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Abstract
Typical volume meshes in three dimensions are designed
to conform to an underlying two-dimensional surface
mesh, with volume mesh element size growing larger
away from the surface. The surface mesh may be uni-
formly spaced or highly graded, and may have fine resolu-
tion due to extrinsic mesh size concerns. When we desire
that such a volume mesh have good aspect ratio, we re-
quire that some space-filling scaffold vertices be inserted
off the surface. We analyze the number of scaffold ver-
tices in a setting that encompasses many existing volume
meshing algorithms. We show that under simple precon-
ditions, the number of scaffold vertices will be linear in
the number of surface vertices.

1 Introduction
Given a surface mesh, many scientific computing and
graphics applications will want to produce a volume
mesh. Conversely, to build a surface mesh from another
description of an input geometry, one might temporarily
build a point location structure such as an oct-tree, which
is a volume mesh. A natural question arises: can we re-
late the size of the surface mesh to the size of the volume
mesh? A volume mesh will obviously have more vertices
than the corresponding surface mesh, but in most settings,
the spacing between vertices should grow quickly away
from the surface. Since the density of the volume mesh is
driven only by the surface, it is intuitive that the surface
vertices should dominate in number. Our main result is
to show that given a surface mesh in a well-proportioned
domain, the total number of vertices in the volume is lin-
ear in the number of vertices on the surface. We will make
this statement specific later as the Scaffold Theorem (The-
orem 3.1).

This result has immediate and important ramifica-
tions concerning the asymptotic work and space of a
large host of existing meshing and surface reconstruc-
tion algorithms. For example, in volume meshing, the
user may specify a closed surface and ask for its inte-
rior to be meshed. Typical algorithms enclose the sur-
face in a bounding box that contains the closed sur-
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Figure 1: Incremental mesh refinement algorithms first
generate a mesh over a bounding box (left), then remove
the scaffold vertices and elements (center). Some applica-
tions are interested in only the surface mesh (right). The
one-dimensional Lake Superior surface mesh shown has
530 surface vertices. The volume mesh shown has 1072
total volume vertices; 258 interior and 284 exterior. We
offer the first theoretical analysis of the costs of this scaf-
folding.

face, incrementally add points until the surface is re-
covered and the volume mesh has good quality, then
strip away the exterior volume vertices (see Figure 1).
The surface and interior vertices are then returned to
the user. This approach is widespread and is used for
many two-, three-, and higher-dimensional meshing al-
gorithms [BEG94, ABE98, She98, CDE+00, ELM+00,
MV00, MPW02, Üng04, HMP06, CDR07]. The work
and space complexity of these algorithms is output-
sensitive and depends on the number of exterior vertices,
even though these vertices are transient. Our new analy-
sis is the first to control this exterior work. Since we show
that the number of transient vertices is bounded by the
surface vertices, this for the first time implies that these
algorithms run output-sensitively with respect to the true
user-desired output.

In the rest of this work we make our results precise.
A good deal of care is taken to ensure the generality
of these results, so that the analysis may be applied to
many existing meshing algorithms. Our proofs are in two
parts. In the first part, we prove that if a good-quality
volume mesh respects a surface, the volume vertices
outnumber the surface vertices by only a constant factor.
Our definition of respecting a surface is much looser
than that of most prior work: the Voronoi cells of the
surface vertices must cover the surface, but there is no
topological requirement. In addition, our definition of a
surface is extremely loose; it need not be manifold, or
even connected. Additionally, our surface need not be



d − 1 dimensional: for instance, it could be a curve in
3D. Our only requirements are that the surface have a
bounded number of connected components, and that each
connected component of the surface have diameter within
a constant factor of the diameter of the bounding domain.

In the second part, we show how this result relates
to standard concepts from mesh refinement and surface
reconstruction. In particular, we show that our result
proves that a volume mesh of an ε-net of a surface is only
a constant factor larger than the surface. We also show
that many prior quality mesh refinement algorithms are
susceptible to our analysis. This implies that they still run
in the time (and memory usage) bounds they claim, even
when the volume actually meshed is larger than what the
user asked to mesh.

Our result is reminiscent of one by Moore [Moo95].
A balanced quadtree has neighbouring quadtree cells have
size within a constant factor of each other. Given an ar-
bitrary quadtree with m leaves, Moore proved that we can
balance the quadtree by splitting only O(m) cells. Indeed,
in our proof we very critically use a recent generalization
that applies to Voronoi diagrams [MPS08]. What Moore
did not discuss is how large m is in relation to some under-
lying geometric object, such as a point cloud or a surface.
This is what the present work establishes.

2 Preliminary Geometric Definitions
In this paper, we assume there exists a surface S embed-
ded in Rd. For now we allow S to be any closed subset of
space; later, certain requirements will be imposed. In par-
ticular, Lemma 4.1 imposes a geometric condition: Let D
be the minimum diameter of any connected component of
S, where the diameter is the maximum Euclidean distance
between two points in the component. We require that the
diameter of all other components, and the diameter of S,
be in Θ(D). Around S there is a compact and connected
domain Ω with S ⊂ Ω ⊂ Rd. Typically, Ω will be a box
or a hypercube. The diameter of Ω must be in Θ(D).

Throughout we posit the existence of a set of “con-
stants.” By this we mean values that depend only the al-
gorithm, the ambient dimension, and the other constants.
That is, the constants cannot depend on the input.

Let Γd denote the volume of the unit ball in Rd. For
x ∈ Rd and r ∈ R, let B(x, r) be the open ball centered at
x or radius r (whose volume is given by Γd rd).

Suppose we have a set of points (vertices) M ⊂ Ω. A
vertex-set M induces a local feature size function fM :
Ω → R. At a point x ∈ Ω, the local feature size is
the distance from x to the second-nearest vertex. We
frequently use the fact that fM is 1-Lipschitz: that is,
fM(x) ≤ fM(y) + |x − y| for all x and y in Rd (this is easily
verified by the triangle inequality). At a vertex v ∈ M, the
local feature size coincides with the distance to the nearest
neighbor, which we denote NNM(v).
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Figure 2: The Voronoi cells of two vertices u and v in a
vertex-set M (not pictured). The radii of the inner-ball and
outer-ball of v are labeled. The point x is 0.9-medial.

Given the vertex-set M, we denote by VM(v) the
closed Voronoi cell of v: those points in Rd for which
no vertex in M is closer than is v. We identify two
natural balls with v: the inner-ball bM(v) is the largest
ball centered at v that is contained within VM(v), while
the outer-ball BM(v) is the smallest ball centered at v that
contains all of VM(v) ∩Ω. We denote by rM(v) and RM(v)
their respective radii (i.e. BM(v) = B(v,RM(v))). See
Figure 2.

2.1 Well-spaced, Well-paced, and Medial Points
Given a constant τ and a vertex set M such that every ver-
tex v in M has the property RM(v) ≤ τrM(v), we say that v
is τ-well-spaced. Loosely, this implies that every Voronoi
cell is roughly spherical within Ω (it has good aspect ra-
tio), and is roughly centered around its vertex. The right
subfigure of Figure 3 shows a set of well-spaced points;
contrast this the left subfigure of Figure 4. A set of well-
spaced points induces a weighted Delaunay triangulation
in which every simplex has good aspect ratio [ELM+00],
which is usually what is desired in mesh refinement. Since
one can compute a mesh given a well-spaced set of points,
in this work we use the two terms interchangeably. Usu-
ally we use M to refer to a τ-well-spaced volume mesh,
which fills the domain Ω. We use N for those vertices of
M that lie exactly on S: N is the surface mesh.

We will make use of a theorem from [MPS08]. First,
we introduce some relevant definitions. The boundaries
of the Voronoi cells of each vertex in M form the medial
axis of M. Miller et al [MPS08] generalize this and say
that a point x is θ-medial with respect to M if it lies
near the medial axis, in the sense that NNM(x) ≥ θ fM(x).
Notice that whenever we add a new point x to the set M,
it will decrease the feature size fM in the vicinity of x. A
key observation is that adding a θ-medial point will only
decrease the feature-size by a constant fraction.

Given an arbitrary vertex-set N, and an ordered set of
vertices E ≡ 〈v1, . . . , vk〉, we say that E is a θ-well-paced



Figure 3: The definitions of Section 3.1 illustrated ab-
stractly. Left, a surface S is composed of both black
shapes, with the domain Ω shaded. Center, vertices form
a scaffold mesh M of Ω. The subset of surface vertices
NS are shown in black, with the volume vertices in white.
Observe the density of the volume vertices is driven only
by the spacing of surfaces vertices. Right, a possible seed
N0, containing at least two points from each component.
Notice the four points are ρ-well-spaced and have quality
Voronoi cells (shown in dashed lines).

extension of N if v1 is a θ-medial point of N, and each vi is
a θ-medial point of N ∪ {v1 . . . vi−1}. Informally, the name
arises from the fact that the local feature size shrinks only
slowly after each insertion.

Well-paced extensions are not well-spaced in general,
but they have useful similarities to surface meshes. We
now state for completeness the Well-Pacing Theorem
([MPS08], Corollary 3).

T 2.1. (Well-Pacing Theorem)
There is a constant C2.1, such that if N is a well-paced
extension of a well-spaced set, then there exists a well-
spaced superset M ⊃ N, with |M| ≤ C2.1|N|.

3 Scaffold Theorem
Our main result is the Scaffold Theorem 3.1, showing that
given a volume mesh M with underlying surface mesh N,
|M| is bounded above by a constant times the size of |N |.
Informally, we say |M| . |N|. Section 3.1 defines the
formal setting in which the Theorem applies.

The main step in the proof is to show that N can be
written as a well-paced extension of a well-spaced set.
We then apply the Well-Pacing Theorem 2.1 to show that
there exists well-spaced superset |M′| . |N |. We show
that under reasonable conditions, |M| was only a constant
factor worse than the optimal well-spaced superset (|M| .
|M′|), and so it follows that |M| . |N|.) We now proceed
with a formal proof.

3.1 Definitions: (α, τ)-Scaffold Mesh and ρ-Seed
Suppose we are given a domain Ω as in Section 2. Further
suppose we are given a “surface” S ⊂ Ω. We require only
that S is a closed subset.

Suppose we have a finite vertex-set M ⊂ Ω. Define
the surface vertices NS ⊂ M as the minimal subset whose

Figure 4: Examples of Non-Scaffold Meshes. Left, this
volume mesh is not a scaffold mesh, because the sizing
is not driven by the surface. The sink in the lower-center
could contain arbitrarily many volume vertices. Note how
this violates equation (3.4). Center, when the surface S
has disproportionately small components, it will be too
costly to fill Ω in a way that resolves these small surface
features. Note that no seed can exist in this example. An
attempted seed is shown, but as the surface components
grow relatively small, there is no way to fit two points on
each component in a way that is well-spaced.

vertices Voronoi cells cover S, so we have:

(3.1) S ⊂
⋃
n∈NS

VM(n), and

(3.2) m ∈ M − N → S ∩ VM(m) = ∅

For τ ≥ 1 and α ∈ (0, 1), we say that M is an (α, τ)-
Scaffold Mesh for S in Ω if the following two conditions
hold. First, M is τ-well-spaced in Ω:

(3.3) ∀ m ∈ M, RM(m) ≤ τrM(m)

Second, S is responsible for the mesh sizing:

(3.4) ∀ m ∈ M, rM(m) ≥ α fNS (m)

We will require that the volume Ω being filled is
somewhat well-proportioned to the underlying surface.
We will enforce this by defining the notion of a ρ-seed
of an embedded graph. Suppose we have a graph G
embedded in Ω with vertices N. A ρ-seed N0 is a ρ-
well-spaced subset of N containing at least two vertices
for each connected component of G.

3.2 Proof

T 3.1. (S T) Suppose M is an
(α, τ)-Scaffold Mesh for S in Ω, and suppose NS has a
ρ-seed N0, then there exists a constant C3.1 depending
only on (α, τ, ρ, and dimension d) such that:

|M| ≤ C3.1|N|
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Figure 5: Figure for the proof of Lemma 3.2. If there
is still a non-medial uninserted point p, then the original
Voronoi cells from M were small near q but large near x,
contradicting the assumption that M is well-spaced.

Proof. Let M′ be a τ-well-spaced superset of NS with
|M′| ≤ C3.1|N| as given by Lemma 3.1.

Since M is an (α, τ)-scaffold mesh, standard packing
arguments and upper bounds in [Rup95, MV00] guarantee
a constant C (depending on α, τ, d) such that |M| ≤ C|M′|.
Setting C3.1 = C ·C3.1 proves the theorem.

L 3.1. (L-SW-S S E)
Suppose M is a τ-well-spaced set in Ω, with a subset N
that has a ρ-seed N0. Then, there exists a τ-well-spaced
superset M′ ⊃ N and a constant C3.1 (depending only on
τ, ρ, and d) such that:

|M′| ≤ C3.1|N|

Proof. By Lemma 3.2, N is a well-paced extension of the
seed N0, so we simply apply Theorem 2.1 to obtain the
existence of |M|.

L 3.2. (N   - ) Suppose
M is a τ-well-spaced set in Ω, with a subset N that has
a ρ-seed N0. Then, N − N0 admits an ordering that is a
θ-well-paced extension of N0, with θ = 1

2+3τ .

Proof. We construct an ordering by selecting θ-medial
vertices greedily, and we prove by contradiction that there
is always a θ-medial vertex that can be added to the current
set.

Suppose for contradiction that we reach some vertex-
set Ni, with N0 ⊂ Ni ( N, and there are none of the
unadded points are θ-medial with respect to Ni.
Let p ∈ N − Ni and take v ∈ Ni such that p ∈ VNi (v).
p is not θ-medial, or we would have added it, so it must
be relatively close to v in the following sense:

|pv| < θ fNi (p)(3.5)

By the Lipschitz condition on f :

≤ θ(|pv| + fNi (v))(3.6)

And since v ∈ Ni:

= θ|pv| + 2θrNi (v)(3.7)

We unravel this as:

|pv| <
2θ

1 − θ
rNi (v)(3.8)

Consider the Delaunay graph Del(M) on M (given
by the dual of the Voronoi diagram), and let G be the
subgraph of Del(M) induced by N. Note that G is a
subgraph but is not necessarily equal to Del(N). Let e be
an edge of G with one endpoint q in VNi (v) and the other
end outside VNi (v), so that e exits VNi (v) at some point x.
Such an edge must exist, otherwise an entire connected
component of G would be contained with in VNi (v), which
would be a contradiction since N0 is a seed and S ⊃ N0.

It may be the case that q is equal to p, v, or neither
of the two. We consider two cases with only slightly
differing arguments, depending on whether q = v. First,
suppose q = v. Because x is on both the boundary
of VNi (v) and a Delaunay edge in M out of v, we have
rNi (v) ≤ |xv| ≤ 2RM(v). Using this along with Eq.3.8, we
have:

rM(v) ≤
1
2

NNM(v) ≤
1
2
|pv|(3.9)

<
θ

1 − θ
rNi (v) ≤

θ

1 − θ
|xv|(3.10)

≤
2θ

1 − θ
RM(v) ≤

1
τ

RM(v)(3.11)

But this contradicts the assumption that M was τ-well-
spaced.

The second case virtually the same except for one
more degree of indirection. Now, suppose q , v. Then
q < S since q ∈ VNi (v), so we have (as before):

(3.12) |qv| <
2θ

1 − θ
rNi (v)

The triangle inequality yields, rNi (v) ≤ |xv| ≤ |xq| +
|qv|. Substituting this into Eq. 3.12, we get:

(3.13) |qv| <
2θ

1 − 3θ
|xq|



As before, since x on a Delaunay edge of M out of q,
we have |xq| ≤ 2RM(q). Using this and Eq. 3.13, we have:

rM(q) ≤
1
2

NNM(q) ≤
1
2
|qv|(3.14)

<
θ

1 − 3θ
|xq| ≤

2θ
1 − 3θ

RM(q)(3.15)

=
1
τ

RM(q)(3.16)

But again this contradicts the assumption that M was τ-
well-spaced. Thus, we can always find a θ-medial point
to add, so N is a θ-well-paced extension of N0.

4 Algorithms
Our result assumes that the surface S, the volume mesh
M, the surface mesh N, and the seed N0 were all given.
Ideally, we should not need to know so much, and instead
we would have an algorithm to fill in the unknowns. There
are many mesh refinement algorithms in the literature that
need only know either S or N. Provided N has a seed, said
mesh refinement algorithms will produce an output that
matches the requirements of the Scaffold Theorem 3.1:
|M| ∈ Θ(|N|). The surprising conclusion is that in terms
of runtime and output size, when the ambient dimension
is bounded, it is asymptotically free to mesh a volume
rather than meshing only a surface—again, provided the
mesh includes a seed. It is not immediately obvious how
to predict whether N has a seed. Therefore, we define a
simpler condition that depends only on the geometry of S,
and does not depend on N or M:

D 4.1. A ρ-surface-seed is a set of points on S
such that every connected component of S contains at
least two two points, and the set is ρ-well-spaced. A
surface S is ρ-seedable if it admits a ρ-surface-seed.

Then we can give a sufficient (though not necessary)
condition for ensuring that N has a seed. First, we require
that the mesh refinement algorithm refine everywhere
sufficiently: no point in Ω is farther than λD from any
vertex of N, for some constant λ. This is not much of
a restriction: given a mesh that violates the condition,
we can add a mere O(λ−d) points to obey the condition.
Second, we require the surface seed vertices not be too
close together, from which arises the restriction noted
in prior sections that S must not have any connected
component of small diameter. Third, we require that every
point x ∈ S is in the Voronoi cell of a vertex v on the
same connected component of S as x. This is related to
the notion of the closed ball property of Edelsbrunner and
Shah [ES97], and is obeyed either explicitly or implicitly
by most Delaunay mesh refinement algorithms.

L 4.1. Let NS0 be a ρ-surface-seed of S. Let λ be an
arbitrary constant, and assume every vertex u ∈ NS0 has

rNS0
(u) ≥ 3λD. Let N be the surface vertices of an (α, τ)

scaffold mesh of S, and assume that fN(x) ≤ λD for all
x ∈ Ω. Finally, assume that any point x ∈ S lies in the
Voronoi cell of a vertex on the same connected component.
If all these assumptions hold, N contains a 2/λ-seed.

Proof. For each vertex u of the surface seed, there is a
vertex v in N that is closest to u. Let N0 be the image of
this transformation of NS0 . We claim that N0 is a seed.

For any pair u, and v, we know that |uv| ≤ λD by
the assumption that fN is small everywhere, and we know
that u and v both lie on the same connected component
of S. Consider another vertex u′ of the surface seed, and
its corresponding v′. We know |uu′| ≥ 3λD. Then by the
triangle inequality, |vv′| ≥ λD. This proves that N0 has at
least two vertices on every connected component of S.

It remains to prove that N0 is well-spaced. We know
that u had rNS0

(u) ≤ RNS0
(u). When both u and its nearest

neighbour u′ are mapped, their images may move closer
together, but they remain at least |vv′| ≥ λD apart as
proved above: rN0 (v) ≥ λD/2. While we could prove a
tighter bound, it suffices to note that RN0 (v) ≤ D to show
that N0 is 2/λ-well-spaced.

In the remainder of this section, we assume the first
two conditions of Lemma 4.1 apply, and we will argue
that the third condition is maintained by the algorithms
we analyze.

4.1 Meshing a surface sample: The simplest applica-
tion is to take as input a set of points N that all lie on
a manifold surface (for example, the famous Stanford
Bunny model), and construct from it the volume mesh
M. This is a useful endeavor if we are to animate the
model. Here, we need not assume that S is known. To
generate the volume mesh, we use a Voronoi (or De-
launay) refinement algorithm. The volume mesher first
wraps the points of N into an appropriate bounding box,
of diameter only a constant factor larger than the diam-
eter of N. It initializes M with N, then finds a vertex v
with RM(v) ≥ τrM(v), and identifies some point p that
is in the Voronoi cell of v, but far from it: |pv| ≤ |pu|
for all u ∈ M, but |pv| ≥ τrM(v). The algorithm then
adds p to M, and continues this process until M is τ-well-
spaced. A large number of algorithms implement this pro-
cess (e.g. [Rup95, She98, HPU05, HMP06]).

Our theorem requires that the surface is covered by
the Voronoi cells of just the surface vertices—that is, no
point of S lies in the Voronoi cell of a vertex in M\N.
Under certain assumptions on N, we can prove this holds.
We require that there be some ε such that for all x on S,
there is a vertex v ∈ N such that |vx| ≤ ε; but for all u ∈ N,
all other vertices v ∈ N lie at distance |uv| ≥ ε/2. In other
words, N is an ε-net of S.



L 4.2. Consider a point x ∈ S whose nearest neigh-
bor in N is v. If the volume mesh M is computed with
τ > 4, then x remains in the Voronoi cell VM(v).

Proof. For any vertex u created during refinement, there
is some u′ that created u: when u was inserted, its nearest
neighbor was u′, and |uu′| ≥ τrM(u′). In other words,
created vertices have nearest neighbor larger than the
distance between the closest pair of points in N. The
closest pair must be at least ε/2 from each other, by
assumption, so any u ∈ M\N has rM(u) ≥ τε/4. Return
now to consider x. For a contradiction, we assume that the
nearest neighbor of x in N was v, but its nearest neighbor
in M is a created vertex u. Then |ux| < |vx|. Given
that |vx| ≤ ε, we know that |uv| ≤ 2ε. By definition,
rM(u) is half the distance from u to its nearest neighbor:
rM(u) ≤ |uv|/2 ≤ ε. Remembering the lower bound on
rM(u), we conclude that ε ≥ τε/4, or equivalently, τ ≤ 4,
a contradiction since we chose τ > 4.

As a corollary, this means that every point x ∈ S is
in the Voronoi cell of some vertex in N, and therefore
Theorem 3.1 holds. Then |M| ∈ O(|N|), assuming N is
an ε-net of S, and that τ > 4. But N is input, so n = |N |:
the volume mesh contains a number of vertices only linear
in the size of the input! We can relax the requirement on τ
by remembering that a τ-well-spaced mesh and a τ′-well-
spaced mesh have size within a constant factor of each
other, where the constant is a function of τ, τ′. This lets
us conclude:

C 4.1. A τ-well-spaced mesh of an ε-net has size
O(n) for any τ and ε.

4.2 Meshing a surface: In mesh refinement for engi-
neering and scientific applications, the input is typically
specified as a piecewise linear complex or a piecewise
smooth complex, made up of a collection of vertices, seg-
ments or curves, and polygons or smooth surfaces (and so
on, in higher dimension). As in the prior subsection, we
assume the algorithm first places a box around the input
complex, then iteratively inserts vertices. In the face of
linear or smooth features, this requires greater care than
before although the details are nearly irrelevant to our re-
sults here. The mesher continues adding vertices until two
conditions are met: that the vertices are well-spaced, and
that the Delaunay triangulation “respects” the input com-
plex. In the case of piecewise linear complexes, we say a
triangulation respects it if each linear facet appears as the
union of a set of Delaunay simplices [Rup95, She98]. In
other words, the Voronoi diagram of surface vertices cov-
ers the input. There is an analogous condition for smooth
complexes [CDR07, RY07].

The analysis of algorithms that mesh complexes typ-
ically rely on a notion of a local feature size defined by

the surface S rather than by a set of points. To reduce
confusion, we use lfs(x) to denote this local feature size
function. For our purposes, we require that the local fea-
ture size be defined on S, and extended to the entire do-
main via the minimum 1-Lipschitz function: at x ∈ Ω\S,
lfs(x) ≡ miny∈S lfs(y) + |xy|. This is within a factor of
three of Ruppert’s more traditional local feature size func-
tion defined on linear complexes, but extends more eas-
ily to smooth complexes. Most mesh refinement algo-
rithms arising from the computational geometry commu-
nity guarantee that vertices are not too closely packed: the
algorithm defines a constant γ− such that at every v ∈ M,
rM(v) ≥ γ− lfs(v).

L 4.3. For all x ∈ Ω, fN(x) ≥ γ−

1+γ− lfs(x).

Proof. For the lower bound on fN , consider a point x in
the domain. It lies in the Voronoi cell of some vertex
v ∈ M. Since local feature size is 1-Lipschitz, lfs(x) ≤
lfs(v) + |vx|. By the assumption on the algorithm, rM(v) ≥
γ− lfs(v). We also know that the second-nearest vertex to
x is at least as far as max(rM(v), |vx|). Thus we know
lfs(x) ≤ (1 + 1/γ−) fM(x). Finally, removing vertices
can only increase f : fM(x) ≤ fN(x), which proves that
fN(x) ≥ γ−

1+γ− lfs(x).

This shows that M, the mesh output by a typical De-
launay mesh refinement algorithm, is a ( γ

−

1+γ− , τ)-scaffold
mesh for S.

C 4.2. When presented with an input piecewise
smooth or piecewise linear complex for which there exists
a seed, a quality mesh refinement algorithm that outputs
a mesh of optimal size creates a volume mesh M and a
surface mesh N, with |M| ∈ O(|N|).

5 Conclusions
Accounting for scaffolding costs is a pressing question in
the timing and output-size analysis of many mesh gen-
eration algorithms that are used in practice. The Scaf-
fold Theorem shows that these costs are not dominant, as
has so often been assumed without proof in prior work.
This analysis is made applicable to many algorithms by
abstracting the meshing problem to that of simply gener-
ating a minimal well-spaced superset of a vertex-set. This
ignores many of the topological and geometric intricacies
that make meshing algorithms difficult to analyze, while
still preserving enough distribution information about the
vertices to make meaningful statements on mesh-size.

Reflecting on the analysis, the surface vertices are
paramount and the underlying surface itself plays only a
small role in controlling the size of the volume mesh, It is
then theoretically of interest to simply consider the size of
a minimal well-spaced superset M of a vertex-set N ⊂ Ω.



It is well-established that:

|M| ∈ Θ
(∫
Ω

1
f d
N

)

A worst case upper bound on this integral is O(|N| log∆),
where ∆ is the spread of the domain; the ratio of the
diameter of Ω to the closest pair in N. In general,
this bears no combinatorial relationship to |N |. The
Scaffold Theorem provides sufficient conditions (that are
highly relevant in practice) for a setting wherein |M| is
linear in |N|. But these conditions are nowhere near
necessary. It is an interesting question whether there
exist simple necessary and sufficient conditions that will
combinatorially bound |M| when N is given arbitrarily.
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