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1 Introduction

In this paper we consider the problem of dynamic evaluation of a straight line pro-
gram in parallel. This is a generalization of the result of Valiant, Skyum, Berkowitz,
and Rackoff [VSBR]. They consider the problem of taking a straight line program
and transforming it into a program of ‘shallow’ depth. Their transformation is per-
formed by a sequential polynomial time algorithm. We show how to construct this
‘shallow’ program with at most the same size and the same time bounds on-line,
no preprocessing, as their off-line algorithm.

We consider two basically equivalent models of evaluation over a semi-ring:
straight line programs and arithmetic circuits. In the introduction we will restrict
our discussion to the former model while most of the rest of the paper will deal
with the latter model. A straight line program over a commutative semi-ring R =
(R,+,%,0,1) is a sequence of assignment statements of the form a «— b+ ¢ or
a +— b X ¢ where b and c¢ are either elements of R or previously assigned variables.
We will assume that the semi-ring operations can be performed in unit time. Let
M(n) denote the number of processors required to multiply two n x n matrices in
log n time over the semi-ring R [AHU,CWbh].

A special case of a straight line program is a Boolean circuit. Ladner has shown
that the Boolean circuit evaluation problem is P-Complete [Lad|. It is therefore
believed that this evaluation problem is not in NC [Coo|. In this paper, we show
that circuits of degree d and size n (we define the degree of a circuit in Definition
2.3) can be evaluated in time O(logn(lognd)) using M(n) processors. The crucial
difference between this result and the result in Valiant, Skyum, Berkowitz, and
Rackoff [VSBR] is that our algorithm need not know the degree of the circuit in
advance. As a nontrivial application of our procedure we can also compute the
degree of a circuit in the above time and processor bounds. This follows because
the operations of maximum and sum form a commutative semi-ring over the non-
negative integers. We know of no other parallel algorithm for computing the degree
that satisfies the above time and processor bounds.

2 Preliminaries

We view a straight line program as a special case of a more general object, an
arithmetic circuit. Our results are more easily applied to arithmetic circuits:
Definition 2.1 An arithmetic circuit ts a edge-weighted directed acyclic graph
(DAG) (where the weights on the edges are from the semi-ring R) satisfying the
following conditions:



e Fach node ts labeled as one of three types: a leaf, a multiplication node, or

an addition node.

o Leaves are assigned a value in R, denoted value(v) for a leaf v.

e The indegree of a leaf node is zero, a multiplication node is two, and an

addition node s nonzero.

e All edges are directed away from leaves.

o There are no edges from multiplication nodes to multiplication nodes.

Note that any circuit can be modified to satisfy the last condition by simply
adding a dummy addition node of indegree and outdegree 1 in the middle of each
edge that connects two multiplication nodes. We say an edge is a plus-plus edge if
it connects two addition nodes. The size of an arithmetic circuit U is the number of
nodes in U. The subcircuit evaluating v, denoted by U,, is the subcircuit induced
by all nodes that are contained on some path to v. A node w is a child of v if there
exists an edge from w to v. A node of outdegree 0 is called an output node.
Definition 2.2 We define the value of each node v in an arithmetic circust U, by
induction on the size of U,. The value for a leaf is given by the definition of an
arithmetic circurt. If the node v 1s an addition node with children vy,...,v; then
the value of v is defined by:

value(v) = Zk:value(v;) - U(vs,v)
i=1

where U(vi,v) 1s the weight on the edge from v; to v. If, on the other hand, v is an
multiplication node with children v, and v,, then

value(v) = value(vy) - value(vs) - U(vy,v) - U(vs,v).

We will restrict our attention to circutts where any edge entering a multiplication
node has weight 1. All the algorithms in this paper preserve this restriction. Thus,
the value of the multiplication node v ts value(vy) -value(vs). The value of a circuit
18 a vector of all its node values.

Given a straight-line program, we obtain its arithmetic circuit by constructing
a node for each statement and for each input variable, and an edge from node ¢ to
node j if 7 is a statement that uses the variable evaluated at statement :. All edge
weights are set to 1, and nodes corresponding to input variables are given values
assigned to the corresponding variables.
Definition 2.3 The (algebraic) degree of a node in an arithmetic circuit is defined
inductively: a leaf has degree 1, an addition node has degree equal to the mazimum
degree of its children, and a multiplication node has degree equal to the sum of the
degree of its children. The degree of an arithmetic circuit 1s the mazimum over the
degree of its nodes.



3 The Algorithm

In this section we describe our algorithm for arithmetic circuit evaluation. The
value of the circuit will be obtained by repeated application of a procedure called
Phase. This procedure takes as input an arithmetic circuit and returns a new
circuit with the same nodes such that every node will have the same value as
before. Repeated application of Phase will eventually return with the value of the
circuit.

In a natural way an arithmetic circuit can be viewed as an upper triangular
matrix U with zero diagonal where the entry U;; is the weight on the edge from node
v; to node v; if the edge exists and it is zero otherwise. We need three submatrices
derived from U:

U;; if v; and v; are addition nodes
Ui+, Tlg= { 0 otherwise

__ | Uiy if v; an addition node
A= { 0 otherwise

0 otherwise

U(X,X)i = { Ui; if v; or vj is not an addition node

The matrix U(+,+) corresponds to the subcircuit containing only plus-plus
edges, while U(X, +) corresponds to the subcircuit containing any edge terminating
at an addition node. While the matrix U(X,X) corresponds to the subcircuit
containing those only edges such that at least one end node is not an addition node.
Thus U(+,+) + U(X, X) = U. We can now define the procedure Matrix Multiply
(MM). The procedure uses one matrix multiplication and one matrix addition
over the semi-ring R. Thus, it can be performed in O(logn) time using O(n%°)
processors for many semi-rings. In Figure 1 we give an example of procedure M M.

Procedure MM(U)
U<—UX,+) U+, +)+U(X,X)

We need two more procedures called Plus Evaluate (Evaly, see Figure 2),
and Multiplication Evaluate or Shunt (Evaly, see Figure 3). The first of these
procedures simply evaluates an addition node if all its children have been evaluated.
The first part of the second procedure evaluates a multiplication nodes if both its
children have been evaluated. The new idea is the second part of the procedure
which we call Shunt. Here we do partial evaluation of a multiplication node when
only one of its two arguments has been evaluated. Figure 4 shows the effect of
applying EV ALy to a circuit. Leaves are denoted by square boxes and nonleaves
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Figure 1: An Arithmetic Circuit before and after an Application of Procedure M M.

by circles. The value of each leaf is written in its box and the weight of an edge is
written along side it. The left circuit is before Evaly and the right is after Evaly.
Zero weight edges have been removed.

The procedures Fval,, Evalx and MM can all be performed on a PRAM in
O(logn) time. The processor count for MM is the number of processors required
for matrix multiplication for the particular semi-ring of the circuit. Procedures
Eval; and Evaly need only O(n?) processors. To see that Evaly can be performed
with O(n?) processors note that the number of terms Fj;; in line (*) is at most
the number of edges. Thus we simply sort these terms on their key (I,z) using
say a randomized parallel bucket sort [Rei] or a deterministic comparison based
sorting algorithm [Col,AKS] and then sum the terms using parallel list-ranking
[MR,Vis,CV,AM]|.

It is interesting to point out a strong analogy between the procedures Rake
and Compress used to evaluate expression trees, see [MR], and our new procedures.
One can view FEval, and Fval. as removing the leaves of an arithmetic circuit, i.e.,
Rake; while Matrix Multiplication, MM, ‘compresses’ addition chains, a natural
generalization of Compress [MR]. In fact the Eval« is a combination of a Rake
and a Compress step since it removes leaves in the first part and does a partial
compress in the second part.

Another analogy can be made between Top-Down algorithms and Bottom-Up
ones. Brent gave a Top-Down parallel algorithm for expression evaluation [Bre].
While Miller and Reif gave a Bottom-Up parallel algorithm for the problem [MR].
On the other hand, Valiant, Skyum, Berkowitz, and Rackoff gave a Top-Down



parallel algorithm for arithmetic circuit evaluation [VSBR|. While in this paper we
give a Bottom-Up parallel algorithm for this problem.

Procedure Eval,(U)
for all addition nodes v; whose children are leaves do
value(v;) «— XL, value(v;) - U
Set v; to a leaf
Ujj — 0forie {1,...,n}
od

Figure 2: The Procedure Plus Evaluation.

Procedure Evaly(U)
for all multiplication nodes v; with children v, and v; both of which are leaves
do
value(v;) «— value(vi) - value(v)
Set v; to a leaf
Uij < 0and U;; + 0
od
for all Uj; where v; is a multiplication node with children v; and v,
and v, is a leaf and v; is not do
Fiji — value(vg) - Uy
od
for all pairs (/,7) do
Wi — 3 Fijs *)
U «— U+ Wy
Uj,; «—0
od

Figure 3: The Procedure Multiplication Evaluation or Shunt.

We combine these three procedures, MM, Evaly, and Ewvaly, into a single
procedure Phase that we will repeatedly apply until the value of the arithmetic
circuit is returned:

Procedure Phase(U)
do
Ue— MM(U)
U « Evaly(U)



U « Evaly(U)
od

To show that Phase is correct (sound) it will suffice to prove the following
Lemma.

Lemma 3.1 The procedures MM, Eval,, and Evalyx applied to an arithmetic
circuit return new circuits with the same value.

The proof of the Lemma follows by a straightforward proof by induction on the
size of U, using the associative, commutative, and distributive properties of K.

In Figure 5 we show the effect of applying the different procedures to a circuit.
We represent leaves by square boxes and addition or multiplication nodes by circles.
All isolated nodes have been deleted and edge weights have been ignored. We start
with the circuit (a) and apply procedure MM obtaining circuit (b), to which circuit
(b) we apply procedure Eval, obtaining circuit (c), to which we then apply Evaly
obtaining circuit (d).

Figure 4: An Arithmetic Circuit Before and After an Application of Procedure
Fuval.

4 The Height of an Arithmetic Circuit

In this section we define the height of a node. This notion is the main tool we shall
use to analyse the procedure Phase. In Theorem 4.2 we will prove an upper bound
on the height in terms of the size and the degree of a circuit. We will show in the
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Figure 5: An arithmetic circuit after successive application of the procedures: MM,
Eval,, and Evaly.

next section that every application of Phase reduces the height of the circuit by a
factor of approximately one half. The above two facts prove the main theorem of
this paper.
Definition 4.1 The height of a node s defined inductively:
1. A leaf has height 1.
2. A multiplication node has height equal to the sum of the heights of its children.
3. If v is an addition node then the height of v equals maz(a + 1/2,m) where a
equals the mazimum height of any child of v which is an addition node, and
m equals the mazimum of the heights of the children which are either a leaf
or a multiplication node.
The height of a circuit U is the mazimum height of any node in U.



We say a child w of an addition node v is dominant if either w is a multiplication
node and h(v) = h(w) or it is an addition node and h(v) = h(w) +1/2, i. e., the
height of w determines the height of v. We can now prove the upper bound on the
height of a circuit.

Theorem 4.2 If U 1s an arithmetic circuit of degree d and e is the number of
plus-plus edges then the height of U < (1/2)e-d + d.

Proof: The proof is by induction on the number of nodes n in the subcircuit
U,. We start with subcircuits of size one, leaves. The height of a leaf is one which
is clearly less than or equal to e + 1. Suppose the theorem is true for subcircuits
of size < n. We show the theorem holds for circuits of size n + 1. Let U, be a
subcircuit with n 4+ 1 nodes. Let vy,...,v; be the children of v having degrees
di,...,dr and heights h;,..., hi, respectively. The subcircuits evaluating vy, ..., v;
are of size < n. Therefore, by induction h; < 1/2€'d; + d;, for 1 < ¢ < k, where €' is
the number of plus-plus edges in U,,. There are two cases: v is either an addition
node or a multiplication node. We treat the two cases separately.

First, suppose that v is a multiplication node. The degree d of v equals d; +
-++ + d; and the height, by induction, is < Y ,(1/2)e'd; + d; which is equal to
(1/2)e'd + d. Thus the theorem holds in this case, since ¢' < e. Second, suppose
that v is an addition node. Again, there are two cases: either a dominant child is
an addition node or it is a multiplication node. The most interesting case is the
first case. Suppose that v, is a dominant addition node, i.e., by > h;, 1 <1 < k.
Here the degree d of v will be greater than or equal to d;, while the height h =
hi+1/2 <(1/2)e'dy + dy + 1/2 <1/2¢'d + d + 1/2. Since we have at least one
new plus-plus edge we know that ¢’ < e — 1. Thus, h<1/2(e—1)d+d+1/2 =
(1/2)ed — (1/2)d + d + 1/2. Using the fact that d > 1 we get the desired estimate,
h <1/2ed + d. O

5 Analysis of the Algorithm

In this section we use the height of a circuit to analyse the number of applications
of Phase needed to evaluate a circuit of height h. We start by stating and proving
the main technical lemma from which the main theorem will follow. Recall that all
procedures defined so far take circuits to circuits. They modify the edge structure
but map nodes to nodes in a one-to-one way. Thus, we may view the procedures as
maps of circuits to circuits which are themselves surjective on nodes. Throughout
this section let U be a circuit and U’ its image under the transformation Phase.
Similarly, if v is a node of U then its image under Phase will be denoted by v'.



Lemma 5.1 If U and U' are arithmetic circuits as above and v' is a node of U'
which is not a leaf and not an output node then the height of v is at least twice the
height of v'.

Proof: Let v' be a node of U’ which is neither a leaf nor an output node. The
proof will be by induction on the size of the subcircuit U!,. We begin with the
case when all the children of v' are leaves. There are two subcases: either v' is an
addition node or it is a multiplication node. First, suppose that v' is an addition
node. We must show that height of v is at least 2, where v is the preimage of v'.
Suppose by way of a contradiction that the height of v is <2. Now, v cannot be of
height 1 because a height 1 node must either be a leaf or all its children are leaves.
Thus, one application of Fval, will transform v into a leaf, a contradiction. If, on
the other hand, the height is 3/2 then all the dominant children of v are addition
nodes whose children are leaves. Thus, after MM and Eval, the node v will be a
leaf and hence v' will be a leaf. This proves the case when v' is an addition node
of height 1.

We next consider the more interesting case when v' is a multiplication node
with both its children leaves. It will suffice to show that both children of v have
height at least 2. Suppose that one child w has height less than 2. In this case,
after MM and Ewval, the node w will be a leaf. Thus after Fval, the vertex v
will either be a leaf or an output node, depending on whether the other child of
v is a leaf or not after Eval;, a contradiction. This proves the initial cases of the
induction.

The inductive case for multiplication nodes is rather straight forward. The
only difficulty arises when one of the two children of v' is a leaf. We handle this by
noting that in the last paragraph we actually proved something slightly stronger.
Namely, if v’ is a multiplication node which is not an output node and w' is a
child of v' which is a leaf then the height of w is at least 2. Thus, induction for
the multiplication nodes follows. We have only to prove the induction for addition
nodes.

Suppose that v' is an addition node. Let w' be a dominant child of v'. If w’ is
a multiplication node the theorem follows easily. Thus, we may assume that w' is
an addition node. It will suffice to prove the following claim:

Claim: The height of w is < the height of v minus 1, i.e., h(w) < k(v) — 1.

Proof of Claim: Note that both v and w are addition nodes. If there is a
path in U from w to v containing two or more edges then the claim follows by the
definition of height. Thus the only path from w to v is a singleton edge. But this is
a contradiction since procedure M M will then remove this edge and the procedures
Eval, and Evaly cannot replace it since there is now no paths from w to v. This
proves the claim and the Theorem. O



By Lemma 5.1 after [log, h| applications of Phase to a circuit of height & the
resulting circuit will contain only leaves and output nodes. Thus, in one more
application of Phase (only Eval; and Evaly are needed) all nodes will be leaves;
the circuit has been evaluated. With a slightly more careful analysis the number
of applications can be bounded by |logsh| + 1. We state this fact as a theorem:
Theorem 5.2 If U s an arithmetic circuit with height h then after |logsh| + 1
applications of Phase all nodes of U are evaluated.

The upper bounds given in Theorem 5.2 are optimal for our procedure Phase.
In Figure 6 we exhibit a circuit Cy, for £ > 2, of height 2¥ — 1/2 which requires
2% applications of Phase. It is not hard to see that C; requires 2 applications of
Phase; and the subcircuit evaluating v contained in Phase(Cr41) equals Cy, for
k>2.

V,

k-1 k

Figure 6: The Arithmetic Circuit C; A Worst Case Example for Phase.

We can now prove the main theorem of the paper:
Theorem 5.3 IfU is an arithmetic circuit of degree d and size n then the value can
be computed in parallel in time O((log n)(lognd)) using at most M(n) processors.

Proof: By Theorem 5.2 procedure Phase need only be applied |logh|+1 times,
where h is the height of U. By Theorem 4.2, h = O(e - d). Thus, Phase is applied
O(log nd) times. Now, each application of Phase requires only logn parallel time.
The processor expensive step is the matrix multiplication in MM, which can be
performed using O(M(n)) processors. a

We give a few simple corollaries to Theorem 5.3. We say a function g(n)
is pseudo-polynomial in n if g(n) = O(n!¢"") for some constant k. That is
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log(g(n)) = O((log n)+1).
Corollary 5.4 To determine if a straightline program has pseudo-polynomaial de-
gree is in NC for each constant k.
Corollary 5.5 The value of a straightline program of pseudo-polynomial degree
can be computed in NC for each constant k where the input values are integers and
operations are addition and multiplication.

To see the last Corollary we observe that the output of a straightline program
of pseudo-polynomial degree has polynomial size in binary in terms of the size of
the program.

6 Open Questions

We know of no similar results for noncommutative rings. We note that for arith-
metic circuits over the ring of n X n matrices one can expand the matrix operations
into the underlying commutative ring operations and apply the methods of this
paper.

Extension of this work to rings with division would also be interesting.

Several new related results have occurred since the original writing of this
paper. Matrix multiplication can now be performed using O(n?3"®) processors,
[CWa]. The ideas in this paper have been extended to more complex domains,
[MT]. Final, an analysis of the main theorem has been found that does do not use
the height metric, [May].
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