A New Graph Triconnectivity Algorithm and Its Parallelization®

Gary L. Millert
University of Southern California, Los Angeles, CA 90089

Vijaya Ramachandrant
University of Hllinois, Urbana, IL 61801

August 9, 1988

We present a new algorithm for finding the triconnected components of an undirected
graph. The algorithm is based on a method of searching graphs called "ear decomposition’. A
parallel implementation of the algorithm on a CRCW PRAM runs in O (log’n) parallel time
using O (n+m) processors, where n is the number of vertices and m is the number of edges in the

graph.

* A preliminary version of this paper was presented at the 19tk ACM Symposium on Theory of Computing, New York, NY,
May 1987,

t Supponed by NSF Grant DCR 8514961.

Supporied by NSF Grant ECS 8404866 and the Semiconductor Research Corporation Grant 86-12-109.

1. Introduction

An ear decomposition [Wh, Lo] of an undirected graph is a partition of its edge set into an
ordered collection of paths called ears. In this paper we present an efficient parallel algorithm
based on ear decomposition for testing vertex triconnectivity of an undirected graph and for
finding the triconnected components of the graph. Our algorithm runs in O (log?(n+m)) parallel
time using O (n+m) processors on a CRCW PRAM, where n is the number of vertices in the
graph and m is the number of edges. A sequential linear-time algorithm for the problem is avail-
able [HoTa], but it is based on depth first search, and is not known to be efficiently parallelizable.

Parallel NC algorithms for testing triconnectivity and for finding triconnected components
are reported in [JaKo, JaSi, MiRe], but none match our processor bound for general graphs. In
particular, ours is the first efficient parallel algorithm for graph triconnectivity. More recently,
building on the results we present, [RaVi] have obtained an efficient parallel triconnectivity algo-
rithm that runs in logarithmic time. Also, [KanRa] have used the ear decomposition approach to
obtain better sequential and parallel algorithms for graph four connectivity.

2. Parallel Model of Computation

The parallel model of computation that we will be using is the PRAM model, which consists
of several independent sequential processors, each with its own private memory, communicating
with one another through a global memory. In one unit of time, each processor can read one glo-
bal or local memory location, execute a single RAM operation, and write into one global or local
memory location.

PRAM:s are classified according to restrictions on global memory access. An EREW PRAM
is a PRAM for which simultaneous access to any memory location by different processors is for-
bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no
simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have
to specify how to resolve write conflicts. We will use the ARBITRARY model in which any one
processor participating in a concurrent write may succeed, and the algorithm should work
correctly regardless of which one succeeds. Of the three PRAM models we have listed, the
EREW model is the most restrictive, and the ARBITRARY CRCW model is the most powerful.
It is not difficult to see that any algorithm for the ARBITRARY CRCW PRAM that runs in paral-
lel time T using P processors can be simulated by an EREW PRAM (and hence by a CREW
PRAM) in parallel time TlogP using the same number of processors, P.

Let S be a problem which, on an input of size a, can be solved on a PRAM by a parallel
algorithm in parallel time ¢ (n) with p (n) processors. The quantity w(n)=t(n)p (n) represents the
work done by the parallel algorithm. Any PRAM algorithm that performs work w(n) can be

-3.

converted into a sequential algorithm running in time w () by having a single processor simulate
each parallel step of the PRAM in p (n) time units. More generally, a PRAM algorithm that runs
in parallel time t(n) with p(n) processors also represents a PRAM algorithm performing
O (w(n)) work for any processor count P <p (n).

Define polylog (n)=_O (log*n). Let S be a problem for which currently the best sequential
k>0

algorithm runs in time T'(n). A PRAM algorithm A for §, running in parallel time ¢(n) with p (n)
processors is efficient if

a) t(n)=polylog (n); and
b) the work w (n)=p (n)-t(n) is T(n)-polyk;g(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes
to within a polylog factor of optimal speed-up with respect to the current best sequential algo-
rithm. A major goal in the design of parallel algorithms is to find efficient algorithms with t(n) as
small as possible. The simulations between the various PRAM models make the notion of an
efficient algorithm invariant with respect to the particular PRAM model used. For more on the
PRAM model and PRAM algorithms, see [KarRa].

3. Graph-theoretic Definitions

An undirected graph G=(V,E) consists of a vertex set V and an edge set E containing unor-
dered pairs of distinct elements from V. A path P in G is a sequence of vertices <vg, *** , V>
such that (v;_;,v;)eE,i=l, -+ k. The path P contains the vertices vg, ***,Vk and the edges
(VosV1)s * * * +(Vi—1,Vy) and has endpoints v, Vi, and internal vertices vy, ** * yVg-1- The path P is
a simple path if v, - - - ,vp—) are distinct and vy, - - *, v are distinct. P is a simple cycle if it is a
simple path and vo=v;. A single vertex is a trivial path with no edges. We denote by |P |, the
number of vertices contained in path P.

We will sometimes specify a graph G structurally without explicitly defining its vertex and
edge sets. In such cases, V(G) will denote the vertex set of G and E (G) will denote the edge set
of G.

Let P=<vg, * * * Vx> be a simple path. The path P (v;,v;),0Si,jSk-1 is the simple path
connecting v; and v; in P, i.e., the path <v;,v;4q, * **,V;>, if iS) or the path <v;,V;41, * * V>, if
j<i. Analogously, P [v;,v;] consists of the path scgments obtained when the edges and internal
vertices of P (v;,v;) are deleted from P.

An ear decomposition [Lo,Wh] D=[Py, * -+ ,P,1] of an undirected graph G=V,E)is a
partition of E into an ordered collection of edge disjoint simple paths Po, * - - P,y called ears,

-4-

such that P, is a simple cycle and for i >0, P; is a simple path (possibly a simple cycle) with each
endpoint belonging to a smaller numbered ear, and with no intemnal vertices belonging to smaller
number ears. D is an open ear decomposition if none of the P;,i=1, - - - ,r—1 is a simple cycle. A
trivial ear is an ear consisting of a single edge. A graph has an open ear decomposition if and
only if it is biconnected [Wh].

Let D=[Py, - - - ,P,_;] be an ear decomposition for a graph G=(V,E). For a vertex v in V,
we denote by earnumber(v), the index of the lowest-numbered ear that contains v; for an edge e
in E, we denote by earnumber(e), the index of the unique ear that contains e. We will say that v
belongs t0 P earnumber (v)- ‘

Let G=(V,E) be an undirected graph and let V'CV. A graph G’=(V',E’) is a subgraph of G if
E'CE{(i,v)1v;,vje V'). The subgraph of G induced by V' is the graph G"=V',E”) where
E‘"ﬂm {(V,',Vj)lvi,VjEV}. '

An undirected graph G=(V,E) is connected if there exists a path between every pair of ver-
tices in V. For a graph G that is not connected, a connected component of G is an induced sub-
graph of G which is maximally connected.

A vertex veV is an articulation point of a connected undirected graph G=(V,E) if the sub-
graph induced by V—{v} is not connected. G is biconnected if it contains no articulation point. A
biconnected component of G is an induced subgraph of G which is maximally biconnected.

Let G=(V,E) be a biconnected undirected graph. A pair of vertices v,,v,€ V is a separating
pair for G if the induced subgraph on V—{v;,v,} is not connected. G is triconnected if it contains
no separating pair. We define triconnected components in Section 5.

Let G=(V,E) be a biconnected graph, and let O be a subgraph of G. Analogous to [Ev, p.
148), we define the bridges of Q in G as follows: Let V" be the vertices in G —Q, and consider the
partition of V" into classes such that two vertices are in the same class if and only if there is a path
connecting them which does not use any vertex of Q. Each such class K defines a (nontrivial)
bridge B=(V,Ep) of O, where B is the subgraph of G with Vz=K_j (vertices of Q that are con-
nected by an edge t0 a vertex in K}, and Ep containing the edges of G incident on a vertex in K.
The vertices of Q which are connected by an edge to a vertex in K are called the attachments of
B. An edge (u,v) in G—Q, with both u and v in Q, is a trivial bridge of Q, with attachments u and
.

Let G=(V,E) be a biconnected graph, and let Q be a subgraph of G. We define the bridge
graph of Q. S=(Vs,Es5) as follows: Let the bridges of Q in G be B;,i=l,---,k. Then
Vs=V (@ (B1, " .B} and Es=E (@) {(v,B))IveV(Q),1sisk, and v is an attachment of
B;}.

2

Let G=(V,E) be a biconnected graph with an open ear decomposition D=[Pg, " * - ,Pr11].
We will denote the bridge graph of P; by C;. Let the bridges of P; in G that contain vertices on
ears numbered lower than i be B, , * * -, By, note that each such bridge has the two endpoints of
P; as attachments. We shall call these the anchor bridges of P;. For any two vertices x,y on P;,
we denote by Vi(x,y), the intemal vertices of P;(x,y); we denote by V;[x,y], the vertices in
P;[x,y]-{x.y} together with the vertices in the anchor bridges of P;. In C;, the bridge graph of P;,
V;[x,y] will represent the vertices in P;[x,y J-{x.y), together with the vertices on bridges in C;
corresponding to the anchor bridges. Note that either of V;(x,y) or V;[x,y] can be empty.

Let G=(V,E) be a graph and let P be a simple path in G. If each bridge of P in G contains
exactly one vertex not on P, then we call G the star graph of P and denote it by G (P). We denote
the bridges of G (P) by stars. The unique vertex of a star that is not contained in P is called its
center. Note that, in a connected graph G, the bridge graph of any simple path in G is a star
graph.

Figure 1 illustrates some of our definitions relating to bridges.

4. Ear Decomposition and Triconnectivity

Lemma 1 Let G=(V,E) be an undirected graph with an ear decomposition containing r ears.
Thenr=I|E -1V |+1.
Proof Straightforward.

Lemma 2 [Wh] An undirected graph has an open ear decomposition if and only if it is bicon-
nected.

Lemma 3 Let G=(V,E) be a biconnected undirected graph for which vertices x and y form a
separating pair. Let D be an open ear decomposition for G. Then there exists an ear P; in D that
contains both x and y, such that every path from a vertex in V;(x,y) to a vertex in V;[x,y] in G;
passes through either x or y. Further ear P; uniquely determines a connected component CinV-
(x,y}, in the sense that no other ear P; in G that contains x and y, and has vertices in C, has the
property that every path from a vertex in V;(x,y) to a veriex in V;[x,y] in G; passes through either
xory.

Proof Since x and y form a separating pair, the subgraph of G induced by V—{x,y} contains at
least two connected components. Let C and C be two such connected componchts.

Case 1 The first ear P contains no vertex in C; (see figure 2):

G with open ear decomposition D = [PoP1,P2,P3, P4l Po=<1,2,3,4,5,1>, P1=<3,7,6,5>, P»
= <6,4>, P3=<17,8,6>, P4=<3,5>.

a
3 33 VX‘BQ
a 6
: 8 Y6
8 5y
r & 5 5
Bridgesof P;.

8,2 Egi- Ee, B‘.
3

Bridge graph of P;.

B B; 8,

Vow.:N

Ear graph G;.

figure 1
Mlustrating the definitions

Consider the lowest-numbered ear, P;, that passes through a veriex v in C,. Since its end-
points are distinct and must be contained in earlier ears, P; must contain x and y. Further, all ver-
tices in V;(x,y) lie in C, and none of the vertices in Vi[x,y] lie in C;. Hence every bridge of P;
in G has its attachments all in V;(x,y)J{x.y}, or all in V;lx,y lu(x.y). Hence every path from a

C&
—
)
figure 2

Case 1 in the proof of Lemma 3

vertex in V;(x,y) to a vertex in V;[x,y] in G; passes through either x or y.

To prove the second claim of the lemma for this case, suppose P, is an ear which contains x
and y and also a vertex, say 4, in C,. Then j>i, since P; is the lowest-numbered ear to contain a
vertex in C,. Since P; contains x and y, x and y must be the endpoints of P, and all of the other
vertices in it lie in C,. Further, since i <j and vertex v is contained in P;, the vertices in the bridge
of P; containing v (call it B") are in V;[x.y1, and since C is a connected component in the sub-
graph induced by V—{x,y}, there is a path from B’ to the vertex u in V;(x,y) that avoids both x
and y. This establishes the second claim of the theorem for this case.

Case 2 P contains a vertex in C5:

If P contains no vertex in C, then case 1 applies to C;. Otherwise Py contains at least
one vertex from C, and one vertex from C,. But then, since Py is a simple cycle, it must contain
x and y, and again (by the argument of Case 1), every path from a vertex in Vo(x,y) to a vertex in
Vo[x,y] must contain either x or y, and P is the unique ear with this property, which has a vertex
inC».[]

. We will say that a separating pair x,y separates ear P; if x and y lie on P;, and the vertices in
Vi(x,y) are disconnected from the vertices in V;[x,y] in the subgraph of G induced by V- {x,y].
By Lemma 3, every separating pair in G separates some ear. (Note that a separating pair may
separate more than one ear; for instance, in the graph G in figure 1, the pair 3,5 is a pair separat-
ing ears Pg and Py).

Lemma 4 Let G=(V,E) be a biconnected graph with an open ear decomposition
D=[Pg, ' - - ,P,_1], and let x,y be a pair of vertices in G. Let the ears that contain both x and y be
P;
vertex a; in Vi (x,y) and a vertex bj in V;J.[x.y] belonging to a single star S in C.-J. the bridge

-+ ,P;. Then x,y is not a separating pair for G if and only if, for each j, 15j <k, there exists a

1°

=g

graph of P;,. Also, if P;; is an ear for which the above condition does not hold, then x,y is a
separating pair that separates Pj,. |

Proof Let the pair x,y not be a scparating pair, and consider any ear P;, that contains both x and y.
Let a be any vertex in V; (x,y) and let b be any vertex in V; [x,y]. Since x,y is not a separating
pair, there exists a path P=<a,wy, - ** ,wi,b> in G that avoids both x and y. This implies that
there is a subpath P’ of P with P’=<w,, * * - ,ws> such that w, is in V;,(x,y), ws is in V;;[x,y], and
none of the intermediate w; lie on P;,. Hence there is a bridge B of P;; containing @ and b, i.e.,

there is a star in Cj; containing a and b.

If P, is an ear for which every star in C;j has attachmcnts' only in V;, (x,ynJ{xy} oronly in
Vilxy lu{x.y}), for each [, then clearly every path from a vertex in V;(x,y) to a vertex in
Vi.[x,y] must pass through x or y, and hence x,y is a separating pair that separates P[]

Observe that one consequence of Lemmas 3 and 4 is that the endpoints of an ear P; do not
form a pair separating P;, if and only if there is a bridge B of P; containing a vertex in an ear
numbered lower than i, and B has an internal vertex of P; as an attachment. Our algorithm will
detect this situation as a special case, and hence we will call a pair of vertices x,y on an ear P; a
candidate pair for P; if x,y is a pair separating P; or (x,y) is an edge in P; or x and y are endpoints
of P; (i >0). Clearly, if we can determine the set of candidate pairs for P;, we can extract from it
the pairs separaﬁng P; by deleting pairs that are endpoints of an edge in P;, and checking if the
endpoints of P; form a pair separating P;.

More generally, let G (P) be a star graph. A pair of vertices x,y on P will be called a pair
separating P if the vertices in the interior of P (x,y) are separated from the vertices in
P[x,y]-{x,y) when the vertices x and y are deleted from G. A pair of vertices x,y on P will be
called a candidate pair for P in G if x,y is a pair separating P, or x and y are endpoints of P, or
(x,y) is an edge in P.

Lemmas 3 and 4 give us the following observation.

Observation 1: Let G=(V,E) be a biconnected graph with an open ear decomposition
D=[Py, * ** ,P,_1]. Then x,y is a candidate pair for P; in G if and only if it is a candidate pair for
P; in the bridge graph C;(P;).

Let G (P) be a star graph with stars B,S1, * - * ,Sk, Where B is a star with the two endpoints
of P as attachments. The star path graph H; of G (P) is the graph H;=P \UBUS;. Analogously,
given C;, the bridge graph of P;, together with its stars S; 1, * * - .S, the star path graph H; ; is
the graph P;_S; j_B, where B is an auxiliary bridge with the two endpoints of P; as attach-

ments. As a consequence of Lemma 4 we have the following lemma about candidate pairs for an

i

ear. Lemma 5 Let the stars on C; be S; 1, * - * .Si- Let Hyj" be the planar embedding of the star
path graph H; j with P; on the outer face. Then a pair of vertices on P; is a candidate pair for P; if
and only if it lies on a common intemal face in each H;,;",j=1. - ** .k.

Proof Follows from Lemma 4.[]

Corollary to Lemma 5 If C;" is a planar embedding of C; with P; on the outer face, then a pair
of vertices x,y on P; is a candidate pair for P; if and only if x and y lie on a common inner face in

Ci.

In general, this corollary may not apply, because C; need not be planar. We now introduce
the star coalescing property: namely, we will establish that if we enforce the planarity required
in the corollary by coalescing the centers of any pair of stars that interlace (as defined below) to
obtain a new graph C’;, then the corollary applies to C..

Two stars §; and S; in a star graph G (P) interlace (see also [Ev, p. 149]) if one of following
two hold:

1) There exist four distinct vertices a,b,c,d in increasing order in P such that a and ¢ belong to
§;(Sy) and b and d belong to Sx(S;); or

2) There are three distinct vertices on P that belong to both §; and §;.

Observation 2: (See, e.g., [Ev, p. 150].) A star graph G (P) has a planar embedding with P on the
outer face if and only if no pair of stars interlace.

The operation of coalescing two stars §; and Sy is the process of forming a single new star
S from S; and S, by combining the attachments of S; and Sy, and deleting S; and S. Given a star
graph G (P), the coalesced graph G’ of G is the graph obtained from G by coalescing all pairs of
stars that interlace. Note that G’ is a star graph with respect to P, and G’ has a planar embedding
with P on the outer face, since no pair of stars interlace in G'.

Let G (P) be a star graph in which no pair of stars interlace. We will call the planar embed-
ding of G with P as the outer face the star embedding G * of G. '

Theorem 1 A pair of vertices x,y on the path P of a star graph G (P) is a candidate pair for G if
and only if it is a candidate pair for the coalesced graph G'(P)of G(P).

Proof By induction on the number of stars N in G.

Base: When N=1, then G’=G, and the theorem is trivially true.

-10-

Induction Step: Suppose the theorem is true for any G (P) with up to k stars, and consider the case
when G (P) has k+1 stars Sy, - *,Sg41. Let Gy be G with S;,, removed. By the induction
hypothesis, a pair of vertices x,y on P is a candidate pair for G, if and only if it is a candidate
pair for G';.

Now consider G,=G’y_Si41. First we note that from Lemma 5 and the induction
hypothesis, a pair of vertices x,y on P is a candidate pair for G if and only if it is a candidate pair
for G,. We now prove that x,y is a candidate pair for G if and only if it is a candidate pair for
G’,. Since G’,=G’, this will prove the theorem.

Suppose x,y is a candidate pair for G . Then both vertices lie on a common inner face £ in
G’;" and also on a common inner face F3 in Hy41 . Hence all vertices on P (x,y) lie in F,. Since
xand y lie on a single face F5 in Hy4; ", none of the stars of G’y that have all points of attachment
between x and y (inclusive) in P (x,y), interlace with S;.1, and hence none of them are coalesced
with Sg41 in G'2. Hence x and y will lie on a common inner face in G’;", and hence form a candi-
date pair for G’,.

Suppose x,y is a candidate pair for G’;. If (x,y) is an edge in P then x,y is a candidate pair
for G. Suppose (x,y) is not an edge in P, and suppose that there is a path between a vertex a in
P (x,y)~{x,y} and a vertex b in P [x,y]-(x.y} in G that avoids both x and y. But every path in
G, is present in G’ and hence there would be a path between a and b in G’ that avoids both x
and y, contradicting the fact that x,y is a scparating pair belonging to G’;. Hence x,y must be a
pair separating P in G,(P).

This establishes the induction step and the theorem is proved.[]

Corollary to Theorem 1 Let G (P) be a star graph and let G 1 (P) be the graph derived from G (P)
by coalescing some of the interlacing stars on G (P). Then x,y is a candidate pair for G if and only
if it is a candidate pair for G (P).

Let us refer to the set of vertices on P; that lie on a common inner face in G’ ;' as a candi-
date set for P;. A pair of vertices is a candidate pair for P; if and only if it lies in a candidate set
for P;. A candidate set S for ear P; is a nontrivial candidate set if it contains a pair separating P;.
Since every separating pair for G is a candidate pair for some ear P; (Lemma 3), any algorithm
that determines the candidate sets for all ears is an algorithm that finds all separating pairs for a
graph.

By the results we have proved above, we can find all candidate sets in G by forming the
bridge graph for each nontrivial ear, and then extracting the candidate sets from the coalesced
graph of the bridge graph. In order to obtain an efficient implementation of this algorithm, we
will not use the bridge graph of each ear, but instead a closely related graph called the ear graph,

i Tl

which we now define.

Let G be a biconnected graph with an open €ar decomposition D=[Pyg, * * - ,FP,-1]. Let
B, - ,B, be the anchor bridges of P;. The ear graph of P;, denoted by G;(P;) is the graph
obtained from the bridge graph of P; by a) coalescing all stars corresponding to anchor bridges;
and b) removing any two-attachment bridges with the endpoints of the ear as attachments. We
will call the star obtained by coalescing all anchor bridges, the anchoring star of G;(P)).

Lemma 6 A pair of vertices x,y separates ear P; in G if and only if it separates P; in the ear graph
Gi(Py).

Proof By Lemmas 3 and 4, x,y separates ear P; in G if and only if it separates P; in the bridge
graph C;(P)).

Now consider the ear graph G;(P;). The ear graph G;(P;) is obtained from the bridge graph
C;(P;) by coalescing all anchor bridges, and deleting multiple two-attachment bridges with the
endpoints of the ear as attachments.

Deleting a star with attachments only to the endpoints of an ear can neither create nor des-
troy candidate pairs. We now observe that every pair of anchor bridges with an internal attach-
ment on P; must interlace: this is because every anchor bridge has the two endpoints of P; as
attachments. Hence G;(P;) is the graph derived from C;(P;) by coalescing some interlacing stars.
The lemma now follows from the Corollary to Theorem 1.[]

Lemma 7 Let G=(V,E) be a biconnected graph with an open ear decomposition
D=[Py, -+ ,P,_y,and let |V I=nand |E |=m. Then the total size of the ear graphs of all ears in
D is O (m).

Proof Each ear graph consists of a nontrivial ear P; together with a collection of stars on P;. The
size of all of the P; is O (m). So we only need to bound the size of all of the stars in all of the ear
graphs.

Consider an edge (4,v) in G. This edge appears as an intemnal attachment edge in at most
two ear graphs: once for the ear P,armumber(u) and ONCE for €ar Pogrmumber(v)- Thus the number of
internal attachment edges in all of the stars is no more than 2m.

We now bound the number of attachment edges to endpoints of ears. Since we delete all
stars with only the endpoints of an ear as attachments, every star in an ear graph G;(P;) with an
attachment to an endpoint of P; also has an internal attachment in P;. A star can contain at most
two attachments to endpoints of an ear. Hence for each star that contains attachments to endpoints
of its ear, we charge these attachments to an intemal atachment. Since the number of internal
~ attachment edges is no more than 2m, the number of attachment edges to endpoints of ears is no

w T2

more than 4m. Hence the total size of all of the ear graphs is O (m).[]

Lemma 5, Theorem 1 and Lemma 6 establish the validity of the following algorithm to find
the nontrivial candidate sets in a biconnected graph.

Algorithm 1 Finding the Nontrivial Candidate Sets

Input A biconnected graph G=(V,E).

1. Find an open ear decomposition D=[Py, * - * ,P,] for G.
2. For each nontrivial ear P; do

A) Construct the ear graph G;.

B) Coalesce all interlacing stars on G;(P;) to form the coalesced graph G’;. Find a planar
embedding of G’;, with P; on the external face, and identify each set of vertices on P; on a
common inner face in this embedding as a candidate set.

C) If j>0 let the endpoints of P; be u and v. If the anchor bridge of P; has an internal attach-
ment on P;, then delete the candidate set {u,v}.

D) Delete any doubleton candidate set that contains the endpoints of an edge in P;.

Let |V I=nand |E |=m. Step 1 has an O (logm) time parallel algorithm with O (m) proces-
sors on a CRCW PRAM [MaScVi, MiRa). In the next section, we give an O (log?m) time parallel
algorithm on a CRCW PRAM with a linear number of processors for steps 2A and 2B. Clearly
steps 2C and 2D are trivial to implement. Finally in section 6, we show how to obtain the tricon-
nected components of a biconnected graph, given the nontrivial candidate sets. We find the tri-
connected components using Tuste splits [Tu, HoTa2] in contrast to the earlier algorithm based on
depth first search [HoTa).

We also note that Algorithm 1 has an efficient sequential implementation. Step 1 has a
linear-time algorithm [MaScVi, MiRa]. The ear graphs can be constructed sequentially for the
non-trivial ears, starting from the highest-numbered non-trivial ear, by collapsing tﬁgethcr all ver-
tices in higher numbered ears that belong to the same bridge with respect to lower numbered ears.
This algorithm runs in time O ((m+n)-a(m,m)) where o(m,m) is the inverse Ackermann function.
Step 2B can has a fairly straightforward linear-time algorithm [MiRa2]. The remaining steps are
easy to implement in linear time.

5 18

5. Finding Candidate Sets

In this section we give algorithms to implement steps 2A and 2B in Algorithm 1.

5.1. Forming the Ear Graphs

Let G=(V,E) be a biconnected graph with an open ear decomposition D=[Pq, - - * ,P,—;].
Let IVIi=nand |E |=m.

We first provide some preliminary definitions. Given G =(V,E) with an open ear decomposi-
tion D=[Py, - - - ,P,], we define G;;, the (i.j) ear graph of G, for i<j, as follows: Let

J
P; j=\ Py, and let U; ; be the set of vertices in P; j that are contained in ears numbered lower than
k=i

i (these are some of the endpoints of P;,Pi41, * ** ,Pj). Let Ry, * + ,R; be the bridges of P; ; that
contain a vertex on an ear numbered lower than i (the anchor bridges of P; j), and let Sy, * * * , Sy
be the bridges of P; ; whose attachments are all in U;;j. Let C; j be the bridge graph of P; ;. Then
G;,j is the graph C; ; with the bridges R, - - * ,R; coalesced (the anchoring star of C; ;), and with
the bridges Sy, - - - ,S; deleted. Note that G;; is simply the ear graph G;, and G, is the input
graph G.

Let G’;; be a graph consisting of P; j, together with a collection of stars (i.e., connected
graphs in which exactly one vertex has degree greater than 1) with attachments on P; j, of which a
subset {Ry,k=1,2, ---,l} are 'marked’. Then G’;; is a partial ear graph of P;; if the graph
obtained by coalescing the R;,k=1,2, - - -,/ is the ear graph G; j, excluding the attachments of the
anchoring star to vertices in U ;.

The following algorithm constructs the ear graph of each ear in parallel. The construction
proceeds in stages. In each stage the algorithm constructs a partial ear graph G’; ; for a collection
of P; ;.'s. Finally, after having obtained G’; ; for each i, the algorithm coalesces all of the marked
stars in G;; and provides attachments for this coalesced star to the two endpoints of P;, to form
the ear graph G;.

Algorithm 2A Forming the Ear Graphs G;=(V;,E;),i=0, * - - ,r-1.

Input: Undirected biconnected graph G=(V,E) with an open ear decomposition
D=[P0t B sPr—l]-

1. Fori=l, - - - ,[log do
for j=0 (step 2) to 2° pardo

o Thon

leta=[-£1 ,b=\r£ﬂ1 ,c={—gt.2—)—1 :
2] 21 2[

a) Form G’, -1 from G'5 ¢ as follows:
i) Delete the subgraph induced by P, -1 from G’g .. Call the resulting graph Hypqs
ii) Find connected components in Hj ..
iii) Mark any connected component that contains a vertex that was previously marked.

iv) Mark any connected component containing a vertex on an ear numbered lower than a
(these will be some of the endpoints of ears in Py c-1).

v) Collapse each connected component into a single vertex.

vi) Restore P, ;. together with all edges incident on it. Remove multiple copies of any
edge in this graph, and delete all vertices not connected to Pap1.

vii) Remove the bridges of P, ;- with attachments only to vertices in Ug p-1, i.e, only to
some of the endpoints of P, ;,; which lie on ears numbered lower than a.

viii) Remove any edge connecting a marked vertex to a vertex in U, p-1.
b) Form G’y . from G’; .-; in a similar manner.

2. For each i, coalesce all marked bridges in G’; ; to form star S;, and introduce attachments from
S; to the two endpoints of P;; if there is no marked bridge in G';;, then introduce a new marked
star §; with attachments only to the two endpoints of P;. Label this the anchor bridge of P;.

Lemma 8 In Algorithm 2A, for each i, the size of all of the G’;;'s present in this step is O (m).

Proof Note that the size of all of the G’;,’s excluding attachments to the corresponding U k'S is
O (n+m), since any edge of G appears at most twice in this collection. We now bound the attach-
ment edges to Uj'g in G’j'g over all j,k’s for fixed i.

Consider G’ ., where j=y-2' and k=(y+1)-2', for some j. First observe that for any marked
vertex in G’ we remove all artachments to Uj in step viii. So we only need to consider bridges
containing only vertices belonging to higher-numbered ears (Px,x>k). For each such bridge B in
G’jx the algorithm retains an edge for each distinct attachment to a vertex v in Ujx. We can
charge this attachment to the lowest numbered ear P; that is contained in B and has an attachment
to v. Note that [>k, since B is a bridge containing vertices only from ears numbered larger than k.
Any edge is charged at most twice by this scheme (once for each endpoint of the edge) among
bridges of all P;, with i fixed. Hence the sizes of all of the G’j«'s present in this step is O (m).[]

-15-

Lemma 9 Algorithm 2A correctly finds the ear graph of each ear.

Proof It is clear that Algorithm 2A without parts vii) and viii) in steps 1a and 1b, constructs the
bridge graph of each ear. We need to show that the algorithm as specified constructs the ear graph
of each ear.

We establish this by showing by induction that in the ith iteration of the main step, each
G’ formed is a partial ear graph of the corresponding P s.

Base i=1: Let b=[r/2 . When i=1 the algorithm constructs two graphs G’g;_; and G’ ,;. Since
the bridge graph C -1 of Pg -1 contains no anchor bridges, step 1a of Algorithm 2A constructs
Co,5-1, Which is clearly a partial ear graph of Pg 1.

The bridge graph Cj,,_1 of Py ,—; contains only anchor bridges and all of these bridges have
attachments only to ;U;,‘,_l. Hence any partial ear graph of Py ,; contains no bridges. Algorithm
2A removes all bridges of Py, in step 1b vii) and hence the graph constructed by the algorithm
is a partial bridge graph of Py, ,_;.

Induction step Suppose the result is true until the (i—1)st iteration, and consider iteration i. Let
G’;,-1 be constructed in step 1a from G’, -1 in the ith stage. '

First we show that every attachment of the anchoring bridge of G, 5 is contained in one of
the marked stars of G’, ,;. Let v be an attachment vertex of an anchoring bridge of Py p-y inG.
If v is also an attachment of an anchoring bridge of P, . in G then by the induction hypothesis
there is a marked star in G’ - that has an attachment to v. The connected component containing
this marked star is marked in step 1a iii) of Algorithm 2A and hence v is an attachment of a
marked star in G’, ;. If v is not an attachment of an anchoring bridge of P,y in G then in
order for v to be an attachment edge of an anchoring bridge in C, -1, €ither it must be connected
to an anchoring bridge of P,..; through internal vertices in Py or it must be connected
through internal vertices in Py .- t0 a vertex in U, that belongs to an ear numbered lower
than . In the former case the corresponding connected component is marked in step 1a iii) of
Algorithm 2A and in the latter case it is marked in step 1a iv) of Algorithm 2A.

A similar argument holds for attachments of the anchoring bridge of G ¢-1.

If an attachment does not belong to an anchoring star of G, 51 or Gy, .- then we claim that
it cannot be an attachment of a marked star in G’ 31 or G’pc—1. This is so since the algorithm
only deletes edges from the graph, and hence never induces a path between two vertices in a sub-
graph of G’y if a path did not exist in the subgraph of G induced by V(G'xy)-

Finally we note that every non-anchor bridge of P, -1 in G appears as a non-anchor bridge
in G’, - as constructed by Algorithm 2A. This is because steps 1a vii) and viii) and steps 1b vii)

-16 -

and viii) delete only edges incident on vertices belonging to ears numbered lower than @ and b
respectively, and hence none of the edges in non-anchor bridges are removed.

This establishes the induction step and the lemma is proved.[]

The major computation in each parallel step of the algorithm involves finding connected
components in subgraphs of the G’; ;'s. Since by Lemma 8, the total size of the graphs present at
any given step is O (m), each parallel step can be implemented in O (logm) time on a CRCW
PRAM with O (m) processors [ShVi]. Finally since the algorithm has logm parallel stages, it runs
on a CRCW PRAM in O (log?m) time with O (m) processors.

5.2. Forming the Coalesced Graph

We now turn to step 2B, which finds the coalesced graph G’ of a star graph G (P), and
determines from it, the candidate sets of G (P).

Our parallel algorithm to coalesce all interlacing stars in a star graph G(P) runs in
0 (log?q) time using O (q) processors, where q is the number of edges in the stars and in the path.
Recall that the star embedding of a star graph with no interlacing stars consists of embedding the
path P as a horizontal line, and all the stars and their edges above the line in a well nested fashion
with no two edges crossing. Each face in this embedding, ignoring the exterior face, lies directly
below exactly one star and every star with k edges sits directly above k-1 faces. Thus, associated
with the embedded stars is an ordered rooted tree: one vertex for each star and one for each face,
which we call star-vertex and face-vertex respectively. The root of this tree is the exterior face.
The children of a star-vertex are its faces in order and the children of a face-vertex are the stars
that lie directly below it in order. We call this tree the face-star tree. The face-star tree is the
main data structure that we use for the parallel star coalescing algorithm.

We distinguish between distinct and nondistinct attachments of the stars. In figure 3 we
show a star embedding of a star graph G (P) together with its face-star tree for the case of distinct
attachments, i.e., each vertex on P is common to at most one star. As one can see from the exam-
ple, the face-star tree is any rooted and ordered tree such that 1) the root is labeled a face, and
each level of vertices is labeled alternately as faces and stars, and 2) each leaf is labeled as a face.
The last condition just requires that all leaves are of even depth. |

The face-star tree gives us most of the information about the star embedding. We show how
to extract the information that is in the embedded star graph from the face-star tree. We start with
a definition. The Euler tour of an ordered rooted tree T is the cycle starting at the root that traces
the tree in a counter-clockwise order..In our example from figure 3 the Euler tour is
<A,a,B,a,C.c,D,c,C.d,E,d,C,a,A,b,F,b,G.e,HeG.f, I.f.J.f,G.b,A>, where face vertices are

-17-

labeled by upper case letters and star vertices by lower case letters. A corner of an Euler tour
<Vp, c V> s ahy triple (v;_;,V;,vi+1) Of successive vertices on the tour. The triple is a comer
of star (face) if v; is a star (face). Note that each attachment is defined by a comer of the star it

belongs to, with the two face vertices in the comer corresponding to the faces bounding the
' attachment edge.

Star embedding

Face-star tree

figure 3
A star embedding with distinct attachments
and its face-star tree

The general case of nondistinct attachments is slightly more complicated. Since G (P) has
no rhultiple two-attachment stars with the same pair of attachments (by definition), any star graph
with a star embedding that is derived from G (P) by coalescing stars has a unique embedding.
The attachment vertices correspond to a consecutive set of star comers in the Euler tour of the
face-star tree of such an embedding. In ﬁgure- 4 we exhibit a star embedding in which the attach-
ments are not all distinct. Here the attachment x corresponds to the comers (F,c,B), (B,a,A),
(A,d,G) and (G,e,I). Thus, since our algorithm will maintain the face-star tree and not the star
graph, we need to maintain a list of comers that determine the beginning and end of each attach-
ment veriex.

=38

figure 4 _
A general star embedding with its face-star tree

Our parallel star coalescing algorithm is a divide-and-conquer algorithm that divides the set
of stars in half and recursively and in parallel finds the face-star tree for the coalesced graph in
each half, and then combines the two trees using Merge-Tree, the heart of the algorithm. We give
an O (logp) time p processor algorithm to merge the face-star trees of the two halves, where p is
the total number of attachments in the two two coalesced graphs. This gives an O (log2q) time ¢
processor algorithm for star coalescing.

The procedure Merge-Tree is substantially simplified if we first sort the original stars as fol-
lows. Let left (S) and right (S) be the first and last attachments of § on P. We say a vertex u on P
is less than another vertex v on P if u appears before v on P. We say that star S is before star S in
the Euler order if (1) left (S)<left (S”) or (2) left (S)=left(S’) and right (S Y<right(S"). Note that in
the star embedding, the Euler order gives the sequence in which the stars first appear on the Euler
tour.

We first sort the stars in G (P) with respect to the Euler order in O (logq) time using ¢ pro-
cessors [Co] (as a preprocessing step we coalesce all stars with the same span). Note that since
each recursive call of the parallel star coalescing algorithm returns the face-star tree, by the above
remark we may think of the stars being returned as sorted. On the other hand, by the following
observation it is relatively easy to maintain the stars in order even if they are being coalesced: If
interlacing stars are coalesced, then the Euler order on the new stars is obtained from the old
Euler order by taking each interlacing class of stars and associating it with the minimum num-
bered star in its class. Thus we can maintain the Euler order throughout the computation without
sorting.

The main procedure Merge-Tree has as input the face-star trees of two star embeddings
G*(P) and G’ (P). By presorting, as defined above, we may also assume that there is a point 3
such that every star in G (P) has a point of attachment at 8 or to its left, and every star in G'(P)

-19 -

has all of its attachments at & or to its right. The procedure returns with the face-star tree of the
star embedding of the coalesced graph of G (P _G’(P). The procedure has four steps which may
be combined in a slightly more efficient algorithm, but for clarity, are best viewed separately:

1) Determine which stars in T (T") interlace with the same star inT (1.
2) Coalesce all stars in T (T”) that interlace with the same star inT" (7).

3) For each pair of interlacing stars S,5’, with S €T and §’e T, add the attachments of S to the
right of & to those of S".

4) Splice the tree T into the tree T.

To implement step 1 we start by determining those stars in T” that interlace with the same
star in T. We use the fact that every star S in T has an attachment at § or to its left. Note that if 5’
is astarin 7" that interlaces with S, then S interlaces with the parent star of S’, if it exists. Thus, if
$'y, -+ + S8 are the stars that are the children of the root of T, and S’ is a descendant of S’;, then §
must interlace with every star on the path from §’ to §’; in T”. Thus it suffices o find, for each
attachment of each star S in T, the lowest level star in T’ with which it interlaces. We can find this
star by determining in which comer of T’ the attachment lies. We do this by merging the attach-
ment of G (P) with those of G’(P), either by sorting the points or by using a relatively simple
pointer jumping scheme. The latter idea can be performed from the original sorting as part of the
preprocessing. Thus the merging takes only a constant amount of time,

To find the set of stars of T that interlace with a given star in T", we note that the stars of T
that interlace with some star in 7° all lic on the rightmost path, say 7, in T, i.e., the path that starts
from the root and ends at the rightmost leaf. Each star §’ in T" interlace with exactly those stars in
T that have an attachment in the span of §’; this corresponds to stars on a single segment of T.
Thus each star in T° can determine this segment of T in constant time given our preprocessing. In
fact it is sufficient for only the stars 'y, * -+ ,8', the children of the root in T” to determine their
segments on T.

We now have the set of stars in T that must be coalesced and the set of stars in T that must
be coalesced. We do this coalescing in step 2. Clearly we can coa]csée two neighboring stars in
constant time, since one star must be the parent of the other, or the two stars must be siblings.
Thus this step can be done in O (logp) time with O (p) processors using either parallel tree con-
traction [MiRe] or the Euler tour technique on trees [TaVi].

At this point at most one star in T° can interlace with a given star in T and at most one star
in T can interlace with a star in T". Let us call a star that currently interlaces with a star in the
other half, an interlacing star. The only interlacing stars in T lie on the path 1, and the only

-20-

interlacing stars in T* are children of the root. In step 3 we add the attachments to the right of 8 of
each interlacing star in T to its mate in T° so that the interlacing stars in T” have their own attach-
ments as well as the attachments (to the right of 8) of their mate in T.

Finally in step 4 we replace all subtrees to the right of & for each interlacing star S in T with
all the subtrees of its mate S’; in T”. This can be performed in constant time. On the other hand, if
§’; is a star in T that does not interlace with any star in T then it must lie in one of the faces
defined by T. In this case we attach the subtree at §’; to this face.

This concludes the description of the algorithm to coalesce all interlacing stars in a star
graph with ¢ edges in O (log?q) time using O (q) processors. Since the total size of the ear graphs
of all nontrivial ears is O (m) this gives an algorithm to find the coalesced graphs of all ear graphs
of G in O (log?n) tim:e using O (m) processors.

The face-star tree data structure now allows us to extract the candidate sets efficiently. For
each face vertex f, the information available at its parent in the tree gives the leftmost vertex / and
rightmost vertex r on P that belong to the face f. Similarly, the information at each child vertex ¢
gives a segment s, on P between / and r that does not belong to face f. The candidate set defined
by f is the set of vertices in the interval [/,r] excluding the vertices in the segments s, where ¢
ranges over the children of f in the face-star tree. Thus the vertices on each face in the star
embedding of the coalesced graph can be obtained as a circular linked list in constant time by
having a processor at each vertex in the face-star tree.

6. Finding Triconnected Components

We first review some material from [Tu, HoTa2]. A multigraph G=(V,E) is an undirected
graph in which there can be several edges between the same pair of vertices. An edge e in a mul-
tigraph is denoted by (a,b,i) to indicate that it is the ith edge between a and b; the third entry in
the triplet may be omitted for one of the edges between a and b.

A pair of vertices a,b in a multigraph G=(V,E) is a separating pair if and only if there are
two nontrivial bridges, or at least three bridges, one of which is nontrivial, of {a,b) in G. If G has
no separating pairs then G is triconnected. The pair a,b is a nontrivial separating pair if there are
two nontrivial bridges of a,b in G.

Let a,b be a separating pair for a biconnected multigraph G=(V,E), and let B be a bridge of
a,b in G which is biconnected and has |E(B)|122. We can apply a Tuste split [Tu, HoTa2]
s(a,b,i) to G by forming G, and G, from G, where G, is B_{(a,b,i)} and G is the induced
subgraph on (V—-V (B))_{a,b}, together with the edge (a,b,i). The graphs G, and G, are called
- split graphs of G with respect to a,b. The Tutte components of G are obtained by successively

] =

applying a Tutte split to split graphs until no Tutte split is possible. Every Tutte component is one
of three types: i) a triconnected simple graph; ii) a simple cycle (a polygon); or iii) a pair of ver-
tices with at least three edges between them (a bond); the Tutte components of a biconnected
multigraph G are the unique triconnected components of G.

Let G=(V,E) be a biconnected graph with an open ear decomposition D=[Pg, * **,P,].
Let a,b be a pair separating P;. Let By, - * * ,B; be the bridges of P; with an attachment in the

k

interior of P;(a,b), and let T;(a,b)=(_B:)_Pi(a,b). It is easy to see that T;(a,b) is a bridge of
j=l

a,b. Then the ear split e(a,b,i) consists of forming the upper split graph G,=T(a.b)

{(a,b,i)} and the Ilower split graph G,, which is the induced subgraph on

(V-V (Ti(a,b)) (a,b} together with the edge (a,b,i). Note that the ear split e (a,b,i) is a Tutte

split if one of G1—{(a,b,i)} or G5~ {(a,b,i)} is biconnected.

Let S be a nontrivial candidate set for ear P;. Two vertices &,v in S are an adjacent separat-
ing pair for P; if u,v is a pair separating P; and S contains no vertex in V;(u,v). Two vertices a.b
in S are an extremal separating pair for P; if S contains no vertex in V;[a,b].

We now prove the following theorem.

Theorem 2 Let G=(V,E) be a biconnected graph with an open ear decomposition
D=[Py, - * - ,P,_;]. Let a,b be an adjacent (extremal) separating pair for P; in G, and let G, and
G, be, respectively, the upper and lower split graphs obtained by the ear split e (a,b,i). Then,

a) G,—{(a.b,i)} (G2—{(a,b,i)}) is biconnected.

b) The ear decomposition D induced by D on G by replacing P; by the simple cycle formed
by P;(a,b) followed by the newly added edge (b,a,i) is a valid open ear decomposition for
G,; likewise, the ear decomposition D, induced by D on G, by replacing P;(a,b) by the
newly added edge (a,b,i) is a valid open ear decomposition for G .

c) Letc,d be a pair separating some P;,0<j<r~1in G. If {c.d}#{a.b} or i#/ then ¢ and d lie
in one of G, or G, and c,d is a separating pair for P; in the split graph in which P;,c, and 4
lie. '

d) Every separating pair in G orin G is a separating pair in G.

Proof

a) If G- {(a,b,i)} is not biconnected then let ¢ be an articulation point in the graph. ¢ cannot lie
on P;(a,b) since this would imply that it is part of the candidate set for which 4,b is an adjacent
separating pair. But ¢ cannot lie on a bridge of P;(a,b) since this would imply that G is not

A

biconnected.
Similarly G- {(a,b,i)) is biconnected if a,b is an extremal separating pair.

b) If there were an ear in D with one endpoint in G, (G,) and the other endpoint not in G (G2)
then a,b would not be a separating pair.

c and d) If i#j let P; lie in G, (where k=1 or 2). We note that the ear graph of P; in Gy is the
same as the ear graph of P; in G. Hence ¢,d is a pair separating P; in G if and only if it is a pair
separating P in Gy.

If i=j we note that in G the bridges of P; are precisely those bridges of P; in G that have
attachments on an intlemal vertex of P;(a,b). Hence if ¢ and d lie on P;(a,b) then c,d separates P;
in G if and only if it iseparates P;(a,b) in G,. An analogous argument holds for G; in the case
when ¢ and d lie on P;[a,b 1.[]

We now present the algorithm for finding triconnected components.

Algorithm 3 Finding Triconnected Components

Input A biconnected graph G=(V,E) with an open ear decomposition D=[Py, * * * ,P,-1], and the
nontrivial candidate sets for each ear.
Output The triconnected components of G.

1. For each nontrivial ear P; do
for each nontrivial candidate set S for P; do

a) For each adjacent separating pair ,v in S replace G by its upper split graph G and its
lower split graph G for the ear split e(u,v,i). Replace D by the ear decomposition D for
G, and the ear decomposition D for G as in part b) of Theorem 2.

b) If IS |>2, then replace G by its upper split graph G, and its lower split graph G, for the
extremal separating pair 4,v in S. Replace the ear decomposition D by the corresponding ear
decompositions D'y and D,. (If i=0 and u and v are endpoints of P’y then pcrform this ear
split only if there are at least two edges between u and v.)

2. Split off multiple edges in the remaining split graphs to form the bonds.

Lemma 10 Algorithm 3 generates the Tutte components of G.
Proof Follows from Theorem 2.[]

.23-

For a parallel implementation of Algorithm 3 we implement step 1 in logr stages. In the
first stage we locaté the median active ear, call it P;, where an active ear is an ear having a non-
trivial candidate set. Then we find the bridges of G-, and in each bridge we locate the
smallest-numbered active ear. Let these ears be P;,P;,, - ,P;. In parallel we perform step 1 on
each of these ears; this is essentially a connectivity algorithm. All of the preceding can be done in
O (logm) time with a linear number of processors on a CRCW PRAM. At this point we have a
collection of split graphs, and by Theorem 2, the number of active ears in any of them is at most
half the number of active ears in the original graph. We now recursively apply the above step in
each of the split graphs, and in logr stages we will be done. This gives an O (log?m) algorithm
with O (m) processors to find the triconnected components.

We also note that Algorithm 3 can be easily modified to obtain the tree of 3-connected com-
ponents (or "auxiliary graph" [HoTa2]) with the same time and processor bounds.

REFERENCES
[Ev] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[GaTa] H. N. Gabow, R. E. Tarjan, "A linear-time algorithm for a special case of disjoint set
union," J. Comput. Syst. Sci., vol. 30, 1985, pp. 209-221.

[HoTa] J. E. Hopcroft, R. E. Tarjan, "Dividing a graph into triconnected components,” SIAM J.
Comput., 1973, pp.135-158.

[HoTa2] J. E. Hopcroft, R. E. Tarjan, "Finding the triconnected components of a graph," TR 72-
140, Computer Science Department, Comell University, Ithaca, NY, 1972.

[JaKo] J. Ja'Ja, S. R. Kosaraju, private communication.

[JaSi] J. Ja’Ja, J. Simon, "Parallel algorithms in graph theory: planarity testing," SIAM J. Com-
put., 11, 1982, pp. 314-328.

[KanRa] A. Kanevsky, V. Ramachandran, "Improved algorithms for graph four-connectivity,"
Proc. 28th IEEE Symp. on Foundations of Comp. Sci, IEEE Press, 1987.

[KarRa] R. M . Karp, V. Ramachandran, "Parallel algorithms for shared memory machines,”
Handbook of Theoretical Computer Science, J. Van Leeuwen, ed., North Holland, 1988, to

appear.

[Lo] L. Lovasz,"Computing ears and branchings in parallel,” Proc. 26th IEEE Ann. Symp. on
Foundations of Comp. Sci., 1985, pp. 464-467. '

224 -

[MaScVi] Y. Maon, B. Schieber, U. Vishkin, "Parallel ear decomposition search (EDS) and st-
numbering in graphs." VLSI Algorithms and Architectures, Lecture Notes in Computer Science
vol. 227, 1986, pp. 34-45.

[MiRa] G. L. Miller, V. Ramachandran, "Efficient parallel ear decomposition with applications,"
unpublished manuscript, MSRI, Berkeley, CA, January 1986.

[MiRa2] G. L. Miller, V. Ramachandran, "A new graph triconnectivity algorithm and its parallel-
ization," Proc. 19th Annual ACM Symp. on Theory of Computing, 1987, pp. 254-263.

[MiRe] G. L. Miller, J. H. Reif, "Parallel tree contraction and its applications," Proc. 26th FOCS,
1985.

[RaVi] V. Ramachanc?ran. U. Vishkin, "Efficient parallel triconnectivity in logarithmic time,"
Proc. Aegean Workshop on Computing, Corfu, Greece, June-July 1988, Springer Verlag Lecture

Notes in Computer Science, 1988.

[Ta] R. E. Tarjan, "Efficiency of a good but not linear set union algorithm," JACM, vol. 22, 1975,
pp. 215-225.

[TaVi] R. E. Tarjan, U. Vishkin, "Finding biconnected components and computing tree functions
in logarithmic parallel time," SIAM J. Comput., vol. 14, 1985, pp. 862-874.

[Tu] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.

[Wh] H. Whitney, "Non-separable and planar graphs," Trans. Amer. Math. Soc. 34, 1932,
Pp.339-362.

