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Tarjan has given an algorithm for deciding isomorphism
of two groups of order n (given as multiplication tables) which
runs in O(n(]ngn * 0(1)) steps where n is the order of the
groups. Tarjan uses the fact that a group of n is generated by
log n elements. In this paper, we show that Tarjan technique

generalizes to isomorphism of quasigroups, latin squares, and some

graphs generated from latin squares.
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A group throughout this paper is a Caley table. If G is a
group of order n and we pick some linear ordering of G we can then
view G as a binary function on {1,...,n} and the Caley table as a
nxn matrix consisting of integers between 1 and n. If fact this
table is a latin square (every number between 1 and n appears exactly
once in every row and in every column). On the other hand, latin squares
can be viewed as binary functions; whereas functions whose multiplication
tables are latin squares are called quasigroups.

Giving the definition once more we have: A group is a binary

operation * satisfying 1) and 2).

1) a) 3!x(a*b = x)
b) I!x(a*x = b)
c) I!x(x*a = b)

2) (axb)*c = ax(b*c)

A quasigroup is a binary operation satisfying 1), and a quasigroup
viewed as a table or a trinary relation is a latin square.

For groups or functions it is clear what we mean by isomorphism,
namely, G is isomorphic to G' if there exists a 1-1 onto function g
from G to G' such that g(xxy) = g(x)*'g(y). If we view G and G' as
trinary relations <, , > and <, , > respectively, then we get
<X,¥,z>eG implies <g(x),g(y),g(z)>' ¢ G. Thus, viewing latin squares as
quasigroups we say L and L' are isomorphic if there exists a permutation o
such that if we simultaneously interchange rows, columns, and values in
L we get L'. But this definition is quite restrictive. We know that

independently permuting rows, columns, and values preserves the latin



square properties. Thus, we say two latin squares are isotopic if
we can get from one to the other by independently permuting rows,

columns, and values; see [ 1 1.

Definition: Two latin squares L and L' are said to be isotopnic if there

exists permutations (,B8,y) such that <x,y,z>eL implies <a(x),8(y),v(z)>'el’,

which is denoted by L = L'.

We say that two latin squares L and L' are conjugate if there exists a
permutation o e S3 such that <xy,%,xs>el implies <xa(1) ’Xa(z) ,xa(3)>' el'.
Finally, L and L' are main class isotopic, denoted by L = ML', if we
can get from L to L' by a conjugation and an isotopic map.

Tarjan [ 2 ] observed that since groups of order n are generated
by a set of elements of size at most log,n, group isomorphism can be

done in O(nlogzn * 0(1))

steps. Lipton, Snyder, and Zalcstein [ 3 J,
independently of Tarjan, showed a stronger result; namely, group isomor-
phism can be solved in 0(log%n) space. The 0(log?n) result seems to be
dependent on the fact that groups are associative while the O(n]ogzn * 0(1))
result generalizes to quasigroups:

Theorem 1: Quasigroup isomorphism can be solved in O(n]ngn +0(1)

) steps.
Proof: Property la) says the binary operation is a well-defined function.
Now, 1b) and 1lc) give two other well-defined functions associated with

a quasigroup. We shall say that a set of elements generates the quasi-

group if their closure under these three functions is the whole quasigroup.



Thus, using this definition, we prove a generalization of the observa-

tion about the size of the minimal generator set.

Lemma 1: A quasigroup is generated by a set containing at most

logon elements.

Proof: To prove the lemma we need only prove that if H is a proper sub-
quasigroup of G then |G| >2|H|. Pick beG-H. Consider the elements H-b.
Now, all the products are distinct, for if h-b = h'-b where h,h'e H then
h = h' by property 1lc). Secondly, H-b is disjoint from H for if h = h'-b
when h,h'e H then beH by property 1b). This contradicts the fact that
b¢H. Thus, H-beG-H and |H-B| = |H| which proves the lemma.

To finish the proof of Theorem 1 we give a short description

of the algorithm with two quasigroups, G and G', as input:

1) Find a set of generators for G, containing at most
log,n elements, say a15--.5a.
2) For each set of m elements in G', say, {bl,...,bm}
check to see if the map induced by a; »by, l<i<m
is a well-defined isomorphism of G onto G'.
3) If a set of m elements of G' is found in 2) accept;
otherwise reject.
Now consider isotopic latin squares. Using isotopic maps we
can always put the latin square in a "normal" form; namely, the first

row and first column are the sequence 1,2,...,n. This normal form is

not unique. In fact, it is not unique up to isomorphism, but is almost



unique up to isomorphism. Suppose that L and L' are two isotopic latin
squares in normal form and («,8,y) is the isotopic map from L to L'.
Given a permutation a, let a(l) be the transposition (l,a'l(l)). Now
the decomposition of a into (aa(l))(a(l)) splits o into a(l) which may
(1)

move 1 while aa leaves 1 fixed. The following result simply says

that up to choosing who gets to be the identity L and L' are isomorphic.

Lemma 2: Given two latin squares L and L' in normal form which are
isotopic by the permutations <a,8,y> then <a(1),8<1),y(1)>(L) is isomorphic

to L'.

Proof: Now, <a(1),8(1) (1s(1) = v 4s still isotopic to L' by

D) g o gD (1)

<a , ¥ = vy />, and L" is in normal form. We
shall show that in fact o' = B8' = y'. Suppose that v'(V) = W. +v' has
changed the V in column V to a W. Thus, B'must move column V to column W
to insure that the latin square is in normal form. Similarly, o' must

move row V to row W. Therefore o' = g' = y' and the lemma is proved.
Theorem 2: Isotopy of latin squares is decidable in O(n1ogzn * 0(1)) time.

Proof: The algorithm, on input L and L', arbitrarily puts L' in normal
form and then for each of the n2 possible candidates for the identity
it puts L in normal form. Now the algorithm checks if any of these n2
normal forms of L are in fact isomorphic to L'.

Since there are only six ways to conjugate latin squares, we get

that main class isotopy is in time O(n]ngn * O(1)),



Corollary: Main class isotopy of latin squares is decidable in
O(n1ogzn ¥ O(1)) time.

A natural graph associated with a latin square is called a

latin square graph which is defined as follows:

Definition: Given a latin square, say L (&;.), of size n, then the

J
latin square graph associated with L, say G(L), has n2? nodes 9450
1<i, j<n; and the nodes gij and 9, are connected if one of the following

holds:

1) i =k
2) j =2
3) %45 % Yy

Latin square graphs consist of 3n n-cliques (n row cliques, n
column cliques, and n value cliques). Two n-cliques are disjoint iff
they are either different row, different column, or different value
cliques.

Thus we get the following result:

Lemma 3: If L and L' are latin squares, and G(L) and G(L') are latin
square graphs, then L is main class isotopic to L' iff G(L) is isomorphic
to G(L').

If we now give an efficient method of retrieving the latin
square from the latin square graph we will have a O(n]ngn * 0(1))
algorithm for latin square graph isomorphism; namely, retrieve the two

latin squares and check the two latin squares for main class isotopy.



Lemma 4: In 0(n3) steps we can retrieve the latin square from the

latin square graph where n is the dimension of the latin square.

Proof: Let G be a latin square graph on n2 nodes. To construct a
latin square we shall associate each node of G with an element in a

nxn matrix A(ai ) and also assign a value to the nodes or elements.

J

Algorithm:

1) Pick two connected nodes, say x; and X.

2) Find the n nodes common to x; and X,. Now, n-2 of
the nodes are connected to each other, say X3,...,Xp.
Let y, be one of the nodes that is not connected to
X3seeesXne.

3) Associate aj with X3 and set aj = j, l<jzn.

4) Find the clique associated with x; and y,, say
{X1,¥25+++5¥q}. There is a unique matching between
the xi's and the yi's.

5) Order the yi's such that X5 is connected to Yy for
2<iz<n.

6) Associate aj1 with Y; and set ajl = j, 2<j<n.

7) For each of the remaining (n-1)2 nodes of G, do the
following, where W is a remaining node:

a) If W is connected to X; then W is connected to
a unique y, and a unique x;, 2<i, j<n.

J

Set aij

b) If W is not connected to Xs then there exist

to 1.



unique integers k, i, and j such that W is

connected to Yies Xes Yy and Y- Set aij to k.

Using Lemma 4 we get the following theorem.

Theorem 3: Latin square graph isomorphism is decidable in O(n]ngn * 0(1))

steps.
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