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Abstract. This paper includes polynomial time isomorphism tests and
canonical forms for graphs called k-contractable graphs for fixed k.

The class of k-contractable graphs includes the graphs of bounded valerce
and the graphs of bounded genus. The algorithm uses several new ideas
including: (1) it removes portions of the graph and replaces them with
groups which are used to keep track of the symmetries of these portions;
(2) it maintains with each group a tower of equivalence relation which
allows a decomposition of the group. These towers are called a tower of
Tk actions. It considers the canonical intersection of groups.

1. INTRODUCTION

The author, and independently other researchers [FMB80, L180, M180],
have presented polynomial time algorithms for isomorphism testing of
graphs of bounded genus. These algorithms are based on fairly compli-
cated analyses of embeddings of graphs on two dimensional surfaces.
Since then, Luks has presented a polynomial time algorithm for isomorph-
ism testing of graphs of bounded valence [Lu80]. The ideas used in the
bounded valence algorithm are very appealing. They showed relationships
between computational group theory and graph isomorphism. The existence
of a polynomial time algorithm which in a natural way tests isomorphism
of graphs of bounded valence and bounded genus has been an open gquestion
[Ba8l]. We show that the class of graphs, called the k-contractable
graphs, contains the graphs of bounded genus. They trivially contain
the graphs of bounded valence. Therefore, these graphs form a common
generalization of the two classes. We give a polynomial time algorithm
for testing isomorphism of these graphs.

More recently, several authors [BL83, FSS83] have shown that graphs
of bounded valence have p-time constructable canonical forms. We also
show how these ideas can be extended to the k-contractable graphs.

We give the first of several definitions of k-contractable graphs.
Later definitions of k-contractable graphs will enlarge the class of
graph which will also be called k-contractable for each k. Consider the
following three operations on a graph, G.

*This work partially supported by NSF Grant MCS 800756-A01.
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The first operation, removing leaves, simply removes all leaves and
their associated edges. The second operation, removing multiple verti-
ces, identifies vertices of valence two which have the same neighbors.
The third operation, contracting edges of valence sk,simultaneously
identifies the end points of edges common to two vertices whose valence
is <-k + 1. It then removes selfloops and multiple edges.

Definition 1.1. The graph G is k-contractable if the application of the
above three operations eventually reduces G to a point.

The definition seems to be dependent on the order in which one ap-
plies these three operations. Nevertheless, in the last section we show
that any graph which is fixed by all three operations has its genus
bounded below by (k). Diagram 1 describes an infinite periodic planar
graph. From this graph we can construct arbitrarily large graphs of
genus 1 which are not l0-contractable. These graphs are 6-contractable
using a slightly stronger 'definition of the third operation.

The paper consists of four other sections. Section 2, the prelim-
inaries, contains basic definition plus the notation of a tower of Fk
actions which will be used throughout. Section 3, Canonical ordering
and set of orderings, contains the basic group theoretic algorithms
used in the isomorphism tests. Section 4 includes the notation of a
graph where the symmetries at a vertex are not arbitrary but restricted
to a group. This last notion will be used in section 5 to decompose a
class of graphs where at intermediate stages the graphs are those with
restricted vertex symmetries. The graph for which this contraction
procedure works will be called the k-contractable graphs. Section 6
shows that the k-contractable graph contains the graphs of genus ek for
some £ > 0.

2. PRELIMINARIES

2.1 Graph Theoretic Preliminaries

Throughout this paper graphs will be denoted by G, H, and K; groups
by A, B, and C; and sets by X, ¥, and Z. Graphs may have multiple edges
but no selfloops. It will be important that they are allowed to have
multiple edges. The edges and vertices of G will be denoted by E(G) and
V(G), respectively. The edges common to some vertex v or set of vertices
will be dencted by E(v). Let ME denote the multiple edge equivalence
relation on G, i.e. eMEe" if e and e°' are common to the same points.
The valence of a given vertex v will be the number of vertices adjacent
to v, i.e. the number of edges ignoring multiplicity. Let G be a graph
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and Y ¢ V. We say two edges e and e' of G are Y eguivalent if there
exists a path from e to e' avoiding points of Y.

pefinition 2.1. The graph Br induced from an equivalence class of

Y-equivalent edges will be called a bridge, or a bridge of the pair
(G,Y). The vertex frontier of Br is the vertices of Br in Y, while
the edge frontier of Br is the edges of Br common to the vertex fron=-

tier. A bridge is trivial if it is a single edge.

The main graph theoretic construction we shall use is contracting
nonfrontier edges to a point.

pefinition 2.2. If Y ¢ V, the vertices of G, then Contract(G,¥) will
be the graph obtained from G by jdentifying the nonfrontier (internal)

vertices of Br for each bridge Br of G, and removing selfloops. If
Y = @ then Contract(G,Y) is a single vertex.

Let Yk be the vertices of G with valence greater than k. The in-
tuition behind the k-contractable graphs is it is those graphs for
which the successive application of cOntract(G,Yk) yields a single
point. Here we keep track of the symmetries of the bridges with groups
We attempt to render this idea. '

2.2 Group Theoretic Preliminaries

Let Sym(X) denote the group of all permutations of X. We let 5.
denote the symmetric group on a set of size n. The group A is a permu-
tation group on X if A ¢ Sym(X). The degree of A is |x|, while the
order is |A|. Let m be an equivalence relation on X. Let A(m) denote
the subgroup of A which stabilizes the equivalence classes X/m of m,
i.e. A(m) = {a € A|xma(x) for all x e X}. IfY c X, we let Y denote
the relation {xYy|x,y £ Y or x = Y}. Thus, a(Y) is the subgroup of A
which fixes Y pointwise, while A[Y] is the subgroup which stabilizes ¥
We let id denote the empty relation. We say A preserves m if x7my im=
plies a(x)ma(y) for all o € A. The subgroup of A preserving 7 we will
denote by Alnl. A is primitive if it only preserves the trivial equi-

‘valence relations X and id. We say the relation 7 contains w' if xm'y

implies xmy for all x and y in X, denoted by ' < m. If m is an equi-
valence relation then X/m denotes the equivalence classes of 7. The
restriction of an eguivalence relation ™ to Y is denoted by TNY.
Formally, ™ M ¥ is defined by X aMNYy if X,y £ ¥ or x,y € Y and X7y.
If Y € X then ¥Y/m are the equivalence classes of m restricted to Y.
The equivalence classes of the relation m defined by, xny if for
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some a € Aa (x)= y, are called the orbits of A. The induced action of
A on some orbit Y is the image of A in Sym(Y) which we identify with
the quotient group A/A(Y). 1In general we shall let A P Y denote the
faithful action of A[Y] on ¥, i.e. A[Y]/A(Y).

.An isomorphism is a surjective map which sends edges to edges and
vertices to vertices, and preserves incidence and other possible struc-
ture. Groups will be permutation groups and they will act from the
left.

2.3 Towers of I', -Actions

Throughout this paper we shall either restrict the groups considered
or the way they may act.

pefinition 2.3. For k 2z 2, let Fk denote the class of groups A such
that all the composition factors of A are subgroups of Sk.
We shall use the following fact about the primitive actions of Pk

groups.

Theorem 2.4 [BCP tal]. There is a function A (k) such that any primitive

action of A € Pk of degree n has order at most nl.

The main theorem seems to require that we allow all groups but
restrict the way in which they can act. Even in the case of cubic
graphs the edge stabilizer is a 2-group but the full group may be arbi-
trary.

Definition 2.5. A group A acting on a set X is a Tk—action if for all
x € X the subgroup A(x) € Fk.

We extend the notation of a Fk—action to a tower of such actions.

The sequence {no,...,nt} is a tower of equivalence relations on X if
X = L Bhrerey & L id. We shall often write a tower as (ﬂl...,ﬂt}

where it is understood that Ty = X. This gives a useful generalization

of Pk-actions.

Definition 2.6. (A, T ....nt} is a tower of I -actions if:

0
(1) the sequence (ﬂo,...,nt) is a tower of equivalence relations

on X:
(2) A = sym(X); :
(3) A preserves 7, for 0 s i < t;

i
(4) for each Y e X/ni, 0 < i< t, the action of A[Y] on Y/ﬂi+1 is

a Fk—action.
We write (4) more formally.
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L]
(4') 1f s e X/m, and T ¢ s/m,,, then A[TI /AT Ns) e The

It is easy to see that (4) and (4') are eguivalent since the natu-
ral homomorphism from A[T] into Sym(S/@; ,) has kernal A(m, . Ns).

We shall prove some simple closure properties about towers of rk
actions. We state them as lemmas.

Lemma 2.7. If (A,wu,...,ﬂt) is a tower of Fk actions and B ¢ A then

{B,ﬂo,-..,ﬂt] is a tower of Pk actions.

Proof. It is clear that (B,ﬂo,...,ﬁt] satisfies the first three condi-
tions. We show it satisfies (4'). Let S € X/ﬂi and T € S/ﬂi+l. We
must show that B[TI/B(m, Ms) e Ty. But, BIT] € A[T] and B(7; Ns) =
BIT] n ATy, N s). So by the Second Isomorphism Theorem and the Corres-
pondence Theorem BIT]/B(m; 4 N s) n B[T] is isomorphic to a subgroup of
AIT)/A(m,, 4 N 8). The latter quotient group is in Ty . Therefore, the

first quotient group is in Fk, since Tk is closed under taking subgroups.

Lemma 2.8. If (A,vo,...wt) is a tower of T actions and Y ¢ X = T, then
(a Ny, 7y DY, coop T Ny) is a tower of Ty actions.

proof. Since A MY = A[Y] MY and by the previous lemma, towers of Ty
actions are closed under taking subgroup. We may assume that A = AlY]).
Let §8' € Y/ﬂi, 0<i<t, andT' € S'/ﬂi+l. Since S',T' # ¢ and they
are subsets of equivalence classes of m; and Ti+l respectively, there
exists unigue elements 5 € x/ni and T € S/ﬂi+l containing S§' and T',
respectively. We must show that A[T')/A(T, Ms') € I. We have the

following chain of inclusions
A[T] = A[T'] 2 A7y Ns') 2 a(ny; MS) .
So our quotient is a section of a Fk group and thus Fk'

3. CANONICAL ORDERING OF SETS AND SET OF ORDERINGS

3.1 Canonical Forms

As in [BL83, FSSB3] we say a function CF:K + K, where K is a class

of graphs, is a canonical form for K if:

(i) for G in K, CF(G) 2 G
(ii) for G,H in K, G = H if and only if CF(G) = CF(H) .

In the previous papers, they considered linearly ordering the ver-

tices as a canonical form or presentation. We shall order edges. FoI

~1, the reverse °f &

each edge e we shall consider it as oriented, i.e. e
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is distinct from e. Formally, a canonical form of a graph G will be a

linear ordering of the oriented edges of G which satisfies conditions
(i) and (ii). We shall often let I,J be maps from {1,...,|E|} to E.

In general, I will be a map from {1,...,|X|} to X, in which case we
will call I an ordering of X. If A c Sym(X) then the pair (I,A) deter-
mines the set of ordering {allacA}., The algorithms considered will
return all equivalent ordering, i.e. pairs (I,A). We consider several

canonization problems.
Problem 3.1. String canonical forms for towers of Fk—actions.
Input: A colored set X with orderings (I,A) where A is given as a tower
of I.-actions, (A,ﬂn..-.,ﬂt).
Find:

(1) @ € A such that ol is canonical;

(2) group B c A of elements which preserve coloring.

Formally, an algorithm CF satisfies condition (1) if whenever CF on
tl,a,no,...,ﬂt} returns aland CF on (BI,A,ﬂD,...,rt) returns vI for B € A
then cY'l € B. Thus the canonical form may be a function of (no,...,ﬁt}.
The ordering I is said to be < the order J if (X with ordering 1) is x
lexigraphically before (X with ordering J).

Problem 3.2. Graph canonical forms restricted to a tower of Fk—actions. =

Input: A graph G with ordering I of V(G) and a tower of T -actions
(A.ﬂo,...,wt) on V(G).

Find: (1) o € A such that oI is a canonical ordering of V(G);
(2) group B ¢ A of automorphisms of G in A.

We list a third problem which we will not use in this paper but
whose polynomial time solution will follow easily from the ideas in this
peper and the ideas in [Mlta] and may have application elsewhere.

Problem 3.3. Hypergraph canonical forms restricted to tower of T -actions.

In problem 3.3 the graph in problem 3.2 is replaced by a hypergraph.
Before presenting the fourth problem of this section we give *a poly-
nomial time solution to problem 3.1. This algorithm gives:

Theorem 3.4. String canonical forms for towers of Ty-actions is poly-
nomial time constructable for fixed k.

Let (A,ﬂo,...,nt} be a tower of rk—actions on a colored set X.

Further, let I be an ordering of X.
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We consider two procedures, CF which returns tae canonical order-
ing and C which returns the group of symmetries. If S € X we define
Cc and CF as follows:

(i) Cg(n) = {a € A|a preserves color on s}:
T (ii) CFS(I,A) = canonical oI, o € A, for coloring on S only.

Space does not permit giving the procedure for C but it follows easily
from that of CF.

The algorithm will have a recursive form similar to [Lu80, BL83].
The procedure has two phases. The first phase is used to reduce the
group's action on S/Tri to a Fk group. While the second phase just ap-
plies an algorithm similar to the color canonialization algorithm of
[BL83] to an action which is Ty In the procedure X, I, Tas =ccr Tyo
and t will be global variables and S will be an A-stable subset of XK.

Procedure: CFS(I,A,i).

. Begin: (1) If § = {x} for some x £ X then return 1;

| ™~ (2) 1If A is not transitive on S then
e

o (a) "Canonically" pick an A-stable partition of S w.r.t. I,
::- say, Sq:5,7

o (b) Return CFsz(CFSl(I,A.i). Cslth}.i):
-
\‘I\J (3) If S ¢ T € X/n; for some T then

. -_—

(a) "canonically" pick s' e S/"i+l wirsbs T3

(b) Compute A' = A[S'] and right coset representatives of
A' in A, say, {01""'01}’

{c) Return Min{CFS[ojI,Aﬂi+l}};

(4) (a) Find a canonical primitive block system w.r.t. I on S,

say, ™ z Ty | s;

(b) Compute A' = A(m) and right coset representatives
{01'°"’°£} of A' in A;

(e) Return Min[CFS(U.I,Aﬂi)}.
L —— :l J
End

Since the algorithm parallels earlier algorithms it follows that

CFx[I,A,OJ will compute a string canonical form.

To see that CF runs in polynomial time we must bound the size of &
whenever step (4) is implemented. We state three facts which follow
for any recursive call of CF, say, CF(o,A,i) by lemmas 2.7 and 2.8.
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(i) (an M s, L NS, ..., e N s) is a tower of I -actions;
(ii) 1If |s/nir >1 then A ] S/m; is in T ;
(iii) If |S/ﬂi[ = 1 then A | S/m;,, is a Iy -action.
By a straightforward calculation one can show that the number of
l+2, where ) is the constant from
theorem 2.4. This completes the proof of theorem 3.4.

To apply the solution to the string canonical forms to the graph

recursive calls is bounded by n

canonical forms, we simply consider the group as acting on pairs of ver-
tices. Since edges are pairs of vertices we color these pairs according
to whether they are edges or nonedges. But this is the string canonical
form problem. We need only show that a tower of Pk—actions on X can be
"lifted" to a tower of Pk—actions on Xz.

We state this lifting in a slightly stronger form which we will
need later. If 7w is a relation on X and 1 is a relation of Y then
define n-1 on XxY by (x,y)wn-t(x',y') if xmx' and y1y'. Thus, a polynom-
ial time algorithm follows for problem 3.2 from the following lemma.

rk-actions then so is (AxB, XxY,w

Lemma 3.5. 1If {A,X,ﬂl,...,ﬁt] and {B,Y,nl,...,ﬂt] are towers of

l’Tl,..-,ﬂt'Tt}.
3.2 Canonical Group Intersection

In this section we consider the problem of canonically intersecting
two permutation groups. The solution again will parallel the work of
[LuB0, BLB3]. 1In practice the two groups may not be acting on the same
set. Thus, we consider a slight generalization of the problem.

Let A act on X and B act on ¥. The amalgamated intersection of A
and B or simply the intersection of A and B, A n B, is the group of
elements in Sym(X v ¥Y) which stabilizes X and Y and whose action on X
i in A and on Y is in B.

We shall say a function CIN is canonical form for A n B if it re-
turns ordering satisfying condition (1).

(1) ciN(x,J,A,B) = (aI,BJ) and CIN(aI,bJ,A,B) = (a'I,B'J) implies
ata”l e Aand B'6le B for acAandb € B. '

This gives the fourth problem.

Problem 3.6. Canonical intersection of an arbitrary group with a tower
of Tk-actions.
Input: Two orderings (I,A) and (J,B) where A is given as a tower of

k—actions.
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Find: a € A and B € B such that (eI,BJ) is canonical.

We do not reguire solutions to canonical intersections to return
a linear ordering of X u Y. But, there are many natural orderings of
X u Y determined by oI and BJ. For the applications here we find the
two orderings more natural.

The algorithm for problem 3.6 will be a combination of the group
intersection algorithm in {Lu80] and the canonization algorithms of
[BL83, FSS83].

We say (I,J) < (I;,J,) if I and I, first enumerate X » Y and 31
is lexographically before JIlIl. '

The problem of simply computing the intersection of A and B when
A is a tower of Fk—actions is also polynomial computable. The algorithm
proposed is a natural combination of the algorithm for color symmetries
in a tower of rk—actinns and the group intersection algorithm in [LuB0]
for Fk groups. Due to space constraints we will not present it here.
The canonization procedure will call this algorithm.

Let C be a subgroup of A x B acting on X x ¥. Let Prl{c)

Prz(C)be the projections of C on X and Y, respectively. consider the

following function on C for subsets Z of X n Y.

IN, (C) = {(a,8) € Cla N2z =B Mz .

similar to INZ we extend CIN, We have CINZ(I.J,C} return
(aI,BJ) € C which is canonical w.r.t. C, = {(a,b) e cla Pz =0 Nzl
We give a list of recursive properties of CIN, which easily produces
the desired polynomial time algorithm.
(3.7). If Pry(C) is not transitive on Z with stable canonical partitior

zl,zz, then:
CINZ{I,J,C} = CIN32(CIN31[I,J,C), INzl(C}) .

(3.8). If A* = Pr1{C} with right coset representatives {“1""’“£] in

' Prl(C} then:

CINz{I,J,C} = Min{CINzluiI,BiJ,C*)}

where (ui,Bi) e c and c* = {(a,B) € Cla € A*}.

(3.9). If z = {z} then:

CINZ(I.J,C) = Min{{uiI,eiJ}}
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where (ai'ﬂj) are right coset representatives of C((z,z)) in C.

Using these three identities about CIN and the recursive control
structure of the color canonicalization algorithm we can compute the
intersection and the canonical intersection in n’*? recursive calls of
identity (3.9). The stabilizer of (z,z) in C can be computed using
Sim's algorithm as analyzed in [FHL].

In the case that B is also a tower of Fk—actions then we can
return not only the intersection but a tower of Fk—actions. The
following lemma will suffice.

Lemma 3.10. If (A,x,nl,...,nt) and {B,Y,Tl,...,rt} are towers of Fk—
actions then (A n B, X n Y, Ty M Tyreeesy N rk) is a tower of Fk—actions.

4. SYMMETRIES OF A VERTEX GIVEN BY A GROUP

In [MI79] we discussed gadgets — graphs which were used to denote
symmetries or as a data structure for symmetries. Here we reverse those
ideas and replace bridges or gadgets of a graph by a group or coset
which will represent the symmetries of the frontier of a bridge. We
shall apply these ideas to isomorphism testing and canonical forms for
k-contractable graphs. Here, we present an algorithm which under cer-
tain conditions tests isomorphism of graphs where the vertices have
specified symmetries. We make these notations precise in what follows.
It seems crucial that the graphs considered have multiple edges.
Throughout this section the graphs are assumed to have multiple edges.

Definition 4.1. A graph with specified symmetry is a graph G = (V,E),

a set of ordering (IV,AV} for each set E(v), v € V, and a consistent
‘partition P of the vertices G. The partition P is consistent if vPw
1

. -1 s
implies that Iw AwIw = Iv AVIV.

We next consider restriction on the way the group at each vertex
can act.

Definition 4.2. A graph G has its vertex symmetries given by towers of
[k—actions if G has specified symmetry where A, is given in the form
{ﬂv.ﬂlf---,ﬂt), a tower of Fk—actions, and the partition P is consistent

with this structure. We shall say the symmetries are Tk on the multiple
edges if for every verﬁex v £ V(G) the induced action of Av on E(v)/ME

is a rk—action. We shall often refer to these graphs as simply Tk-graphs.
An ismorphism of G must preserve this structure.

Theorem 4.3. Isomorphism and canonical form for rk graphs are polynomial
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time constructable for fixed k.

The assumption that the symmetries are Yk—actions on the multiple
edge relation will insure that the induced action on vertices will be
tractable. It would be interesting to know if this constraint can be
dropped. BY jdentifying multiple edges the symmetries become Tk—actions,
In this case, the edge stabilizer of a connected graph is a group in rk'

We state this well-known fact as a lemma.

Lemma 4.4. If G is comnected with specified symmetries which are I‘k—actions
then the automorphisms of G which stabilize an edge form a group in Pk.
we explain the canonical form algorithm here. It will use the
jeveling idea. BY standard technigues we may assume the graph G is con-
nected. For each edge e in E(G) we compute the canonical form from e.
We shall level the edges and vertices by their distance from e. Using
this leveling we shall inductively construct the partial automorphisms
from edges to edges and from vertices to vertices. We begin the formal

construction.

Label the edge e' of G with the integer which is the distance (the
number of vertices in a shortest path) from e to the edge e', e.9. € is
labeled 0. vertices of G are jabeled with the integer which is the
number of edges they are from e, the end points of e are labeled 1.

An edge is even if both end points are labeled the same, otherwise it
is odd.

Let G; be the induced graph on edges labeled s i. That is, G; is
the graph on vertices labeled < i + 1 and edges labeled < i. The graph
ai consists of: (1) Gi; (2) all odd edges labeled i + 1 where the end-
point labeled i + 2 has been replaced with a nevw distinct vertex for
each edge; (3) two copies of each even edge labeled i + 1 where one
copy is attached to one end point labeled i + 1 and the other copy is
attached to the other end point labeled i + 1. again, the other end-
point of these even edges is a new vertex. The verteXx symmetries for
vertices labeled < i of Gy will be those of G while the vertices labellet
i + 1 will have no restriction on symmetries. The vertex symmetries of
ai for vertices labeled = i + 1 will be those of G. Again, the symmetri
of vertices labeled i + 2 will not be constrained.

Let AutolGi] be the automorphisms of Gy which fix e. Similarly,
Auto(G;) are the automorphisms of G; which fix e.

We shall need inductively two conditions or facts concerning the -

jsomorphism. First, that the automorphisms of G; and Ei'which fix e
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acting on the edges are written as a tower of Fk—actions. Second, the
automorphism of G; leaving e fixed acting on the vertices is in rk.

We consider the second condition first. If we identify multiple edges
of 51-1 but not multiple copies of the vertices and the symmetries are
those induced from the vertices of Ei—l' then the new graph satisfies
the hypothesis of lemma 7. Therefore, the automorphism of the graph
fixing the edge e are in Fk. Now, any automorphism of ai—l induces an
automorphism on this graph. Since the action on the vertex is unchanged
by identifying multiple edges we have the second condition for 61-1-

1f we now also identify the multiple vertices of Eiﬁl' the automorphism
fixing e will still be in rk. But this is the same graph we obtain by
tdentifying the multiple edges of Gi' This proves the second condition.
we shall maintain the first condition throughout the construct.

We need only give a polynomial time algorithm for constructing
Auto[éi] from Auto[Gi] and constructing Auto(Gi+1) from Auto(ﬁi) where
the groups are given as towers of Tk-actions. We consider the latter
case first.

The elements of nuto{Gi+1) are simply those elements of Autotaii s
which preserve multiple copies of vertices and edges. That is, they
preserve the relation a = b, a and b are copies of the same edge or
vertex. We obtain the canonical form for this relation by applying the w
graph canonical form restricted to a tower of Fk—actions algorithm (3.2).
Here the graph has vertices consisting of the vertices and edges of Gi
and the edges are the multiple copies relation. Since towers of Fk—actions
are closed under taking subgroups the first condition is inductively
satisfied for Auto(Gi+1}.

We have left the construction of Auto{ai] from Auto(G;) which we
must show is a tower of Tk—actions. Let (A,nl,...,ﬂtl = Auto(Gi). a
tower of Ty -actions. Let Ej be the edges of G; which are common to a
vertex labeled i. The maps on Ei which preserve the symmetry of vertices
labeled i can be written as a direct product of wreath products since
the symmetries are consistent. That is, it will be of form HAierS.

Let B be this group. The group Auto(ﬁi] will be the amalgamated inter-
section of A and B. By (3.6) this intersection and its canonical form
are constructable in polynomial time. To show that the intersection can
be written as a tower of Tk—actions we note the following. Let 7.. be

1]
the ith equivalence relation of vertex j. We claim that T4 = ;“ij'

where V, has label < i + 1, form a tower for A n B. By induction,
essume it is true for A where the intersection is taken over vertices
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labeled ¢ i. In the construction of B we used the symmetric group in
the wreath product. But we know that the induced action on the verti-
ces labeled i + 1 given by A is in Fk. So we may restrict the wreath
product to this Fk group. Let B' be this smaller wreath product. Now,

‘B'!'Ti""'Té) is a tower of Tk—actﬂxm where Ti = ;Tij' vj has label

i + 1. This proves the theorem.

We shall need that the full group of automorphisms of G can be
written as a tower of Fk-actions.

Let G be a graph whose vertex symmetries are given by towers of
Fk—actions and these symmetries are Pk on the multiple edges. Suppose
the vertex symmetries of G are {Ai, “li""'"ti] for vertex V,. Let ME
be the multiple edge relation on G. 1In this case the automorphisms of

G are a tower of Tk—actions.

Lemma 4.5. If G and (A, ﬁli,...,ﬁti), are as above and A is the group

of automorphisms of G acting on the edges, then {h,ME,tl,...,Tt}, where
=M . _ ;

Ti-%nij)n ME for v, € v(G), is a tower of Tk actions.

5. k-CONTRACTABLE GRAPHS

In this section we simultaneously define the valence k-contractable
graphs and present a polynomial time algorithm for testing isomorphisms
of these graphs. We define the valence k-contractable graphs via a
decomposition algorithm. The definition is unsatisfactory since small
perturbations may result in a different class of graphs. We leave it
as an open problem to find a satisfactory definition. The definition
is sufficient enough so that any perturbation will still contain the
graphs of bounded genus and bounded valence. Let G be a graph with pre-
scribed symmetries either given by towers of Pk-acticns or unconstrainec
We shall assume that two unconstrained vertices have at most one edge
between them. We shall call these graphs zk—contractable graphs.

We shall say a vertex v is Ty if the symmetries of v induce a Fk—

action on the multiple edge relation ME; otherwise it is not Fk. Br
is a Ik-bridge if it is a bridge of (G,Y) where Y is the set of verti-
ces which are not Ty in G. A Fk—bridge is not formally a ?k—graph for
two reasons. First, the unconstrained vertices have no associated
tower of relations. This problem is remedied by allowing these uncon=
strained vertices to "inherit" the symmetries from their neighbors.
Note that each neighbor v' of an unconstrained vertex v either shares

only a single edge with v' or else its symmetries are a tower of rk'
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actions. Thus, the symmetries of an unconstrained vertex can be re-
stricted to a product of wreath products where the wreath products are
of the form AwrSk, where A is the inherited symmetry from a neighboring
vertex and k' < k. Second, we have not specified the symmetry of fron-
tier.vertices. We transform Br into a modified bridge so that it has
the form of a Fk—graph. For each vertex v of Br common to a frontier
vertex v' of Br, we introduce a new copy of the frontier vertex v' and
have edges between v and v' go between v and Vv'. We now view these new
frontier vertices as unconstrained vertices and allow them to inherit
the symmetries of their neighbor. Let Br be the bridge obtained from
Br by the above construction.

Given any rk—bridge Br, we can compute the automorphisms and canoni-
cal form by first constructing Br and applying the isomorphism test for
Tk—graphs. This procedure will return with a group in the form of a
tower of Fk-actions. Applying (3.2) we can compute the subgroup and
canonical form of Auto(Br) which sends multiple copies of vertices to
corresponding multiple copies of vertices. This will be Auto(Br) and

its canonical form.

Lemma 5.1. The automorphism and canonical form for a Fk—bridge is poly-
nomial time constructable and the automorphisms can be written as a
tower of Fk—actions.

This gives a natural decomposition of Fk—contractable graphs, say
G. For each Fk
and remove selfloops. We denote this graph by Contract(G).

-bridge Br of G we identify the internal vertices of Br

The vertex symmetries of this new vertex will be the induced action
of Auto(Br) on the frontier edges. This will be a tower of Fk-actions.
We call this graph Contract, (G) which is a I'y -contractable graph. By
standard argument Contractk{G) is a canonical operation on G.

If we apply Contractk to a tree of valence > k + 1 then the proced-
ure will simply return the original graph. Graphs that are sent to them-
selves under a procedure will be called fixed points. We introduce a
decomposition procedure analogous to the tree isomorphism algorithm.

The procedure Remove Leaves will remove leaves and let their neighbors
"inherit" their symmetries. The details will appear in the final paper.

We introduce a third reduction which corresponds to a generalized
3-connected decomposition.

Two vertices of valence 2, ignoring multiple edges, are multilpe
if their neighboring vertices are the same. This gives a natural equi-
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valence relation on valence 2 vertices. An equivalence class will
simply be called a set of multiple vertices. Let VyreeeaVy be a set of
multiple vertices of G. Multiple vertices can be identified with the
new vertex "inheriting" the symmetries of the multiple vertices and

their common neighbors. The third reduction is called Remove Multiple

Vertices. Again, the details will appear in the final paper.

The graph G is a fixed point of these three reductions if it is a
fixed point of each reduction. Note that we may arrive at a different
fixed point depending on the order which we apply these reductions. For
specificity's sake, suppose we consider fixed points of the following
procedure.

Procedure: Reductionk{G).

I1f G = Remove Leaves (G) then

G + Remove Leaves (G)

else if G # Remove Multiple Vertices(G) then
G + Remove Multiple Vertices (G)

else G + Contractk{G).

Definition 5.2. G is a k-contractable graph if successive application

of reduction applied to G yields a singleton.
From the discussion above we get

Theorem 5.3. Isomorphism for k-contractable graphs is polynomial time
testable for fixed k.

§. THE BOUNDED GENUS CASE

Here we shall show that graphs of bounded genus are k-contractable
graphs. Thus, demonstrating that the k-contractable graphs form a
class of graphs which is a common generalization of the bounded valence
and the bounded genus graphs. The containment will follow by showing
that the fixed graphs under the reduction operation have the property
that their genus grows linearly in k. Throughout the rest of the dis-
cussion let G be a fixed point. Since neither the genus nor the fact
that G is a fixed point is effected by multiple edges, we may assume
without loss of generality that G has no multiple edges. Similarly, we

may assume that G has no vertices of wvalence 2. Not all vertices of G
will have valence » k + 1. Let S be the set of vertices of G with
valence < k. Then, S will be an independent set. Let v'! denote the
number of vertices of G in V-5. We first state a relationship between
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genus and k-contractable graphs as defined in the previous sections.
We shall actually prove a slightly stronger result for a stronger no-

tion of k-contractable.

Theorem 6.1. If G is a fixed point of Reductionk_1 then the genus of
G,g satisfies

2g =z ((k/2 - 6)/6)v' + 2 .

To see that such a large value of k is necessary consider the infin-
ite tiling of the plane in diagram 1. Since this tiling is periodic we
can construct arbitrarily large graphs of genus 1 which are fixed points
of Reductionll.

Let V' denote the vertices V-S. We distinguish two types of edges
of G. The edges between points of V' will be called type A edges and
those between V' and S will be called type B. Since we can easily dis-
tinguish these two types we can include in Reduction a procedure which
restricts the symmetries at each vertex to the coset which preserves
type. Call this new reduction procedure Reduction'. For Redu:tioné
the example from diagram 1 will contract to a point. For Reduction'

we get the following result.

Theorem 6.2. If G is a fixed point of Reductionﬁ then the genus of G,g
satisfies

2g 2 ((k - 6)/6)V' + 2 .

Note that we are using Reductioni since fixing one edge at a vertex
will only in general effect one of the two types of edges at that point.
This gives the following corollary for k-contractable graphs with respect
to Reduction'.

Corollary 6.3. If k > 4g + 2 and g = 1 then the k-contractable graphs
include the graphs of genus g. For g = 0 (the planar case) k = 5 will
suffice.

To see the corollary we simply note that v' 2 3 since a fixed point
can have no multiple valence 2 vertices.

Proof of Theorem 6.2. The proof uses standard counting argument based

on Euler’'s formula 2g = 3 - £ - v + 2 where g is the genus of some em-
bedding and e, f, and v are the numbers of edges, faces, and vertices,
respectively.

Let G be a graph with some fixed embedding. Further assume G is
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fixed by Reductioni. Without loss of generality we may add new ver-
tices of type S and new edges of type A as long as the genus is unchanged,
If any vertex in V' has +wo consecutive edges of type A we may add to
this face a valence 3 vertex of type S. On the other hand, if a ver-

tex v € V' has two consecutive type B edges, then we may add a type A
edge across this face common to v. Here we use the fact that S is an
independent set. Without loss of generality we may assume that the edges
at each vertex of V' are alternately of type A and then type B. So, if

a equals the number of type A edges and b equals the number of type B
edges then 2a = b. Using this fact one can show:

Lemma 6.4. £ s a + b/2 = 3a.

Using the following facts: (1) |v'] +'ls| =v, (2) |s| = b/3, (3)
e =b + a, (4) bz k|v'|, we get theorem 6.2.
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