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Abstract
Typical volume meshes in three dimensions are de-

signed to conform to an underlying two-dimensional sur-
face mesh, with volume mesh element size growing larger
away from the surface. The surface mesh may be uni-
formly spaced or highly graded, and may have fine res-
olution due to extrinsic mesh size concerns. When we
desire that such a mesh have good aspect ratio, we require
that some space-fillingscaffold vertices be inserted off the
surface. We analyze the number of scaffold vertices in a
setting that encompasses many existing volume meshing
algorithms. We show that for surfaces of bounded varia-
tion, the number of scaffold vertices will be linear in the
number of surface vertices.

1 Introduction
The mesh refinement problem is to take an input geom-

etry in R
d, and produce a partition into output cells that

in some senserespects the input. Inputs are often point
clouds, usually representing samples of an implicit sur-
face to reconstruct. Inputs may also be given as piecewise
linear complexes (PLCs), assemblages of segments and
polygons. The output is a mesh, where the points appear
as mesh vertices, and the segments and polygons appear
as the union of mesh segments and mesh facets.

The meshing problem also requires a constraint on the
quality of the output elements. We use the constraint
that the output vertices must bewell-spaced[8]; all the
Voronoi cells in the Voronoi diagram of the output ver-
tices must have aspect ratio bounded by some constant.
Additionally, the elements must be small enough to cap-
ture the geometry of the surface, or perhaps even smaller
to capture some extrinsic properties. Algorithmically, we
then wish to produce a mesh with the fewest elements
subject to these constraints. This general setting encom-
passes the output of most volume or surface meshing al-
gorithms having any provable guarantees, including (at
least) [7, 5, 4, 3, 1].

A natural question when analyzing the output of such
algorithms is to consider the number of vertices placed on

Figure 1: Often, mesh refinement algorithms first gener-
ate a mesh over a bounding box (left), then remove the
scaffold vertices and elements. (right). We analyze the
cost of removing this scaffolding for the first time.

the input surface compared with the number of vertices
in space. Often the surface vertices are the main source
of interest, and the extraneousscaffold vertices merely
support this structure by filling space.

Additionally, in incremental algorithms, usually a
reasonably-sized bounding box is used, with the mesh be-
ing generated within this box. In this case, some portion
of the scaffold vertices may be wholly outside the domain
of interest (see Figure 2). We would like the number of
these scaffold vertices to be as small as possible.

It is intuitive that the scaffolding should be small, since
the complexity of the mesh is generated at the surface. We
conjecture that the total number of scaffold vertices (inte-
rior and exterior to the domain) is linear in the number of
surface vertices.

2 Definitions
We present a generic, algorithm-independentsetting for

analyzing volume meshes of a surface. The goal of this
setting is to abstractly analyze several modern volume
meshing algorithms at once. Consider a connected Piece-
wise Smooth Complex [1]S in some simply connected
volumeΩ ⊂ R

3. We require thatΩ not be too large (or
we could not control the volume mesh size). The easiest
assumption is that the diameter ofΩ is bounded within a
constant of the diameter ofS.



We define asizing function f on S as any function
having the following three properties:
(1) f is 1-Lipschitz:

∀ x, y ∈ S, f (x) ≤ f (y) + |x − y|R3

(2) f is bounded from below:

∃ f0, ∀ x ∈ S, f (x) > f0 > 0

(3) f “captures”S. Defining:

I(x) := {y ∈ S | |x − y|R3 ≤ f (x)}

Then there must exists some constantK for all x that
bounds|I(x)|/ f 2(x), andI(x) must be a topological 2-ball.

We then define an extensionfe onΩ as the maximum
1-Lipschitz function onΩ that agrees withf on S. For
some algorithms, the functionf may be given explicitly.
Examples of such anf in meshing include varying defi-
nitions oflocal feature size. Epsilon sampling algorithms
may have anf that represents some diminished feature
size. Adaptive remeshing algorithms used in simulation
may have anf that is reduced according to a simulation
error estimate.

If M is a point set, we say thatM is f -sizedif it is well-
spaced, and if the nearest neighbor of anym ∈ M satisfies
|NN(m) − m|R3 ∈ θ ( fe(m)).

3 Proof Sketch
For an f -sized pointsetM, we have:

|M| ∈ θ

( ∫
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1

f 3
e

)

(1)

If N ⊂ M are the vertices whose Voronoi cells intersectS,
then we have a similar measure:

|N| ∈ θ

( ∫

S

1
f 2

)

(2)

These measures are generic and well-established in sev-
eral settings [6, 5, 8], where they have previously been
used to argue the size-optimality of meshing algorithms,
although we are considering a more generic non-optimal
case (governed by a more arbitraryf ).

We conjecture that in general|M| ∈ O(|N|). We argue
this by comparing the two integrals in question. The gen-
eral case is still elusive, but for the special case of a convex
S, we can show that:
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)

(3)

which completes the argument.

4 Notes
Our proof technique is probably applicable toS and
Ω in any dimensions, with constants that are necessarily
exponential in dimension. Possiblities include meshing a
curve inR

3 or perhaps a surface in space time.
The “capturing” condition onf is rather crude. It is

necessary for establishing Equation 2 and is coupled to

whatever smoothness assumptions are taken onS. This
condition bears a strong relation to the traditional open-
ball criterion in surface reconstruction [2]. For a more/less
genericS, this criterion could probably be refined. How-
ever, the main obstacle seems to be in proving Equation 3
for any reasonably general setting.

Because the constants involved in these equations come
from packing arguments, they are generally unrealistic.
Nonetheless, this result and conjecture are very interest-
ing from a theoretical standpoint. Were this conjecture
shown to be true, it would be an important philosophic
point that volume mesh is asymptotically no more expen-
sive than surface meshing. At the very least, it would
confirm the intuition that external scaffolding is not too
expensive, which has so often been implicitly assumed in
prior work.
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