Size Complexity of Volume Meshes vs. Surface Meshes

Benoit Hudson Gary L. Miller Todd Phillips
Computer Science Department
Carnegie Mellon University
{bhudson,glmiller,tp517}@cs.cmu.edu

Oct 26, 2007. Fall Workshop on Computational Geometry.

Abstract

Typical volume meshes in three dimensions are de
signed to conform to an underlying two-dimensional sur
face mesh, with volume mesh element size growing larg
away from the surface. The surface mesh may be un
formly spaced or highly graded, and may have fine res
olution due to extrinsic mesh size concerns. When w
desire that such a mesh have good aspect ratio, we require
that some space-fillingcaffold vertices be insertedithe
surface. We analyze the number of oll vertices in a Figure 1: Often, mesh refinement algorithms first gener-
setting that encompasses many existing volume meshiig a mesh over a bounding box (left), then remove the
algorithms. We show that for surfaces of bounded varigeafold vertices and elements. (right). We analyze the
tion, the number of sckold vertices will be linear in the cost of removing this s¢olding for the first time.
number of surface vertices.

1 Introduction the input surface compared with the number of vertices

in space. Often the surface vertices are the main source

The mesh refinement problemiis to take an mputgeon} interest, and the extraneoasdfold vertices merely

. d e .
etry in R% and produce a partition into output cells thés%upport this structure by filling space.

in some senseespects the input. Inputs are often point " o .

clouds, usualf);esrzpresenting sampFI)es of an impli(F:)it sur-Add'tlona"Y’ n mcremental .algorlthm.s, usually a
face to reconstruct. Inputs may also be given as pieceV\).i gsonably-sae(_j b_oundmg box is u;ed, with the mesh.be-
linear complexes (PLCs), assemblages of segments generated W|t_h|n this box. In this case, some portl_on
polygons. The output is a mesh, where the points app8 e scafold vertices may be wholly ogt5|de the domain
as mesh vertices, and the segments and polygons apﬁ,I g}terest (see F_|gure 2). We would like th_e number of
ese scdold vertices to be as small as possible.

as the union of mesh segments and mesh facets. AR , i
Th hi bl | . traint It is intuitive that the scfiiolding should be small, since
€ meshing problem also requires a constraint on complexity of the mesh is generated at the surface. We

?hua:“ttr): of tthe toutptgt elemertlt;é”We usz tge c’iIo?hsual(%njecture that the total number of fitdd vertices (inte-
at the output vertices mus -spaced(8]; all the rior and exterior to the domain) is linear in the number of

\Voronoi cells in the Voronoi diagram of the output Veréup‘ace vertices.
tices must have aspect ratio bounded by some constant.

Additionally, the elements must be small enough to cag- Definitions
ture the geometry of the surface, or perhaps even smalleyve present a generic, algorithm-independent setting for
to capture some extrinsic properties. Algorithmically, Wgnalyzing volume meshes of a surface. The goal of this
then wish to produce a mesh with the fewest elemeRfsiting is to abstractly analyze several modern volume
subject to these constraints. This general setting encafieshing algorithms at once. Consider a connected Piece-
passes the output of most volume or surface meshing\gise Smooth Complex [1B in some simply connected
gorithms having any provable guarantees, including {@lumeQ c R3. We require thaf2 not be too large (or
least) [7, 5, 4, 3, 1]. we could not control the volume mesh size). The easiest
A natural question when analyzing the output of suassumption is that the diameter@fis bounded within a
algorithms is to consider the number of vertices placed oanstant of the diameter &.



We define asizing function f on S as any function whatever smoothness assumptions are takes§.oihis

having the following three properties: condition bears a strong relation to the traditional open-
(1) f is 1-Lipschitz: ball criterion in surface reconstruction [2]. For a mfeses
VxyeS, f(X) < fy) + X= Yigs genericS, this criterion could probably be refined. How-

ever, the main obstacle seems to be in proving Equation 3

for any reasonably general setting.

Ao,V xe S, f(X)> fo>0 Because the constants involved in these equations come

from packing arguments, they are generally unrealistic.

Nonetheless, this result and conjecture are very interest-

1(X) :={y € STIX=Ylgs < f(x)} ing from a theoretical standpoint. Were this conjecture

Then there must exists some consté#nfor all x that shown to be true, it would be an important philosophic

bounds! (x)|/ f2(x), andl (x) must be a topological 2-ball. point that volume mesh is asymptotically no more expen-
We then define an extensida on Q as the maximum sive than surface meshing. At the very least, it would

1-Lipschitz function onQ that agrees wittf on S. For confirm the intuition that external sffalding is not too

some algorithms, the functiohmay be given explicitly. €xpensive, which has so often been implicitly assumed in

Examples of such am in meshing include varying defi- prior work.
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