SIAM 1. COMPLT, @ 1987 Society for Indusinal and Applhied Mathematics
vol. 16, ~o. 1. Februany 1987 = f

SUBLINEAR PARALLEL ALGORITHM FOR COMPUTING
THE GREATEST COMMON DIVISOR OF TWO INTEGERS*

RAVINDRAN KANNANT, GARY MILLER} anp LARRY RUDOLPHE

Abstract. The paper presents a sublinear time parallel algorithm for computing the greatest common
divisor of two integers. Its running time on two n bit integers is O(n loglog n/log n} using the weak
concurrent read concurrent write model.

Key words. parallel algorithm, greatest common divisor

AMS(MOS) subject classification. 68Q99

Introduction. The advent of practical parallel processors has caused a re-
examination of many existing algorithms with the hope of discovering a parallel
implementation. One of the oldest and best known algorithms is Euclid's algorithm
for computing the greatest common divisor (GCD). In this paper we present a parallel
algorithm to compute the GCD of two integers.

Although there have been results in the parallel computation of the GCD of
polynomials (Borodin, von zur Gathen and Hopcroft [2]), the integer case still appeared
to be inherently serial; indeed Brent and Kung [3] achieve a running time of O(n)
with n processors arranged in a systolic array, where n is the number of bits required
to represent the larger of the two input numbers. Although their method is an improve-
ment on the best known serial integer GCD algorithm O(n log® n log log n) by Schon-
hage [10], it still requires n iterations; the parallelism only reduces the bit operations
per iteration.

In this paper we present a sublinear time parallel algorithm to compute the integer
GCD of two numbers on a weak CRCW-PRAM model of parallel computation allowing
concurrent reads but only concurrent writes of the same value. (This model is often
called the common model in the literature.) The time bound is O(nloglog n/log n)
assuming there are n*(log n)? processors working in parallel. This is computed assuming
unit time for each elementary bit operation. Note that since we require concurrent
reads and concurrent writes, our result cannot be used to construct a sublinear depth,
polynomially sized boolean circuit for computing the GCD. This remains an interesting
open problem.

This is the final journal version of Kannan, Miller and Rudolph [7] which contains
essentially the entire contents of this paper. Since the appearance of the earlier version

of this paper, Chor and Goldreich [4] have improved the running time getting rid of
the loglog n term.

1. An overview of the algorithm. Throughout we assume that A and B are the two
{nonnegative} integers whose GCD we want to find; A is the greater of the two and
Is an n bit integer. The basic idea of the algorithm is as follows: in the classical
Euclidean algorithm we replace A with A—gB, where g is the quotient when A is
divided by B. Here, instead, we consider in parallel pA —g,B for p=0 to n, where g,

* Received by the editors September 23, 1985; accepted for publication (in revised form) May 26, 1986.

* Depaniment of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. The
work of this author was supported in part by National Science Foundation grant DCR-8416190.

4 Department of Computer Science, University of Southern California, Los Angeles, California 90024.

§ Department of Computer Science, Hebrew University, Jerusalem, Israel.

7

g R. KANNAN, G. MILLER AND L. RUDOLPH

is the quotient when pA is divided by B. All these integers are between 0 and B. By
the pigeon-hole principle, there are at least two that agree on leading log n bits. Thus
their difference is a nonnegative integer with at most (n —log n) bits. If we can replace
A by their difference then we would reduce the problem size by log n bits during each
two iterations thus requiring O{n/log n) iterations. There are two problems with this
idea: (i) The GCD of A and B may be changed by the replacement and (ii) it is unclear
how to execute the whole process in sublinear number of bit operations—a naive
implementation would require O(log n) time for each iteration! We solve both these
problems by a more complicated scheme.

The first problem is fixed (Lemma 1 stated below) as follows: we show that if
GCD (A, B)=g and GCD (pA—gB, B)=h, then g divides h and furthermore, h/g
divides p. Since p is at most n, the only extra factors that are introduced into the GCD
when we replace A, B by pA—gB, B are made up of powers of primes between 0 and
n. At the outset of the algorithm, we remove all common prime factors of magnitude
at most n between A and B (in O(log n) time) and then we run the entire algorithm.
Now clearly, at the completion of the algorithm, the extra factors introduced in the
GCD by the replacement can be removed quickly. Prime factors of magnitude at most
n are referred to as “small” factors throughout.

The second problem involves more complications. We want to find P, 9, with p
between —n and n such that pA —g,B is an integer with at most (n —log n) bits. We
thus need pA —g,B to satisfy

0=pA-g,B<min (B,2""'e "),

We make an important observation: we need only to know the O(log n) most
significant bits of A, B to find a p and a g, that “nearly” satisfy these conditions.
Moreover, p and g, will be no larger than n in absolute value. Thus it appears that
we need to deal only with O(log n) bit numbers at each iteration. But if we update at
the end of each iteration, the update will cost O(log n) parallel time which is too
expensive. To avoid this, the algorithm will proceed in O(n/(log n)?) phases. Each
phase will consist of O(log n) iterations. During each phase we deal only with the
leading O((log n)?) bits of A and B. We record in a unimodular 2x 2 matrix T the
transformations we have performed during the phase on the vector (AB). At the end
of the phase the entries of the matrix T are O((log n)?) bit numbers. We now perform

the transformation given by T on the actual vector (AB) considering all the bits of ,

the integers and then proceed to the next phase. The updates at the end of every phase
cost O(log n) time (since we deal with the whole n bit integers), but since there are
only O(n/(log n)?) phases this costs only O(n/log n) time on the whole. Inside each
phase, we deal only with O((log n)?) bit numbers and thus arithmetic operations take
O(log log n) time. Thus we spend O(log log n) time to chop off each O(log n) bits,
giving the overall time bound of O(n log log n/log n). :

2. A sublinear-time, parallel integer GCD algorithm. In this section we present
the theoretical foundations as well as some of the algorithmic details of the GCD
algorithm. We let A and B denote the two integers whose GCD we wish to compute.
Throughout this paper, we ensure that A= B > 0. At the outset we set n equal to the
number of bits required to represent A, the larger of the two input numbers, and keep
it fixed.

This section begins with three lemmas. The first characterizes how the GCD of A
and B changes when A is replaced by the value (pA—gB). The second lemma gives

the details of our application of the pigeon-hole principle to reduce the number of

P

GREATEST COMMON DIVISOR 9

bits during an iteration. A third lemma is concerned with the situation in which A is
much larger than B.

Lemma 1. Ifg=GCD (A, B); h=GCD (pA—gB, B) then g divides h and (h/g)
divides p.) :

Proof. Since g divides A and B, it clearly divides h. Let

y=cop (22-22,2)
g g 8
then
h'=GCD (p;é,_B)
g &
But A/g and B/g have no common factors. So h’=GCD (p, B/g). Hence h'|p and
further h'=h/g. O

LemMa 2. If a, b and n are positive integers and a = bn then there exist integers p
and g not both zero such that |p|=nb/a, |g|=2n and 0=pa—gb=a/n.

Proof. Consider all the integers p satisfying 0= p = nb/a. For each such p, there
obviously exists a unique g such that 0= pa —gb <b with |g| = n. (g is of course the
quotient when pa is divided by b.)

There are |bn/a]+1 distinct such pairs (p, g). In addition, take the pair p=0,
g = —1 which is distinct from the rest and satisfies 0= pa — gb = b. This makes a total
of |bn/a]+2 pairs p, g with 0= pa—gb = b. Thus, by the pigeon-hole principle, there
are two values p,a —g,b and p,a —g,b such that '

b
lbn/a]+1~ bn/a

0=(pia—q,b)—(pa—q;b)=

_a
n ?
where p, # p,. The combination

(pr—p)a—(g,—q,)b

satisfies | p, — po|= nb/a and |q, — g,|=2n and is the desired result. O

Let #X indicate the number of significant bits of X, not counting leading zeros.

LEmMMA 3. Suppose # B =1and #A=k+1 where k is positive. Then the quotient
when A is divided by B can be found approximately (with an error of at most +3) using
only the leading min (2k, k+1) bits of A and the leading min (k, I) bits of B.

Proof. The case when I =k is trivial because in this case the lemma allows us to
consider all the bits of A and B. So assume that /> k.

Let
B=2"*B'+B"
where 0= B"<2'"* and B’ comprises the leading k bits of B.
Also let -
A=2"* A+ A"

where 0= A”<2'"* and A’ comprises the leading 2k bits of A.
Suppose g’ is the quotient and r’ the remainder when B’ divides A’. Then

A'=¢g'B'+r, O0srsB-1<2"-1.
Then
{‘} 2’_kA'=q,(zlLkB')‘*'z,_kr',
A<, Bzl

10 R. KANNAN, G. MILLER AND L. RUDOLPH

Thus g'< 22~k 12 9kn1 £ o (%),
A=2.‘w&Al+Aﬂqu(2.‘-kBr+ B;i)+2.’—krr+An_quu’
i.e, A=g'B+r where —2/* < r<2f*— 42t =ot
Since Bz 271,

-4B<r<2B.

by long division since we have to deal only with O(k) bit integers. In the algorithm,
we will apply such a long division whenever % 4 — # B =k exceeds (log n)*+1. Then
we replace A, B by B, r in the proof of the lemma. Thus we have chopped off at least
(log n)* bits off A in O(loglog’ n) time which preserves our ratio of time to number
of bits chopped off to at most 1/(O(log n)).

The remainder of this section presents the algorithmic details. The maijn program,
“IntegerGCD," is first presented and followed by the required procedures. We will
use two low-level subroutines: one for normal division and the other for selecting out
of a set elements one that has a particular property. Since parallel algorithms for both

Given two integers, A, B each at most n bits long, this algorithm computes their

GCD using at most (nlog n)* processors executing in parallel. We make use of the
notation:

* #X indicates the number of significant bits of X, not counting leading zeros.

If X is a matrix, then it indicates the number of bits in the largest entry of the
matrix.

® X[h:1] indicates the h—[+1 bits of X from the low order Ith bit to the high
order Ath bit. That s, | X /2'| mod 2"*'. The least significant bit is the zeroth bit.

PROGRAM IntegerGCD(A4, B):

The procedure takes as input two positive integers A, B, ensures that A= B at the

start and maintains these conditions until it has found the GCD of A and B. Once

nonnegative—one or both of them could be zero.
1: If A<B then swap them.
2: n<the number of bits of A /*n is never chariged*/
3: I #B=2(log n)? then begin :
4: Find C = A(mod B) by long division
Now C and B are both 2(log n)? bir integers

5: ' Find by usual serial Euclidean algorithm the
GCD of C and B and return this,

6: Exit

7: end

8: Remove common small factors from A and B,
and call the product of these factors SF

9: Remove small factors from A and from B.

10: repeat

11: DoAPhase (A, B)

s st s

P

Shat b

GREATEST COMMON DIVISOR - 11

12: until #B<2(logn)’

13: Remove small factors from A and from B.

14: Find C = A(mod B) by usual long division.

15: Run the serial Euclidean algorithm on C, B to get g'.
16: GCD<SF=g'

END OF GCD

PROCEDURE DoAPhase (A, B)

Given A and B, each with at least 2(log n)® bits, with A= B> 0 this procedure
will return two new values for A and B, say A,., and B,.,,, with the properties
that (i) the sum of the number of bits of Apc. and B,.. is at least (log n)’ less
than the sum of those of A and B and that (ii) the GCD of A and B differs from
. the GCD of A, and B, by at most some small prime factors.

If the magnitudes of A and B differ by a lot then procedure LongDivide is
| called. Otherwise the procedure DoAnlteration is called at most log n times with
' the matrix T used to record the corresponding transformations to A and B.

1: me#A; s<2(logn)’ '

2. if #A—-#B>(logn)’+1
3 then LongDivide (A, B)
4 else

5: a<Alm:m—-s+1]

6: beB[m:m—-s+1]

7; T « Identity Matrix -
8 endsize « #a+#b—(log n)’
9; repeat

10: DoAnlteration (a, b, T)
11: until (#a + % b < endsize)

o (3)r(2)

13: Replace A, B by their absolute values.

14: if A< B then swap their values.
/*Steps 12 through 14 are the only places A, B are changed®/
/*We obviously have A= B at the end of step 14%/

END PROCEDURE

PROCEDURE LongDivide (A, B)

Instead of performing a full division of A by B, we only divide the most
significant 2k bits of A by the most significant k bits of B (see Lemma 3).
Assume #B+(logn)*+1<#A.

l<#B

k<~#A-#%B

a < most significant min (2k, k+ 1) bits of A
b < most significant min (k,) bits of B

g+ |a’b] /*by long division*®/
C«A-gB >

if C<0then C« C+4B

A< B

B« C
END PROCEDURE

PROCEDURE DoAnlteration (a, b, T)

12 R. KANNAN, G. MILLER AND L. RUDOLPH

Given a and b that are both O((log n)?) bits and each at least (log n)? bits,
this procedure returns two new values for @ and b whose sum of significant bits

is at least log n less than it was upon entry. The transformations to a and b are
recorded in the matrix T.

1: ifa/bz=n _
/*NOTE: actual test is a = nb*/
2: then Find a g such that g= |a/b]
3 p<l1
4: else Find a pair (p, q), where |p|=nb/a
and |g|=2n, such that
0=pa—gb=a/nm [*cf. Lemma 2*/

0 1
3: T«—()T
P —q

()G -0)6)

END PROCEDURE

e

3. Analysis of the algorithm. The bulk of the algorithm is performed by DoAnlter-
ation. In analyzing both the overall running time of the algorithm and its correctness
we need to estimate how much smaller a and b are after each call of DoAnlteration
as well as how much larger are the entries of T. Let # T equal the maximum number
of bits in any entry of T. We next state some properties of the functioning of the
procedure DoAnlteration.

LEmMMA 4. Let n be the number of bits of the larger of the two positive integers at
the start of the algorithm. When each call of DoAnlteration is made, a= b= 208"}
and the call _

(i) decreases the sum of their number of bits, i.e. 4 a + % b, by at least log n — O(1),
and

(ii) increases the sum # T+ #a+ % b by at most O(1).

Proof. Note that if C and D are integers then #(CD)=<#C+#D and if they
are 2 x2 matrices then #(CD)=#C+ # D +1.

We divide the proof into two cases depending on whether line (2) or line (4) of
DoAnlteration is implemented in this call. Suppose it is line (2) which is implemented,
then the decrease in #a+#b will be

(#a+#b)—(#b++#(a—gb))=#a—#b=logn—0(1)

which gives (i). Since T will be multiplied by a matrix whose largest entry in absolute
value is ¢ we can conclude that # T, =< # T+ #¢+ O(1). Thus, # T increases by at
most # g+ O(1) while #a+ #b decreases by at least # g+ O(1). This gives (ii) in the
case when line (2) is implemented.

Suppose, instead, that line (4) is implemented. By Lemima 2, line (4) will find a
pa — gb that satisfies (i) and where p and q are no more than log n bits. So, looking
at step 5 of DoAnlteration, we see that # T will be increased by at most log n+ 1 bits
and so (ii) is satisfied. 0O

We next consider procedure DoAPhase. Due to the if statement in line 2 of
DoAPhase, when line (12) in procedure DoAPhase is implemented, we know that

1) it has called DoAnlteration at most log n+ O(1) times,

2) the entries in T are small, i.e.

#T=(log n)?

GREATEST COMMON DIVISOR . 13

as argued in the proof of Lemma 4,

3) and the sum of the bits in a and b has decreased by at least (log n)? bits.

Lemma 5. Each execution of the procedure DoAPhase with parameters A and B
with A= B>0 and #B=2(log n)? will decrease % A+ 4 B by at least (log n)>.

Proof. If # A—# B> (log n)*+1 then LongDivide will be called and we get the
desired decrease in bits. We may assume that A= B and #A—# B = (log n)’. Note
that the latter condition is equivalent to (log n)2= #b (see line (6) of DoAPhase). Let
m=#A and s =2(log n)’. Let a’ and b’ be the low order m —s bits of A and B that
remain after removing a and b, i.e. a'= A[m—s:0] and b'= B[m —s:0]. Thus, A=
a2 *+a’ and B=b2""*+b". Let T be the matrix on line (12) and

i (e)=7(;)
1(5) =)+ ()

Since # T=(log n)’ and #a'=#b"=m—s, we have that

#(T(g:)) =m-s+(logn)’+1.

Thus, a’ and b’ only affect the lower half, (log n)*+1 bits, of the most significant
2(log n)? bits of A and B. In order to finish the proof we need to show that

Thus,

(=*) (#a+ #b)—(m,+m,) = (log n)’
where
m, = max (# dpew, (log n)%),
my = max (# by, (log n)?).

We must use the maximum in the equation (**) since decreasing either #a,.., or
b, below (log n)? will not in general decrease the number of bits in A,., or B,..,
because of the carry from the low order terms. Initially #a=2(log n)? and # b may
be smaller. But after the first call of DoAnlteration a will be replaced by an integer
with = #%b bits. Thus #a,.., # b, = #b. There are three cases to consider:

Case a,.,, = (log n)*. Since #a=2(log n)*, we get:

(#a+#b)—(m,+my)=(log n)*+(%b-m,)
using the fact that #b=m,,

=(log n)>.

Case b, = (log n)>. Similar to previous case.
Case #a,,., and #b,., = (log n)’. Thus the maximums in equation (**) can

be replaced with #a,., and #b,., reducing equation (**) to fact 3 (stated before
Lemma §).

) 4. Analysis of running time. We now show that the algorithm requires parallel
time O(n log log n/log n). It is clear that the repeat loop of the main program is
¢xecuted at most n/(log n)? times, since each iteration removes at least (log n)? bits
from the sum of the bits in A and B (Lemma 5). We must show that each execution
of the repeat loop takes no more than O(log n log log n) parallel time. This is done

14 R. KANNAN, G. MILLER AND L. RUDOLPH

by starting with the analysis of the innermost operations of DoAnlteration and then
working our way out. The proofs of the following lemmas also indicate where the
parallelism is needed.

We first review some of the known results for integer arithmetic operations
performed in parallel. Integer addition of two n bit numbers can be performed in
O(log n) time using n processors (Ladner and Fischer [8]). Integer multiplication also
requires only O(log n) parallel time with. nloglog n processors (Schonhage and
Strassen [11]). Integer division too can be done in parallel time O(logn) with a
polynomial number of processors, but the result is much harder (Beame, Cook and
Hoover [1]). In fact, we do not need such fancy parellel division algorithms, we just
require an O((log n)°) algorithm using n” processors. This was earlier obtained by
Cook [5].

At many points in the algorithm, we are required to choose a value or a pair of
values from a set that satisfies a certain condition. It is easy to see that with enough
processors, all the values in the set can be tested in parallel; however, in our weak
model of parallel processing, simultaneous writes are allowed provided that all the
processors write the same value. Thus if the set contains O(n) items and many of the
elements may satisfy some desired condition, O(log n) time may be required to choose
any one such element. Fortunately, if there are n” processors then these selection
processes can be done in the time it takes for a comparison as follows.

Briefly, the maximum of n can be chosen with n” processors by recording the
results of all pairwise comparisons in a matrix: M[i, ;] is set to true if a;>a, or if
(a,=g; and i>j). The row containing all trues corresponds to the maximum element.
Since there will be only one such row, this row can be identified in constant time. In
our GCD algorithm, we wish to select one of a set of elements in constant time. If a
value satisfies our requirement, we tag it with a 1 otherwise with 2 0. An element can
then be chosen in constant time since the comparison will take only constant time (if
a; = a; then the processor “knows™ if i>j). (Frieze and Rudolph [6] give a parallel
algorithm that implements such a selection in constant time, with a high probability,
with only n processors.)

Lemma 6. Each call to Procedure DoAnlteration can be executed in O(log log n)
parallel time using n’(log n)’ processors.

Proof. We assume that the two integers, a, b, contain at most 2(log n)’ bits. Line
(1) is accomplished by a multiplication of two numbers of no more than 2(log n)? bits,
thus requiring no more than O(loglog n) time. Lines (2) or (4) can also be done in
this time bound by assigning (log n)* processors to each of the at most n? equations
*pa —qb” in the case when line (4) is executed and to each of the n equations “a — bg"
in the other case. The multiplication requires at most O((log n)?) processors and can
be computed in Jogarithmic time in the number of bits, i.e. O(loglog n) time. Only
one (p, q) pair is needed; however, there may be many such pairs. For each p there
will be only one g that satisfies the condition that pa—gb < b and thus there are at
most only O(n) pairs to choose from. The selection can be done in constant time by
the above outline with n? processors.

Lines (5) and (6) can be computed in O(loglog n) time since the entries in the
matrices are no more than O((log n)?) bits. O

Lemma 7. Procedure LongDivide can be executed in O(log n) time using no more
than O(n) processors.

Proof. We show that each line can be executed within the required time bounds:

Line (1) can easily be computed using a binary fan-in tree and n processors in
O(log n) time.

GREATEST COMMON DIVISOR 15

Lines (2) and (3) take constant time to identify the appropriate bits.

Line (4), the division of a 2k bit number by a k bit number can be done within
O((log k)*) time with k processors.

Line (5) is simply a multiplication of a k bit number by an r bit number and this
1akes no more than O(log n) parallel time with n processors. The subtraction is also
done within this time bound. O

LEMMA 8. An execution of the procedure DoAPhase requires O(log n loglog n)
parallel time, using n*(log n)* processors.

Proof. This procedure may invoke the procedure DoAnlteration or the procedure
LongDivide and thus depends on the previous two lemmas. In a manner similar to
the explanation in the previous proofs, line (2) requires only O(log n) time using n
pTOCCSSOTS.

Bb- Lemma 3 it is clear that procedure DoAnlteration is not called more than log n
times.|

lj'xeculing line (10) is also within the time bound since A and B have at most n
bits each and the entries of T each are at most (log n)* and thus the multiplication
1akes at most O(log n) parallel time using n processors. D ’

Tueorem 1. The GCD of two integers, each representable in at most n bits requires
parallel time O(n log log n/log n) using n*(log n)? processors.

Proof. The time bound follows from the previous lemmas provided we can remove
the common small factors in O(n/log n) parallel time. All small primes, i.e. less than
n, can be identified quickly as follows: For each p=n assign n log n processors to
check that no number up to v/p divides p. After all the small primes have been identifieq,
all their powers, p' for i =n, are computed in parallel. Finally, for each power for
each prime, pj, we check to see if p; is a factor. For each j the maximum i is then
chosen as described above.

Since we can identify all small prime factors of an n bit number in O((log n)?)
time, the theorem follows. O

5. Conclusion. To summarize, the two salient features of the algorithm are: the
observation based on the pigeon-hole principle that we can easily find an integer
combination of the two integers A and B which has fewer bits than n and the idea of
working in phases so as to perform arithmetics on n bit integers only once every phase,
the more frequent operations being performed on O((log n)?) bit integers. It appears

that yet another approach is needed if the GCD is to be computed in poly-log parallel
time.

REFERENCES

1] P. W. BLaME, S. A. COOK AND H. J. HoOVER, Log depth for division and related problems, 25th
Annual Symposium on the Foundations of Computer Science, October 1984, pp. 1-6.

[2] A. BOrRODIN,]. vox ZUR GATHEN anD J. HOPCROFT, Fasi parallel matrix and GCD compuiations,
23rd Annual Symposium on Foundations of Computer Science, November 1982, pp. 65-71.

[3] R. P. BRENT AnD H. T. KUNG, Systolic VLSI arrays for linear time GCD compurarion, VLS 83,
International Federation of Information Processing, 1983.

[4] B. CHOR AND O. GOLDREICH, An Improved Parallel Algorithm for Integer GCD, MIT Laboratory

‘ for Computer Science, Cambridge, MA, April 1985, to appear.

[5] S. A.CooK, The classification of problems which have fast parallel algorithms, Lecture Notes in Computer
Science, Vol. 158, Springer-Verlag, New York-Berlin-Heidelberg, 1983. ;

[6] A Fritze anp L. RUDOLPH, A parallel algorithm for all pairs shortest paths in a random graph,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1984.

16 R. KANNAN, G. MILLER AND L. RUDOLPH

[7] R. KANNAN, G. MILLER AND L. RUDOLPH, Sublinear parallel algorithm for computing the greatest
common divisor of two integers, 25th Annual Symposium on Foundation of Computer Science,
October 1984, pp. 7-11. © IEEE.

[8] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27 (1980),
pp. 831-838.

[9] J. RE1F, Logarithmic depth circuits for algebraic functions, 24th Annual Symposium on Foundation of
Computer Science, November 1983, pp. 138-145.

[10] A. SCHONHAGE, Schnelle Berechnung von Ketienbruchententwicklungen, Acta Inform., 1 (1971),

pp. 139-144.

[11] A. SCHONHAGE AND V. STRASSEN, Schnelle Multiplikation grosser Zahlen, Computing, 7 (1971),
pp. 281-292, ’

