which are the balls that are in the interior of S, in the exterior of S, and that
intersect S, respectively. The cardinality of ~o(s) is called the intersection number of S,
denoted by l+($.

Notice that the removal of ~o(s) splits $ into two subsets: $AS) and $E(S), such that
no ball in $~s) intersects any ball in OJS) and vice versa. In analogy to separators in
graph theory, $.(S) can be viewed as a separator of ~.

Definition 7.1. (Sphere Separators) A (d – 1)-sphere S is an f(n) -separator that S-splits
a neighborhood system + if l+(S) 5 f(n) and I$~s) 1, I+E(s) I s i%, where f is a positive
fimction and O <8< 1.

Simply by definition, each f(n) -sphere separator that ?i-splits also naturally induces a
vertex separator of the intersection graph. So, we will just focus on the sphere separators
of neighborhood systems. The following theorem is proved in [30]:

Theorem 7.2. (Sphere Separator Theorem) Suppose $ = {Bl,..., Bfl} is a k-ply neigh-
borhood system in F@. Then there is a (d – 1)-sphere S intersecting at most 0
(k’ ~n~-’ ~) balls from @ such that both 14~S)land 1+~(~1 are at most = d +
1 / d + 2 n, where c$~$ and +E(s) are those balls that are in the interior and in the
exterior of S, respectively.

We now review the construction of [30] to show where the second moments can be
used. To find a small cost sphere separator with balanced splitting ratio, we first map the
neighborhood system ~ conformably onto the unit sphere Ud so that each d-dimensional
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hyperplane containing the center of U~ &splits ~ = {Bl,..., l?.} d + 1 / d + 2<8<
01.This step can be performed in random constant time using a randomized center point
algorithm [3, 36]. Now, each 1?,is mapped to a patch D, on U~, whose boundary Ci has the
shape of a (d- 1)-sphere. Each great circle induces a balanced sphere separator and the cost
of a great circle is the number of patches it intersects. Therefore, the goal here is to find
a great circle with a small intersection number. In the remainder of this section, we will
identify B, with D,, and assume that $ = {Bl,..., B.} is given on the unit d-sphere.

7.2. Exact moment by duality

To apply second moments, we use the duality between great circles and points on the unit
sphere: Each great circle GC can be identified with a pair of points p~C and q~c on U that
lie on the normal to GC. (See Figure 2).

Define a great belt to be the set of points of Ud that lie between a pair of parallel
hyperplanes located symmetrically about the center of U,l. The next lemma follows from
the definition. See [8, 36] for a proof.

Lemma 7.3. Suppose @ = {Bl,..., l?. } is a neighborhood system on Ud. Then for each 1
s i s n, there is a great belt RI such that a great circle % intersects Bt iffp% and q% is
contained in R,. (See Figure 3).

Therefore, to find a small sphere separator, it is equivalent to find a point in U,l that is

covered by a small number of great belts. We can define a density function on the unit
sphere U~ for which the density of a point is the number of great belts that cover it. In
other words, each point of each great belt has a unit local density and the global density

A

F’lgure .3, A ball on the sphere and Its dual great belt.
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is the sum of the local densities. Hence we reduce the sphere separator problem to the
primal case of the optimization problem discussed in Section 3. We can first compute the
great belts and use them to find the moment matrix. Then the construction and results of
Section 5 can be applied directly. We refer to this construction as the dual-primal metho~
because we first use duality to find great belts and then compute the moment matrix.

7.3. Approximation by dual moments and geometric sampling

A more efficient way of applying second moments is to use the primal-dual metho~ which
finds the moment matrix using the primal information, rather than great belts, and then
applies the construction of Section 6.

The advantages of this method are twofold: (1) we do not need to compute great belts
and (2) we can use geometric sampling to approximate the moment matrix.

We use the following observation made in [30, 36]. Because @ = {Bl,..., B.} is a ~-PIY

neighborhood system on Ud, then there exists a constant C such that the number Of balls
from @ whose radius is at least y is bounded from above by Ck/f. Therefore, the radii of
most of the balls are small, so that they can be treated as points, given by their centers.
Formally, the weight of each point should be the diameter of its corresponding ball. Now,

our input becomes a set of points Q = {ql . . . q.} on U~ and weights ~1 . . . ~~. The
moment matrix is then M = ~~. 1wl(qlq~), where (q~q~) is the outer product of the VeCtOr

g,. We can then use geometric sampling to approximate the moment matrix. This leads to
the algorithm in Figure 4. Note that in the algorithm we have set the weights to one.

In Figure 4, stereo-up is the standard stereographic projection. For more detail on other
steps such as finding center points, finding a good conformal map, and finding a vertex
separator from a sphere separator, see [30, 31].

Theorem 7.4. The algorithm above finds a sphere separator whose expected cost is less
than or equal to that found by the algorithm of [30] which returns a random great circle.

w
Figure 4. The moment-based sphere separator algorithm.

I
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Table 1. Separator sizes obtain edfroin 7 trials on alrfoill, a 2D mesh with 4253 nodes and 12289 edges

method separator size

Moment 62 60 64 73 69 64 69

Uniform 114 155 145 133 119 278 91

Table 2, Separator sizes obtained from 7 trials on airfoi12, a 2D mesh with 4720 nodes and 13722 edges

method separator size

Moment 99 96 94 94 96 103 93

Uniform 178 188 129 190 154 132 211

Table 3. Separator sizes obtain edfrom 7 trials on airfoi13, a 2D mesh with 15606 nodes and 45878 edges

method separator size

Moment 168 154 176 190 174 174 160

Uniform 174 276 181 191 207 232 219

Table 4. Separator sizes obtain edfrom 7 trials on brack2, a 3D mesh with 62631 nodes and 335240 edges.

method separator size

Moment 752 746 719 712 768 715 770

Uniform 1083 2761 5724 1740 4401 1784 2285

8. Experimental results

We implemented the moment-based method by modifying the existing Mat-lab geometric

partitioning code of Gilbert and Teng [17] to sample sphere separators from an elliptic

distribution based on the second moments. To compare the results of the original and

modified algorithms, implementation was performed by angle updating. Hence, in each

trial, a random angle was selected from the uniform distribution, and the angle was

updated to yield an angle from the elliptic distribution. The parameters used were more

aggressive than those predicted by theory.

Our preliminary experiments show that using second moments improves the sphere

separator algorithm for well-shaped meshes in both two and three dimensions. In each

trial, the result of sampling from an elliptic distribution improved the result of sampling
from the uniform distribution.

Tables 1-4 give the sizes of edge-separators found in first seven trials of the sphere
separator algorithm when the moment-based distribution (moment method) and the uni-
form distribution (uniform method) were use~ respectively. In all cases, the best separator

was found using the moment-based distribution.

, I
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